1
|
Liu D, Hu X, Chen Z, Wei W, Wu Y. Key links in the physiological regulation of the immune system and disease induction: T cell receptor -CD3 complex. Biochem Pharmacol 2024; 227:116441. [PMID: 39029632 DOI: 10.1016/j.bcp.2024.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
T cell receptor (TCR) is a kind of surface marker that are specific to T cells. The TCR regulates T cell function and participates in the body's immunological response to prevent immune dysregulation and inflammatory reactions by identifying and binding exogenous antigens. Due to its brief intracellular segment, TCR requires intracellular molecules to assist with signaling. Among these, the CD3 molecule is one of the most important. The CD3 molecule involves in TCR structural stability as well as T cell activation signaling. A TCR-CD3 complex is created when TCR and CD3 form a non-covalent bond. Antigen recognition and T cell signaling are both facilitated by the TCR-CD3 complex. When a CD3 subunit is absent, a TCR-CD3 complex cannot form, and none of the subunits is transported to the cell surface. Thus, T cells cannot develop. Consequently, research on the physiological functions and potential pathogenicity of CD3 subunits can clarify the pathogenesis of immune system diseases and can offer fresh approaches to the treatment of it. In this review, the structure and function of the TCR-CD3 complex in the immune system was summarized, the pathogenicity of each CD3 subunit and therapeutic approaches to related diseases was explored and research directions for the development of new targeted drugs was provided.
Collapse
Affiliation(s)
- Danyan Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Xiaoxi Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
2
|
Liu J, Luo S, Wang G, Hu X, Chen G, Xu Q. Molecular Cloning, Tissue Distribution and Antiviral Immune Response of Duck Src. Genes (Basel) 2024; 15:1044. [PMID: 39202404 PMCID: PMC11353579 DOI: 10.3390/genes15081044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
As a founding member of the Src family of kinases, Src has been confirmed to participate in the regulation of immune responses, integrin signaling, and motility. Ducks are usually asymptomatic carriers of RNA viruses such as Newcastle disease virus and avian influenza virus, which can be deadly to chickens. The beneficial role of Src in modulating the immune response remains largely unknown in ducks. Here, we characterized the duck Src and found that it contains a 192-base-pair 5' untranslated region, a 1602-base-pair coding region, and a 2541-base-pair 3' untranslated region, encoding 533 amino acid residues. Additionally, duSrc transcripts were significantly activated in duck tissues infected by Newcastle disease virus compared to controls. The duSrc transcripts were notably widespread in all tissues examined, and the expression level was higher in liver, blood, lung, pancreas, and thymus. Moreover, we found the expression levels of IFN-β, NF-κB, IRF3, and Src were significantly increased in DEFs after infection with 5'ppp dsRNA, but there was no significant difference before and after treatment in DF1 cells. Furthermore, overexpression of duSrc followed by stimulation with 5'ppp dsRNA led to an elevation of IFN-β levels. The SH3 and PTKc domains of duSrc contributed to promoting the activity of IFN-β and NF-κB in DEFs stimulated by 5'ppp dsRNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (J.L.); (S.L.); (X.H.); (G.C.)
| |
Collapse
|
3
|
De Sanctis JB, Garmendia JV, Duchová H, Valentini V, Puskasu A, Kubíčková A, Hajdúch M. Lck Function and Modulation: Immune Cytotoxic Response and Tumor Treatment More Than a Simple Event. Cancers (Basel) 2024; 16:2630. [PMID: 39123358 PMCID: PMC11311849 DOI: 10.3390/cancers16152630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Lck, a member of the Src kinase family, is a non-receptor tyrosine kinase involved in immune cell activation, antigen recognition, tumor growth, and cytotoxic response. The enzyme has usually been linked to T lymphocyte activation upon antigen recognition. Lck activation is central to CD4, CD8, and NK activation. However, recently, it has become clearer that activating the enzyme in CD8 cells can be independent of antigen presentation and enhance the cytotoxic response. The role of Lck in NK cytotoxic function has been controversial in a similar fashion as the role of the enzyme in CAR T cells. Inhibiting tyrosine kinases has been a highly successful approach to treating hematologic malignancies. The inhibitors may be useful in treating other tumor types, and they may be useful to prevent cell exhaustion. New, more selective inhibitors have been documented, and they have shown interesting activities not only in tumor growth but in the treatment of autoimmune diseases, asthma, and graft vs. host disease. Drug repurposing and bioinformatics can aid in solving several unsolved issues about the role of Lck in cancer. In summary, the role of Lck in immune response and tumor growth is not a simple event and requires more research.
Collapse
Affiliation(s)
- Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), 77900 Olomouc, Czech Republic
| | - Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
| | - Hana Duchová
- Faculty of Science, Palacky University, 77900 Olomouc, Czech Republic; (H.D.); (A.P.)
| | - Viktor Valentini
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
| | - Alex Puskasu
- Faculty of Science, Palacky University, 77900 Olomouc, Czech Republic; (H.D.); (A.P.)
| | - Agáta Kubíčková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), 77900 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.V.G.); (V.V.); (A.K.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), 77900 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
4
|
Fernández-Aguilar LM, Vico-Barranco I, Arbulo-Echevarria MM, Aguado E. A Story of Kinases and Adaptors: The Role of Lck, ZAP-70 and LAT in Switch Panel Governing T-Cell Development and Activation. BIOLOGY 2023; 12:1163. [PMID: 37759563 PMCID: PMC10525366 DOI: 10.3390/biology12091163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023]
Abstract
Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.
Collapse
Grants
- PY20_01297 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
- PID2020-113943RB-I00 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PR2022-037 University of Cádiz
- PAIDI2020/DOC_01433 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
Collapse
Affiliation(s)
- Luis M. Fernández-Aguilar
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Inmaculada Vico-Barranco
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Mikel M. Arbulo-Echevarria
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Enrique Aguado
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| |
Collapse
|
5
|
Dey G, Bharti R, Braley C, Alluri R, Esakov E, Crean-Tate K, McCrae K, Joehlin-Price A, Rose PG, Lathia J, Gong Z, Reizes O. LCK facilitates DNA damage repair by stabilizing RAD51 and BRCA1 in the nucleus of chemoresistant ovarian cancer. J Ovarian Res 2023; 16:122. [PMID: 37370140 PMCID: PMC10294509 DOI: 10.1186/s13048-023-01194-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Poly-ADP Ribose Polymerase (PARP) targeted therapy is clinically approved for the treatment of homologous recombination (HR) repair deficient tumors. The remarkable success of this therapy in the treatment of HR repair deficient cancers has not translated to HR-proficient cancers. Our studies identify the novel role of non-receptor lymphocyte-specific protein tyrosine kinase (LCK) in the regulation of HR repair in endometrioid epithelial ovarian cancer (eEOC) model. We show that DNA damage leads to direct interaction of LCK with the HR repair proteins RAD51 and BRCA1 in a kinase dependent manner RAD51 and BRCA1 stabilization. LCK expression is induced and activated in the nucleus in response to DNA damage insult. Disruption of LCK expression attenuates RAD51, BRCA1, and BRCA2 protein expression by hampering there stability and results in inhibition of HR-mediated DNA repair including suppression of RAD51 foci formation, and augmentation of γH2AX foci formation. In contrast LCK overexpression leads to increased RAD51 and BRCA1 expression with a concomitant increase in HR DNA damage repair. Importantly, attenuation of LCK sensitizes HR-proficient eEOC cells to PARP inhibitor in cells and pre-clinical mouse studies. Collectively, our findings identify a novel therapeutic strategy to expand the utility of PARP targeted therapy in HR proficient ovarian cancer.
Collapse
Affiliation(s)
- Goutam Dey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Rashmi Bharti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Chad Braley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ravi Alluri
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Emily Esakov
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Katie Crean-Tate
- Division of Gynecologic Cancer, Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Keith McCrae
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | | | - Peter G Rose
- Division of Gynecologic Cancer, Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Zihua Gong
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
6
|
Wang R, Bao Y, Xia J. Exploring the Binding Interaction Between Phosphotyrosine Peptides and SH2 Domains by Proximal Crosslinking. Methods Mol Biol 2023; 2705:255-267. [PMID: 37668979 DOI: 10.1007/978-1-0716-3393-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Proximal crosslinking refers to the site-specific conjugation reaction between a synthetic ligand with a bioorthogonal reactive group incorporated at a particular site and a protein of interest (POI). The binding interaction positions a reactive group of a native amino acid of the POI to the proximity of the reactive group in the ligand. The covalent conjugation increases the molecular weight of the POI, shows an upshift in the polyacrylamide gel, and gives a fluorescent band if the ligand is fluorescently labeled. Here, we summarize a method to covalently conjugate phosphotyrosine peptides and SH2 domains that contain cysteine residues. This method yields covalent peptide blockers for a set of SH2 proteins and elucidates the binding interaction between phosphotyrosine peptides and SH2 domains.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yishu Bao
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
7
|
A Cysteine Residue within the Kinase Domain of Zap70 Regulates Lck Activity and Proximal TCR Signaling. Cells 2022; 11:cells11172723. [PMID: 36078131 PMCID: PMC9455082 DOI: 10.3390/cells11172723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in both the expression and function of the non-receptor tyrosine kinase Zap70 are associated with numerous human diseases including immunodeficiency, autoimmunity, and leukemia. Zap70 propagates the TCR signal by phosphorylating two important adaptor molecules, LAT and SLP76, which orchestrate the assembly of the signaling complex, leading to the activation of PLCγ1 and further downstream pathways. These events are crucial to drive T-cell development and T-cell activation. Recently, it has been proposed that C564, located in the kinase domain of Zap70, is palmitoylated. A non-palmitoylable C564R Zap70 mutant, which has been reported in a patient suffering from immunodeficiency, is incapable of propagating TCR signaling and activating T cells. The lack of palmitoylation was suggested as the cause of this human disease. Here, we confirm that Zap70C564R is signaling defective, but surprisingly, the defective Zap70 function does not appear to be due to a loss in palmitoylation. We engineered a C564A mutant of Zap70 which, similarly to Zap70C564R, is non-palmitoylatable. However, this mutant was capable of propagating TCR signaling. Moreover, Zap70C564A enhanced the activity of Lck and increased its proximity to the TCR. Accordingly, Zap70-deficient P116 T cells expressing Zap70C564A displayed the hyperphosphorylation of TCR-ζ and Zap70 (Y319), two well-known Lck substrates. Collectively, these data indicate that C564 is important for the regulation of Lck activity and proximal TCR signaling, but not for the palmitoylation of Zap70.
Collapse
|
8
|
Zhang S, Zhu N, Gu J, Li HF, Qiu Y, Liao DF, Qin L. Crosstalk between Lipid Rafts and Aging: New Frontiers for Delaying Aging. Aging Dis 2022; 13:1042-1055. [PMID: 35855333 PMCID: PMC9286918 DOI: 10.14336/ad.2022.0116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/16/2022] [Indexed: 12/15/2022] Open
Abstract
With the rapid aging in the global population, delay of aging has become a hot research topic. Lipid rafts (LRs) are microdomains in the plasma membrane that contain sphingolipids and cholesterol. Emerging evidence indicates an interesting interplay between LRs and aging. LRs and their components are altered with aging. Further, the aging process is strongly influenced by LRs. In recent years, LRs and their component signaling molecules have been recognized to affect aging by interfering with its hallmarks. Therefore, targeting LRs is a promising strategy to delay aging.
Collapse
Affiliation(s)
- Shuo Zhang
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- 2Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun Qiu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,3Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
9
|
Kästle M, Merten C, Hartig R, Plaza-Sirvent C, Schmitz I, Bommhardt U, Schraven B, Simeoni L. Type of PaperY192 within the SH2 Domain of Lck Regulates TCR Signaling Downstream of PLC-γ1 and Thymic Selection. Int J Mol Sci 2022; 23:ijms23137271. [PMID: 35806279 PMCID: PMC9267008 DOI: 10.3390/ijms23137271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Signaling via the TCR, which is initiated by the Src-family tyrosine kinase Lck, is crucial for the determination of cell fates in the thymus. Because of its pivotal role, ablation of Lck results in a profound block of T-cell development. Here, we show that, in addition to its well-known function in the initiation of TCR signaling, Lck also acts at a more downstream level. This novel function of Lck is determined by the tyrosine residue (Y192) located in its SH2 domain. Thymocytes from knock-in mice expressing a phosphomimetic Y192E mutant of Lck initiate TCR signaling upon CD3 cross-linking up to the level of PLC-γ1 phosphorylation. However, the activation of downstream pathways including Ca2+ influx and phosphorylation of Erk1/2 are impaired. Accordingly, positive and negative selections are blocked in LckY192E knock-in mice. Collectively, our data indicate that Lck has a novel function downstream of PLCγ-1 in the regulation of thymocyte differentiation and selection.
Collapse
Affiliation(s)
- Matthias Kästle
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Camilla Merten
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Carlos Plaza-Sirvent
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ingo Schmitz
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (B.S.); (L.S.)
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (B.S.); (L.S.)
| |
Collapse
|
10
|
Gangopadhyay K, Roy S, Sen Gupta S, Chandradasan A, Chowdhury S, Das R. Regulating the discriminatory response to antigen by T-cell receptor. Biosci Rep 2022; 42:BSR20212012. [PMID: 35260878 PMCID: PMC8965820 DOI: 10.1042/bsr20212012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cell-mediated immune response constitutes a robust host defense mechanism to eliminate pathogens and oncogenic cells. T cells play a central role in such a defense mechanism and creating memories to prevent any potential infection. T cell recognizes foreign antigen by its surface receptors when presented through antigen-presenting cells (APCs) and calibrates its cellular response by a network of intracellular signaling events. Activation of T-cell receptor (TCR) leads to changes in gene expression and metabolic networks regulating cell development, proliferation, and migration. TCR does not possess any catalytic activity, and the signaling initiates with the colocalization of several enzymes and scaffold proteins. Deregulation of T cell signaling is often linked to autoimmune disorders like severe combined immunodeficiency (SCID), rheumatoid arthritis, and multiple sclerosis. The TCR remarkably distinguishes the minor difference between self and non-self antigen through a kinetic proofreading mechanism. The output of TCR signaling is determined by the half-life of the receptor antigen complex and the time taken to recruit and activate the downstream enzymes. A longer half-life of a non-self antigen receptor complex could initiate downstream signaling by activating associated enzymes. Whereas, the short-lived, self-peptide receptor complex disassembles before the downstream enzymes are activated. Activation of TCR rewires the cellular metabolic response to aerobic glycolysis from oxidative phosphorylation. How does the early event in the TCR signaling cross-talk with the cellular metabolism is an open question. In this review, we have discussed the recent developments in understanding the regulation of TCR signaling, and then we reviewed the emerging role of metabolism in regulating T cell function.
Collapse
Affiliation(s)
- Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Soumee Sen Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Athira C. Chandradasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| |
Collapse
|
11
|
Borowicz P, Sundvold V, Chan H, Abrahamsen G, Kjelstrup H, Nyman TA, Spurkland A. Tyr 192 Regulates Lymphocyte-Specific Tyrosine Kinase Activity in T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:1128-1137. [PMID: 34321230 DOI: 10.4049/jimmunol.2001105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
TCR signaling critically depends on the tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase). Two phosphotyrosines, the activating pTyr394 and the inhibitory pTyr505, control Lck activity. Recently, pTyr192 in the Lck SH2 domain emerged as a third regulator. How pTyr192 may affect Lck function remains unclear. In this study, we explored the role of Lck Tyr192 using CRISPR/Cas9-targeted knock-in mutations in the human Jurkat T cell line. Our data reveal that both Lck pTyr394 and pTyr505 are controlled by Lck Tyr192 Lck with a nonphosphorylated SH2 domain (Lck Phe192) displayed hyperactivity, possibly by promoting Lck Tyr394 transphosphorylation. Lck Glu192 mimicking stable Lck pTyr192 was inhibited by Tyr505 hyperphosphorylation. To overcome this effect, we further mutated Tyr505 The resulting Lck Glu192/Phe505 displayed strongly increased amounts of pTyr394 both in resting and activated T cells. Our results suggest that a fundamental role of Lck pTyr192 may be to protect Lck pTyr394 and/or pTyr505 to maintain a pool of already active Lck in resting T cells. This provides an additional mechanism for fine-tuning of Lck as well as T cell activity.
Collapse
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Vibeke Sundvold
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Hanna Chan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Greger Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Hanna Kjelstrup
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| |
Collapse
|