1
|
Saeed Issa B, Adhab AH, Salih Mahdi M, Kyada A, Ganesan S, Bhanot D, Naidu KS, Kaur S, Mansoor AS, Radi UK, Saadoun Abd N, Kariem M. Decoding the complex web: Cellular and molecular interactions in the lung tumor microenvironment. J Drug Target 2024:1-44. [PMID: 39707828 DOI: 10.1080/1061186x.2024.2445772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The lung tumor microenvironment (TME) or stroma is a dynamic space of numerous cells and their released molecules. This complicated web regulates tumor progression and resistance to different modalities. Lung cancer cells in conjunction with their stroma liberate a wide range of factors that dampen antitumor attacks by innate immunity cells like natural killer (NK) cells and also adaptive responses by effector T cells. These factors include numerous growth factors, exosomes and epigenetic regulators, and also anti-inflammatory cytokines. Understanding the intricate interactions between tumor cells and various elements within the lung TME, such as immune and stromal cells can help provide novel strategies for better management and treatment of lung malignancies. The current article discusses the complex network of cells and signaling molecules, which mediate communications in lung TME. By elucidating these multifaceted interactions, we aim to provide insights into potential therapeutic targets and strategies for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot-360003, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Sharnjeet Kaur
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali140307, Punjab, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Muthena Kariem
- Department of medical analysis, Medical laboratory technique college, The Islamic University, Najaf, Iraq
- Department of medical analysis, Medical laboratory technique college, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of medical analysis, Medical laboratory technique college, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Sheva K, Roy Chowdhury S, Kravchenko-Balasha N, Meirovitz A. Molecular Changes in Breast Cancer Induced by Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:465-481. [PMID: 38508467 DOI: 10.1016/j.ijrobp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Breast cancer treatments are based on prognostic clinicopathologic features that form the basis for therapeutic guidelines. Although the utilization of these guidelines has decreased breast cancer-associated mortality rates over the past three decades, they are not adequate for individualized therapy. Radiation therapy (RT) is the backbone of breast cancer treatment. Although a highly successful therapeutic modality clinically, from a biological perspective, preclinical studies have shown RT to have the potential to alter tumor cell phenotype, immunogenicity, and the surrounding microenvironment, potentially changing the behavior of cancer cells and resulting in a significant variation in RT response. This review presents the recent advances in revealing the complex molecular changes induced by RT in the treatment of breast cancer and highlights the complexities of translating this information into clinically relevant tools for improved prognostic insights and the revelation of novel approaches for optimizing RT. METHODS AND MATERIALS Current literature was reviewed with a focus on recent advances made in the elucidation of tumor-associated radiation-induced molecular changes across molecular, genetic, and proteomic bases. This review was structured with the aim of providing an up-to-date overview over the very broad and complex subject matter of radiation-induced molecular changes and radioresistance, familiarizing the reader with the broader issue at hand. RESULTS The subject of radiation-induced molecular changes in breast cancer has been broached from various physiological focal points including that of the immune system, immunogenicity and the abscopal effect, tumor hypoxia, breast cancer classification and subtyping, molecular heterogeneity, and molecular plasticity. It is becoming increasingly apparent that breast cancer clinical subtyping alone does not adequately account for variation in RT response or radioresistance. Multiple components of the tumor microenvironment and immune system, delivered RT dose and fractionation schedules, radiation-induced bystander effects, and intrinsic tumor physiology and heterogeneity all contribute to the resultant RT outcome. CONCLUSIONS Despite recent advances and improvements in anticancer therapies, tumor resistance remains a significant challenge. As new analytical techniques and technologies continue to provide crucial insight into the complex molecular mechanisms of breast cancer and its treatment responses, it is becoming more evident that personalized anticancer treatment regimens may be vital in overcoming radioresistance.
Collapse
Affiliation(s)
- Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| |
Collapse
|
3
|
Li D, Shao F, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Guo Y, Yoo KH, Ke M, Okoli UA, Premkamon C, Yang Y, Wei W, Heavey S, Cho WC, Feng D. The complex interplay of tumor-infiltrating cells in driving therapeutic resistance pathways. Cell Commun Signal 2024; 22:405. [PMID: 39160622 PMCID: PMC11331645 DOI: 10.1186/s12964-024-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Drug resistance remains a significant challenge in cancer treatment. Recently, the interactions among various cell types within the tumor microenvironment (TME) have deepened our understanding of the mechanisms behind treatment resistance. Therefore, this review aims to synthesize current research focusing on infiltrating cells and drug resistance suggesting that targeting the TME could be a viable strategy to combat this issue. Numerous factors, including inflammation, metabolism, senescence, hypoxia, and angiogenesis, contribute to drug resistance could be a viable strategy to combat this issue. Overexpression of STAT3 is commonly associated with drug-resistant cancer cells or stromal cells. Current research often generalizes the impact of stromal cells on resistance, lacking specificity and statistical robustness. Thus, future research should take notice of this issue and aim to provide high-quality evidence. Despite the existing limitations, targeting the TME to overcome therapy resistance hold promising and valuable potential.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315211, China
- Department of Pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, Republic of Korea
| | - Mang Ke
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
- Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chaipanichkul Premkamon
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Birmingham, Hong Kong SAR, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
4
|
Liang M, Sheng L, Ke Y, Wu Z. The research progress on radiation resistance of cervical cancer. Front Oncol 2024; 14:1380448. [PMID: 38651153 PMCID: PMC11033433 DOI: 10.3389/fonc.2024.1380448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Cervical carcinoma is the most prevalent gynecology malignant tumor and ranks as the fourth most common cancer worldwide, thus posing a significant threat to the lives and health of women. Advanced and early-stage cervical carcinoma patients with high-risk factors require adjuvant treatment following surgery, with radiotherapy being the primary approach. However, the tolerance of cervical cancer to radiotherapy has become a major obstacle in its treatment. Recent studies have demonstrated that radiation resistance in cervical cancer is closely associated with DNA damage repair pathways, the tumor microenvironment, tumor stem cells, hypoxia, cell cycle arrest, and epigenetic mechanisms, among other factors. The development of tumor radiation resistance involves complex interactions between multiple genes, pathways, and mechanisms, wherein each factor interacts through one or more signaling pathways. This paper provides an overview of research progress on an understanding of the mechanism underlying radiation resistance in cervical cancer.
Collapse
Affiliation(s)
| | | | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
5
|
Lee SH, Son Y, Choi KJ, Lee CG, Lee HJ. Distinguish response of low-dose radiation with different dose-rate on gene expression of human coronary artery endothelial cells: a bioinformatic study based on transcriptomic sequencing. Int J Radiat Biol 2024; 100:756-766. [PMID: 38489594 DOI: 10.1080/09553002.2024.2324470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE People are exposed to low-dose radiation in medical diagnosis, occupational, or life circumstances, but the effect of low-dose radiation on human health is still controversial. The biological effects of radiation below 100 mGy are still unproven. In this study, we observed the effects of low-dose radiation (100 mGy) on gene expression in human coronary artery endothelial cells (HCAECs) and its effect on molecular signaling. MATERIALS AND METHODS HCAECs were exposed to 100 mGy ionizing radiation at 6 mGy/h (low-dose-rate) or 288 mGy/h (high-dose-rate). After 72 h, total RNA was extracted from sham or irradiated cells for Quant-Seq 3'mRNA-Seq, and bioinformatic analyses were performed using Metascape. Gene profiling was validated using qPCR. RESULTS Compared to the non-irradiated control group, 100 mGy of ionizing radiation at 6 mGy/h altered the expression of 194 genes involved in signaling pathways related to heart contraction, blood circulation, and cardiac myofibril assembly differentially. However, 100 mGy at 288 mGy/h altered expression of 450 genes involved in cell cycle-related signaling pathways, including cell division, nuclear division, and mitosis differentially. Additionally, gene signatures responding to low-dose radiation, including radiation dose-specific gene profiles (HIST1H2AI, RAVER1, and POTEI) and dose-rate-specific gene profiles (MYL2 for the low-dose-rate and DHRS9 and CA14 for the high-dose-rate) were also identified. CONCLUSIONS We demonstrated that 100 mGy low-dose radiation could alter gene expression and molecular signaling pathways at the low-dose-rate and the high-dose-rate differently. Our findings provide evidence for further research on the potential impact of low-dose radiation on cardiovascular function.
Collapse
Affiliation(s)
- Soo-Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Yeonghoon Son
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Kyu Jin Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| |
Collapse
|
6
|
Piwocka O, Piotrowski I, Suchorska WM, Kulcenty K. Dynamic interactions in the tumor niche: how the cross-talk between CAFs and the tumor microenvironment impacts resistance to therapy. Front Mol Biosci 2024; 11:1343523. [PMID: 38455762 PMCID: PMC10918473 DOI: 10.3389/fmolb.2024.1343523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem of cells, signaling molecules, and extracellular matrix components that profoundly influence cancer progression. Among the key players in the TME, cancer-associated fibroblasts (CAFs) have gained increasing attention for their diverse and influential roles. CAFs are activated fibroblasts found abundantly within the TME of various cancer types. CAFs contribute significantly to tumor progression by promoting angiogenesis, remodeling the extracellular matrix, and modulating immune cell infiltration. In order to influence the microenvironment, CAFs engage in cross-talk with immune cells, cancer cells, and other stromal components through paracrine signaling and direct cell-cell interactions. This cross-talk can result in immunosuppression, tumor cell proliferation, and epithelial-mesenchymal transition, contributing to disease progression. Emerging evidence suggests that CAFs play a crucial role in therapy resistance, including resistance to chemotherapy and radiotherapy. CAFs can modulate the tumor response to treatment by secreting factors that promote drug efflux, enhance DNA repair mechanisms, and suppress apoptosis pathways. This paper aims to understand the multifaceted functions of CAFs within the TME, discusses cross-talk between CAFs with other TME cells, and sheds light on the contibution of CAFs to therapy resistance. Targeting CAFs or disrupting their cross-talk with other cells holds promise for overcoming drug resistance and improving the treatment efficacy of various cancer types.
Collapse
Affiliation(s)
- Oliwia Piwocka
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
7
|
Li W, Xu T, Jin H, Li M, Jia Q. Emerging role of cancer-associated fibroblasts in esophageal squamous cell carcinoma. Pathol Res Pract 2024; 253:155002. [PMID: 38056131 DOI: 10.1016/j.prp.2023.155002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Esophageal carcinoma is the sixth leading cause of cancer death globally and the majority of global cases are esophageal squamous cell carcinoma (ESCC). Difficulty in diagnosis exists as more than 70% of ESCC patients are diagnosed at the intermediate or advanced stage. Cancer-associated fibroblasts (CAFs) have been considered one of the crucial components in the process of tumor growth, promoting communications between cancer cells and the tumor microenvironment (TME). CAFs grow alongside malignancies dynamically and interact with ESCC cells to promote their progression, proliferation, invasion, tumor escape, chemo- and radio-resistance, etc. It is believed that CAFs qualify as a promising direction for treatment. Analyzing CAFs' subtypes and functions will elucidate the involvement of CAFs in ESCC and aid in therapeutics. This review summarizes current information on CAFs in ESCC and focuses on the latest interaction between CAFs and ESCC cancer cell discoveries. The origin of CAFs and their communication with ESCC cells and TME are also demonstrated. On the foundation of a thorough analysis, we highlight the clinical prospects and CAFs-related therapies in ESCC in the future.
Collapse
Affiliation(s)
- Wenqing Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
8
|
Anajafi S, Paryan M, Khoshnazar A, Soleimani M, Mohammadi-Yeganeh S. miRNAs Delivery for Cancer-associated Fibroblasts' Activation and Drug Resistance in Cancer Microenvironment. Endocr Metab Immune Disord Drug Targets 2024; 24:333-347. [PMID: 37612874 DOI: 10.2174/1871530323666230823094556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Cancer-associated fibroblasts (CAFs) as a major component of cancer stroma contribute to diverse procedures of most solid tumors and might be a targeted cancer therapy approach. Their specified features, related signaling pathways, distinct biomarkers, and sub-populations need to be deciphered. There is a need for CAF extraction or induction for in vitro investigations. Some miRNAs could activate CAF-like phenotype and they also interfere in CAF-mediated drug resistance, aggressiveness, and metastatic behaviors of several cancer cell types. Due to the complex relevance of miRNA and CAFs, these non-coding oligonucleotides may serve as attractive scope for anti-cancer targeted therapies, but the lack of an efficient delivery system is still a major hurdle. Here, we have summarized the investigated information on CAF features, isolation, and induction procedures, and highlighted the miRNA-CAF communications, providing special insight into nano-delivery systems.
Collapse
Affiliation(s)
- Sara Anajafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Amineh Khoshnazar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zhang Y, Lv N, Li M, Liu M, Wu C. Cancer-associated fibroblasts: tumor defenders in radiation therapy. Cell Death Dis 2023; 14:541. [PMID: 37607935 PMCID: PMC10444767 DOI: 10.1038/s41419-023-06060-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that are involved in multiple aspects of cancer progression and considered contributors to tumor immune escape. CAFs exhibit a unique radiation resistance phenotype, and can survive clinical radiation doses; however, ionizing radiation can induce changes in their secretions and influence tumor progression by acting on tumor and immune cells. In this review, we describe current knowledge of the effects of radiation therapies on CAFs, as well as summarizing understanding of crosstalk among CAFs, tumor cells, and immune cells. We highlight the important role of CAFs in radiotherapy resistance, and discuss current and future radiotherapy strategies for targeting CAFs.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Na Lv
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Manshi Li
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ming Liu
- Department of Clinical Epidemiology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| | - Chunli Wu
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| |
Collapse
|
10
|
Li Y, Wang C, Huang T, Yu X, Tian B. The role of cancer-associated fibroblasts in breast cancer metastasis. Front Oncol 2023; 13:1194835. [PMID: 37496657 PMCID: PMC10367093 DOI: 10.3389/fonc.2023.1194835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Breast cancer deaths are primarily caused by metastasis. There are several treatment options that can be used to treat breast cancer. There are, however, a limited number of treatments that can either prevent or inhibit the spread of breast tumor metastases. Thus, novel therapeutic strategies are needed. Studies have increasingly focused on the importance of the tumor microenvironment (TME) in metastasis of breast cancer. As the most abundant cells in the TME, cancer-associated fibroblasts (CAFs) play important roles in cancer pathogenesis. They can remodel the structure of the extracellular matrix (ECM) and engage in crosstalk with cancer cells or other stroma cells by secreting growth factors, cytokines, and chemokines, as well as components of the ECM, which assist the tumor cells to invade through the TME and cause distant metastasis. Clinically, CAFs not only foster the initiation, growth, angiogenesis, invasion, and metastasis of breast cancer but also serve as biomarkers for diagnosis, therapy, and prediction of prognosis. In this review, we summarize the biological characteristics and subtypes of CAFs and their functions in breast cancer metastasis, focusing on their important roles in the diagnosis, prognosis, and treatment of breast cancer. Recent studies suggest that CAFs are vital partners of breast cancer cells that assist metastasis and may represent ideal targets for prevention and treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Yi Li
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyuan Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Hepatobiliary Surgery Department II, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ting Huang
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Martin M, Ballal S, Yadav MP, Bal C, Van Rymenant Y, De Loose J, Verhulst E, De Meester I, Van Der Veken P, Roesch F. Novel Generation of FAP Inhibitor-Based Homodimers for Improved Application in Radiotheranostics. Cancers (Basel) 2023; 15:cancers15061889. [PMID: 36980775 PMCID: PMC10047490 DOI: 10.3390/cancers15061889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Radiopharmaceuticals based on the highly potent FAP inhibitor (FAPi) UAMC-1110 have shown great potential in molecular imaging, but the short tumor retention time of the monomers do not match the physical half-lives of the important therapeutic radionuclides 177Lu and 225Ac. This was improved with the dimer DOTAGA.(SA.FAPi)2, but pharmacological and radiolabeling properties still need optimization. Therefore, the novel FAPi homodimers DO3A.Glu.(FAPi)2 and DOTAGA.Glu.(FAPi)2. were synthesized and quantitatively radiolabeled with 68Ga, 90Y, 177Lu and 225Ac. The radiolabeled complexes showed high hydrophilicity and were generally stable in human serum (HS) and phosphate-buffered saline (PBS) at 37 °C over two half-lives, except for [225Ac]Ac-DOTAGA.Glu.(FAPi)2 in PBS. In vitro affinity studies resulted in subnanomolar IC50 values for FAP and high selectivity for FAP over the related proteases PREP and DPP4 for both compounds as well as for [natLu]Lu-DOTAGA.Glu.(FAPi)2. In a first proof-of-principle patient study (medullary thyroid cancer), [177Lu]Lu-DOTAGA.Glu.(FAPi)2 was compared to [177Lu]Lu-DOTAGA.(SA.FAPi)2. High uptake and long tumor retention was observed in both cases, but [177Lu]Lu-DOTAGA.Glu.(FAPi)2 significantly reduces uptake in non-target and critical organs (liver, colon). Overall, the novel FAPi homodimer DOTAGA.Glu.(FAPi)2 showed improved radiolabeling in vitro and pharmacological properties in vivo compared to DOTAGA.(SA.FAPi)2. [177Lu]Lu-DOTAGA.Glu.(FAPi)2 and [225Ac]Ac-DOTAGA.Glu.(FAPi)2 appear promising for translational application in patients.
Collapse
Affiliation(s)
- Marcel Martin
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Madhav Prasad Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Yentl Van Rymenant
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Joni De Loose
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Frank Roesch
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
13
|
Lückerath K, Trajkovic-Arsic M, Mona CE. Fibroblast Activation Protein Inhibitor Theranostics. PET Clin 2023:S1556-8598(23)00019-6. [PMID: 36990945 DOI: 10.1016/j.cpet.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fibroblast activation protein (FAP)-radioligand therapy might be effective in some patients without being curative. FAP-radioligands deliver ionizing radiation directly to FAP+ cancer-associated fibroblasts and, in some cancers, to FAP+ tumor cells; in addition, they indirectly irradiate FAP- cells in tumor tissue via cross-fire and bystander effects. Here, we discuss the potential to improve FAP-radioligand therapy through interfering with DNA damage repair, immunotherapy, and co-targeting cancer-associated fibroblasts. As the molecular and cellular effects of FAP-radioligands on the tumor and its microenvironment have not been investigated yet, we call for future research to close this gap in knowledge, which prevents the development of more effective FAP-radioligand therapies.
Collapse
Affiliation(s)
- Katharina Lückerath
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, DKTK and German Cancer Research Center (DKFZ) Partner Side Essen, Hufelandstrasse 15, 45147, Germany; Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Christine E Mona
- Ahmanson Translational Theranostic Division, Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Drive S, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Zhang H, Zhang K, Qiu L, Yue J, Jiang H, Deng Q, Zhou R, Yin Z, Ma S, Ke Y. Cancer-associated fibroblasts facilitate DNA damage repair by promoting the glycolysis in non-small cell lung cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166670. [PMID: 36822449 DOI: 10.1016/j.bbadis.2023.166670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Radiotherapy is an essential treatment modality for the management of non-small cell lung cancer (NSCLC) patients. Tumor radioresistance is the major factor limiting the efficacy of radiotherapy in NSCLC patients. Our study aimed to reveal whether cancer-associated fibroblasts (CAFs), one main component of the tumor microenvironment, regulated DNA damage response of NSCLC cells following irradiation and clarify the involved mechanisms. We found CAFs inhibited irradiation-induced DNA damage while promoted DNA repair of NSCLC cells and caused cell cycle arrest in the radioresistant S phase. CAFs have the ability of up-regulating and stabilizing c-Myc, leading to the transcription activation of HK2 kinase, a key rate-limiting enzyme in glycolysis by activating Wnt/β-catenin pathway. Attenuation of glycolysis significantly reversed the effect of CAFs on DNA damage response of NSCLC cells. By high-throughput screening of human cytokines/chemokines array, we found CAFs-secreted midkine led to the promotion of glycolysis by activating Wnt/β-catenin pathway in NSCLC cells. In vivo, CAFs caused the radioresistance of NSCLC cells also by promoting the glycolysis in a β-catenin signaling-dependent manner. These findings may provide novel strategies for reversing the radioresistance of NSCLC cells.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Liqing Qiu
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Jing Yue
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Hong Jiang
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qinghua Deng
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Rongjing Zhou
- Department of Pathology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Zihao Yin
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shenglin Ma
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Yuehai Ke
- Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
15
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1089068. [PMID: 36793444 PMCID: PMC9923123 DOI: 10.3389/fcell.2023.1089068] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers. The positive and reciprocal feedback of CAFs to induce cancer cells dictates their mutual synergy in establishing malignancy. Their substantial role in creating a tumor-promoting niche has reduced the efficacy of several anti-cancer treatments, including radiation, chemotherapy, immunotherapy, and endocrine therapy. Over the years, there has been an emphasis on understanding CAF-induced therapeutic resistance in order to enhance cancer therapy results. CAFs, in the majority of cases, employ crosstalk, stromal management, and other strategies to generate resilience in surrounding tumor cells. This emphasizes the significance of developing novel strategies that target particular tumor-promoting CAF subpopulations, which will improve treatment sensitivity and impede tumor growth. In this review, we discuss the current understanding of the origin and heterogeneity of CAFs, their role in tumor progression, and altering the tumor response to therapeutic agents in breast cancer. In addition, we also discuss the potential and possible approaches for CAF-mediated therapies.
Collapse
Affiliation(s)
- Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Esheksha Gundre
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Olajumoke Ogunlusi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mohanad El-Sobky
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, English Bazar, India
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
16
|
Shimura T, Totani R, Ogasawara H, Inomata K, Sasatani M, Kamiya K, Ushiyama A. Effects of oxygen on the response of mitochondria to X-irradiation and reactive oxygen species-mediated fibroblast activation. Int J Radiat Biol 2022; 99:769-778. [PMID: 36383181 DOI: 10.1080/09553002.2023.2142980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE In living organisms, sensitivity to radiation increases in the presence of oxygen (O2) compared with that under anoxic or hypoxic conditions. Here, we investigated whether O2 concentration affected the response of mitochondria to X-rays radiation, which is associated with tumor microenvironment formation via fibroblast activation in radiation-related tumors. MATERIALS AND METHODS O2 concentrations were controlled at <5% (internal environmental oxygen condition) or anoxic levels during culture of normal human diploid lung fibroblasts TIG-3 and MRC-5. Protein expression associated with the response of mitochondria to radiation was assessed using immunostaining or western blotting. RESULTS Induction of DNA damage (marker: γ-H2A histone family member X) and mitochondrial signaling (AMP-activated protein kinase), suppression of mitochondrial metabolic activity, and generation of reactive oxygen species occurred with radiation in cells cultured under 5% and 20% O2 conditions. However, reducing O2 concentration mitigated the effects of radiation on cell growth, mitochondrial damage (parkin), induction of antioxidant responses (nuclear factor E2-related factor 2), and fibroblast activation (α-smooth muscle actin). Radiation did not affect the markers used in this study in the absence of O2. CONCLUSION O2 concentration affected the response of mitochondria to radiation and reactive oxygen species-mediated fibroblast activation. Higher O2 concentrations enhanced the effects of radiation on mitochondria in human fibroblasts. In vitro studies may overestimate in vivo radiation effects due to high O2 concentrations.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health Wako, Saitama, Japan
| | - Rina Totani
- Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | | | - Keiki Inomata
- Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology; Research Center for Radiation Genome Medicine; Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology; Research Center for Radiation Genome Medicine; Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health Wako, Saitama, Japan
| |
Collapse
|
17
|
Das S, Ray DK, Sengupta D, Mahapatra E, Biswas S, Roy M, Mukherjee S. Aspirin Restores Radiosensitivity in Cervical Cancer Cells by Inducing Mitotic Catastrophe through Downregulating G2/M Effectors. Asian Pac J Cancer Prev 2022; 23:3801-3813. [PMID: 36444593 PMCID: PMC9930979 DOI: 10.31557/apjcp.2022.23.11.3801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND/AIM Compromised cell-cycle checkpoint is a major obstacle for rendering radiotherapeutic success of radioresistant cells. Aspirin (ASA), an anti-inflammatory agent was repurposed previously for improving radiotherapy by limiting radiation toxicity. However, the underlying mechanism was unclear. The present study aimed to identify the mechanism of ASA mediated reversal of radioresistance in cervical cancer cells. METHODS Radioresistant subline SiHa/RR was developed from parental cervical squamous carcinoma cell line SiHa by chronic fractionated irradiation (IR). The radioresistance property of SiHa/RR was confirmed by clonogenic assay. Alteration in cell-cycle by ASA was determined by flow cytometry. ASA induced nuclear damage as consequence of mitotic catastrophe was confirmed by microscopic observation. The interaction between ASA and G2/M regulators was explored through in silico docking analysis and expressional change of them was affirmed by western blotting. Immunofluorescence study to examine Aurora Kinase A localization in presence and absence of ASA treatment was conducted. Finally the radiosensitizing ability of ASA was verified by apoptotic parameters (flow cytometrically and by western blotting). RESULT Higher colony forming ability of SiHa/RR compared to SiHa became restrained upon ASA (5μM) treatment prior to IR. Flow cytometric analysis of ASA treated cells showed increased G2/M population followed by enlargement of cells displaying giant multinucleated morphology; typical characteristics of mitotic catastrophe. Underlying noteworthy mechanisms involved decreased expressions of G2/M regulatory proteins (Cyclin B1, CDK1, Aurora A Kinase, pAurora A Kinase) in IR/ASA along with inhibiting nuclear localization of Aurora Kinase A in SiHa/RR. Docking results also supported the findings. Prolonged treatment (12 h) with ASA led to apoptosis by altering expressions of Bcl2, Bax and Cytochrome C; which was achieved through the event of mitotic catastrophe. CONCLUSION This work established that G2/M arrest and mitotic catastrophe can be considered as the principle mechanism of restoration of radiosensitivity in SiHa/RR by ASA pretreatment.
Collapse
Affiliation(s)
- Salini Das
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, Kolkata, India.
| | - Dilip Kumar Ray
- Department of Medical Physics, Chittaranjan National Cancer Institute, Kolkata, India.
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, Kolkata, India.
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, Kolkata, India.
| | - Souvick Biswas
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, Kolkata, India.
| | - Madhumita Roy
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, Kolkata, India.
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, Kolkata, India. ,For Correspondence:
| |
Collapse
|
18
|
Qiu L, Yue J, Ding L, Yin Z, Zhang K, Zhang H. Cancer-associated fibroblasts: An emerging target against esophageal squamous cell carcinoma. Cancer Lett 2022; 546:215860. [DOI: 10.1016/j.canlet.2022.215860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
|
19
|
Alhussan A, Palmerley N, Smazynski J, Karasinska J, Renouf DJ, Schaeffer DF, Beckham W, Alexander AS, Chithrani DB. Potential of Gold Nanoparticle in Current Radiotherapy Using a Co-Culture Model of Cancer Cells and Cancer Associated Fibroblast Cells. Cancers (Basel) 2022; 14:cancers14153586. [PMID: 35892845 PMCID: PMC9332249 DOI: 10.3390/cancers14153586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Many cancer therapeutics do not account for the complexity of the tumor microenvironment (TME), which may result in failure when applied clinically. In this paper we utilized a simple tumor model made of two types of pancreatic cancer cells that contribute to the tumor environment, i.e., cancer cells and cancer associated fibroblasts. Herein, radiotherapy along with radiosensitizing gold nanoparticles were used to test the efficacy of a co-culture vs. monoculture model. The results show that the co-culture model exhibited heightened resistance to radiation. Furthermore, we found that the combination of gold radiosensitizers with radiotherapy reduced the radioresistance of the co-culture model compared to radiotherapy alone. This study demonstrates the potential of using nanotherapeutics in targeting the complex tumor microenvironment. Abstract Many cancer therapeutics are tested in vitro using only tumour cells. However, the tumour promoting effect of cancer associated fibroblasts (CAFs) within the tumour microenvironment (TME) is thought to reduce cancer therapeutics’ efficacy. We have chosen pancreatic ductal adenocarcinoma (PDAC) as our tumor model. Our goal is to create a co-culture of CAFs and tumour cells to model the interaction between cancer and stromal cells in the TME and allow for better testing of therapeutic combinations. To test the proposed co-culture model, a gold nanoparticle (GNP) mediated-radiation response was used. Cells were grown in co-culture with different ratios of CAFs to cancer cells. MIA PaCa-2 was used as our PDAC cancer cell line. Co-cultured cells were treated with 2 Gy of radiation following GNP incubation. DNA damage and cell proliferation were examined to assess the combined effect of radiation and GNPs. Cancer cells in co-culture exhibited up to a 23% decrease in DNA double strand breaks (DSB) and up to a 35% increase in proliferation compared to monocultures. GNP/Radiotherapy (RT) induced up to a 25% increase in DNA DSBs and up to a 15% decrease in proliferation compared to RT alone in both monocultured and co-cultured cells. The observed resistance in the co-culture system may be attributed to the role of CAFs in supporting cancer cells. Moreover, we were able to reduce the activity of CAFs using GNPs during radiation treatment. Indeed, CAFs internalize a significantly higher number of GNPs, which may have led to the reduction in their activity. One reason experimental therapeutics fail in clinical trials relates to limitations in the pre-clinical models that lack a true representation of the TME. We have demonstrated a co-culture platform to test GNP/RT in a clinically relevant environment.
Collapse
Affiliation(s)
- Abdulaziz Alhussan
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
| | - Nicholas Palmerley
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
| | - Julian Smazynski
- Deeley Research Centre, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Joanna Karasinska
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
| | - Daniel J. Renouf
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
| | - David F. Schaeffer
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Abraham S. Alexander
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Correspondence:
| |
Collapse
|
20
|
Li J, Chen S, Liao Y, Wang H, Zhou D, Zhang B. Arecoline Is Associated With Inhibition of Cuproptosis and Proliferation of Cancer-Associated Fibroblasts in Oral Squamous Cell Carcinoma: A Potential Mechanism for Tumor Metastasis. Front Oncol 2022; 12:925743. [PMID: 35875097 PMCID: PMC9303015 DOI: 10.3389/fonc.2022.925743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMetastatic disease remains the primary cause of death in patients with oral squamous cell carcinoma (OSCC), especially those who use betel nut. The different steps of the metastatic cascade rely on reciprocal interactions between cancer cells and the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are regarded as a significant component in the TME of OSCC. However, the precise mechanisms regulating CAFs in OSCC are poorly understood.MethodsThirteen genes related to the arecoline were analyzed to explore the significant ones involved in arecoline-related OSCC metastasis. The GSE139869 (n = 10) and The Cancer Genome Atlas (TCGA)-OSCC data (n = 361) were mined for the identification of the differentially expressed genes. The least absolute shrinkage and selection operator (LASSO) regression was performed to identify the independent prognostic signatures. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore the functional enrichment of selected genes, and gene set enrichment analysis of cuproptosis-related genes was completed. Spearman’s analysis and Tumor Immune Estimation Resource (TIMER) were used to visualize the correlation between the infiltration of CAFs and the gene expression. The correlation analysis of the cells and different genes, including CAF infiltration and transcripts per million expression, was assessed. The relationship between arecoline and CAFs was confirmed by cell counting kit-8 assay (CCK-8). CancerSEA was searched to identify the single-cell phenotype.ResultArecoline-associated fibrosis-related OSCC differentially expressed genes (AFOC-DEGs), namely, PLAU, IL1A, SPP1, CCL11, TERT, and COL1A2, were screened out and selected from the Gene Expression Omnibus (GEO) database and TCGA database. AFOC-DEGs were highly expressed in OSCC, which led to poor survival of patients. Functional enrichment analysis, protein–protein interaction network construction, and Spearman’s correlation analysis all suggested that AFOC-DEGs were closely associated with cuproptosis. Cellular experiments demonstrated that arecoline stimulation could significantly increase the cell viability of CAFs. Single-sample Gene Set Enrichment Analysis (ssGSEA) results showed that GLS and MTF1 were highly expressed when fibroblasts proliferated at high enrichment levels. In addition, analysis of single-cell sequencing results suggested that OSCC cells with high expression of AFOC-DEGs were associated with OSCC metastasis.ConclusionWe found a close association between arecoline, cuproptosis, and CAFs, which might play an important role in the metastasis of OSCC.
Collapse
Affiliation(s)
- Jinfei Li
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuangyi Chen
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuxuan Liao
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongyi Wang
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Dawei Zhou
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Zhang
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bo Zhang,
| |
Collapse
|
21
|
Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS, Nagrath D. Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer 2022; 8:855-869. [PMID: 35750630 DOI: 10.1016/j.trecan.2022.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Radiation is frequently administered for cancer treatment, but resistance or remission remains common. Cancer cells alter their metabolism after radiotherapy to reduce its cytotoxic effects. The influence of altered cancer metabolism extends to the tumor microenvironment (TME), where components of the TME exchange metabolites to support tumor growth. Combining radiotherapy with metabolic targets in the TME can improve therapy response. We review the metabolic rewiring of cancer cells following radiotherapy and put these observations in the context of the TME to describe the metabolic hallmarks of radiotherapy in the TME.
Collapse
Affiliation(s)
- Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minal Nenwani
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Itisam Sarangi
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
22
|
Non-Melanoma Skin Cancer: A Genetic Update and Future Perspectives. Cancers (Basel) 2022; 14:cancers14102371. [PMID: 35625975 PMCID: PMC9139429 DOI: 10.3390/cancers14102371] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-melanoma skin cancer (NMSC) is the main type of cancer in the Caucasian population, and the number of cases continues to rise. Research mostly focuses on clinical characteristics analysis, but genetic features are crucial to malignancies’ establishment and advance. We aim to explore the genetic basics of skin cancer, surrounding microenvironment interactions, and regulation mechanisms to provide a broader perspective for new therapies’ development. Abstract Skin cancer is one of the main types of cancer worldwide, and non-melanoma skin cancer (NMSC) is the most frequent within this group. Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common types. Multifactorial features are well-known for cancer development, and new hallmarks are gaining relevance. Genetics and epigenetic regulation play an essential role in cancer susceptibility and progression, as well as the variety of cells and molecules that interact in the tumor microenvironment. In this review, we provide an update on the genetic features of NMSC, candidate genes, and new therapies, considering diverse perspectives of skin carcinogenesis. The global health situation and the pandemic have been challenging for health care systems, especially in the diagnosis and treatment of patients with cancer. We provide innovative approaches to overcome the difficulties in the current clinical dynamics.
Collapse
|
23
|
Zhou Y, Liao L, Su N, Huang H, Yang Y, Yang Y, Wang G, Xu H, Jiang H. TGF-β/Akt/Smad signaling regulates ionizing radiation-induced epithelial-mesenchymal transition in acquired radioresistant lung cancer cells. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
O'Neill E, Cornelissen B. Know thy tumour: Biomarkers to improve treatment of molecular radionuclide therapy. Nucl Med Biol 2022; 108-109:44-53. [PMID: 35276447 DOI: 10.1016/j.nucmedbio.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
Molecular radionuclide therapy (MRT) is an effective treatment for both localised and disseminated tumours. Biomarkers can be used to identify potential subtypes of tumours that are known to respond better to standard MRT protocols. These enrolment-based biomarkers can further be used to develop dose-response relationships using image-based dosimetry within these defined subtypes. However, the biological identity of the cancers treated with MRT are commonly not well-defined, particularly for neuroendocrine neoplasms. The biological heterogeneity of such cancers has hindered the establishment of dose-responses and minimum tumour dose thresholds. Biomarkers could also be used to determine normal tissue MRT dose limits and permit greater injected doses of MRT in patients. An alternative approach is to understand the repair capacity limits of tumours using radiobiology-based biomarkers within and outside patient cohorts currently treated with MRT. It is hoped that by knowing more about tumours and how they respond to MRT, biomarkers can provide needed dimensionality to image-based biodosimetry to improve MRT with optimized protocols and personalised therapies.
Collapse
Affiliation(s)
- Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
25
|
Bête Noire of Chemotherapy and Targeted Therapy: CAF-Mediated Resistance. Cancers (Basel) 2022; 14:cancers14061519. [PMID: 35326670 PMCID: PMC8946545 DOI: 10.3390/cancers14061519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Tumor cells struggle to survive following treatment. The struggle ends in either of two ways. The drug combination used for the treatment blocks the proliferation of tumor cells and initiates apoptosis of cells, which is a win for the patient, or tumor cells resist the effect of the drug combination used for the treatment and continue to evade the effect of anti-tumor drugs, which is a bête noire of therapy. Cancer-associated fibroblasts are the most abundant non-transformed element of the microenvironment in solid tumors. Tumor cells play a direct role in establishing the cancer-associated fibroblasts’ population in its microenvironment. Since cancer-associated fibroblasts are activated by tumor cells, cancer-associated fibroblasts show unconditional servitude to tumor cells in their effort to resist treatment. Thus, cancer-associated fibroblasts, as the critical or indispensable component of resistance to the treatment, are one of the most logical targets within tumors that eventually progress despite therapy. We evaluate the participatory role of cancer-associated fibroblasts in the development of drug resistance in solid tumors. In the future, we will establish the specific mode of action of cancer-associated fibroblasts in solid tumors, paving the way for cancer-associated-fibroblast-inclusive personalized therapy. Abstract In tumor cells’ struggle for survival following therapy, they resist treatment. Resistance to therapy is the outcome of well-planned, highly efficient adaptive strategies initiated and utilized by these transformed tumor cells. Cancer cells undergo several reprogramming events towards adapting this opportunistic behavior, leading them to gain specific survival advantages. The strategy involves changes within the transformed tumors cells as well as in their neighboring non-transformed extra-tumoral support system, the tumor microenvironment (TME). Cancer-Associated Fibroblasts (CAFs) are one of the components of the TME that is used by tumor cells to achieve resistance to therapy. CAFs are diverse in origin and are the most abundant non-transformed element of the microenvironment in solid tumors. Cells of an established tumor initially play a direct role in the establishment of the CAF population for its own microenvironment. Like their origin, CAFs are also diverse in their functions in catering to the pro-tumor microenvironment. Once instituted, CAFs interact in unison with both tumor cells and all other components of the TME towards the progression of the disease and the worst outcome. One of the many functions of CAFs in influencing the outcome of the disease is their participation in the development of resistance to treatment. CAFs resist therapy in solid tumors. A tumor–CAF relationship is initiated by tumor cells to exploit host stroma in favor of tumor progression. CAFs in concert with tumor cells and other components of the TME are abettors of resistance to treatment. Thus, this liaison between CAFs and tumor cells is a bête noire of therapy. Here, we portray a comprehensive picture of the modes and functions of CAFs in conjunction with their role in orchestrating the development of resistance to different chemotherapies and targeted therapies in solid tumors. We investigate the various functions of CAFs in various solid tumors in light of their dialogue with tumor cells and the two components of the TME, the immune component, and the vascular component. Acknowledgment of the irrefutable role of CAFs in the development of treatment resistance will impact our future strategies and ability to design improved therapies inclusive of CAFs. Finally, we discuss the future implications of this understanding from a therapeutic standpoint and in light of currently ongoing and completed CAF-based NIH clinical trials.
Collapse
|
26
|
Khan MGM, Wang Y. Advances in the Current Understanding of How Low-Dose Radiation Affects the Cell Cycle. Cells 2022; 11:cells11030356. [PMID: 35159169 PMCID: PMC8834401 DOI: 10.3390/cells11030356] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cells exposed to ionizing radiation undergo a series of complex responses, including DNA damage, reproductive cell death, and altered proliferation states, which are all linked to cell cycle dynamics. For many years, a great deal of research has been conducted on cell cycle checkpoints and their regulators in mammalian cells in response to high-dose exposures to ionizing radiation. However, it is unclear how low-dose ionizing radiation (LDIR) regulates the cell cycle progression. A growing body of evidence demonstrates that LDIR may have profound effects on cellular functions. In this review, we summarize the current understanding of how LDIR (of up to 200 mGy) regulates the cell cycle and cell-cycle-associated proteins in various cellular settings. In light of current findings, we also illustrate the conceptual function and possible dichotomous role of p21Waf1, a transcriptional target of p53, in response to LDIR.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada;
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada;
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
27
|
De P, Aske J, Dey N. Cancer-Associated Fibroblast Functions as a Road-Block in Cancer Therapy. Cancers (Basel) 2021; 13:5246. [PMID: 34680395 PMCID: PMC8534063 DOI: 10.3390/cancers13205246] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 01/02/2023] Open
Abstract
The journey of a normal resident fibroblast belonging to the tumor microenvironment (TME) from being a tumor pacifier to a tumor patron is fascinating. We introduce cancer-associated fibroblast (CAF) as a crucial component of the TME. Activated-CAF partners with tumor cells and all components of TME in an established solid tumor. We briefly overview the origin, activation, markers, and overall functions of CAF with a particular reference to how different functions of CAF in an established tumor are functionally connected to the development of resistance to cancer therapy in solid tumors. We interrogate the role of CAF in mediating resistance to different modes of therapies. Functional diversity of CAF in orchestrating treatment resistance in solid tumors portrays CAF as a common orchestrator of treatment resistance; a roadblock in cancer therapy.
Collapse
Affiliation(s)
| | | | - Nandini Dey
- Translational Oncology Laboratory, Avera Cancer Institute, Sioux Falls, SD 57105, USA; (P.D.); (J.A.)
| |
Collapse
|
28
|
Fibroblast activation protein targeted therapy using [ 177Lu]FAPI-46 compared with [ 225Ac]FAPI-46 in a pancreatic cancer model. Eur J Nucl Med Mol Imaging 2021; 49:871-880. [PMID: 34537893 PMCID: PMC8803706 DOI: 10.1007/s00259-021-05554-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/02/2021] [Indexed: 01/04/2023]
Abstract
Purpose Fibroblast activation protein (FAP), which has high expression in cancer-associated fibroblasts of epithelial cancers, can be used as a theranostic target. Our previous study used 64Cu and 225Ac-labelled FAP inhibitors (FAPI-04) for a FAP-expressing pancreatic cancer xenograft imaging and therapy. However, the optimal therapeutic radionuclide for FAPI needs to be investigated further. In this study, we evaluated the therapeutic effects of beta-emitter (177Lu)-labelled FAPI-46 and alpha-emitter (225Ac)-labelled FAPI-46 in pancreatic cancer models. Methods PET scans (1 h post injection) were acquired in PANC-1 xenograft mice (n = 9) after the administration of [18F]FAPI-74 (12.4 ± 1.7 MBq) for the companion imaging. The biodistribution of [177Lu]FAPI-46 and [225Ac]FAPI-46 were evaluated in the xenograft model (total n = 12). For the determination of treatment effects, [177Lu]FAPI-46 and [225Ac]FAPI-46 were injected into PANC-1 xenograft mice at different doses: 3 MBq (n = 6), 10 MBq (n = 6), 30 MBq (n = 6), control (n = 4) for [177Lu]FAPI-46, and 3 kBq (n = 3), 10 kBq (n = 2), 30 kBq (n = 6), control (n = 7) for [225Ac]FAPI-46. Tumour sizes and body weights were followed. Results [18F]FAPI-74 showed rapid clearance by the kidneys and high accumulation in the tumour and intestine 1 h after administration. [177Lu]FAPI-46 and [225Ac]FAPI-46 also showed rapid clearance by the kidneys and relatively high accumulation in the tumour at 3 h. Both [177Lu]FAPI-46 and [225Ac]FAPI-46 showed tumour-suppressive effects, with a mild decrease in body weight. The treatment effects of [177Lu]FAPI-46 were relatively slow but lasted longer than those of [225Ac]FAPI-46. Conclusion This study suggested the possible application of FAPI radioligand therapy in FAP-expressing pancreatic cancer. Further evaluation is necessary to find the best radionuclide with shorter half-life, as well as the combination with therapies targeting tumour cells directly. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05554-2.
Collapse
|
29
|
Bienkowska KJ, Hanley CJ, Thomas GJ. Cancer-Associated Fibroblasts in Oral Cancer: A Current Perspective on Function and Potential for Therapeutic Targeting. FRONTIERS IN ORAL HEALTH 2021; 2:686337. [PMID: 35048030 PMCID: PMC8757746 DOI: 10.3389/froh.2021.686337] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The role of the tumour microenvironement (TME) in cancer progression and resistance to therapies is now widely recognized. The most prominent non-immune cell type in the microenvironment of oral cancer (OSCC) is cancer-associated fibroblasts (CAF). Although CAF are a poorly characterised and heterogenous cell population, those with an "activated" myofibroblastic phenotype have been shown to support OSCC progression, promoting growth, invasion and numerous other "hallmarks of malignancy." CAF also confer broad resistance to different types of therapy, including chemo/radiotherapy and EGFR inhibitors; consistent with this, CAF-rich OSCC are associated with poor prognosis. In recent years, much CAF research has focused on their immunological role in the tumour microenvironment, showing that CAF shield tumours from immune attack through multiple mechanisms, and particularly on their role in promoting resistance to anti-PD-1/PD-L1 checkpoint inhibitors, an exciting development for the treatment of recurrent/metastatic oral cancer, but which fails in most patients. This review summarises our current understanding of CAF subtypes and function in OSCC and discusses the potential for targeting these cells therapeutically.
Collapse
Affiliation(s)
- Kamila J. Bienkowska
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Gareth J. Thomas
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Cancer Research UK and National Institute for Health Research (NIHR) Southampton Experimental Cancer Medicine Centre, Southampton, United Kingdom
| |
Collapse
|
30
|
Zhang H, Jiang H, Zhu L, Li J, Ma S. Cancer-associated fibroblasts in non-small cell lung cancer: Recent advances and future perspectives. Cancer Lett 2021; 514:38-47. [PMID: 34019960 DOI: 10.1016/j.canlet.2021.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) constitutes the majority of lung cancer, which is the leading cause of cancer-related deaths in the world. Nearly 70% of NSCLC patients were diagnosed at advanced stage with only 15% of five-year survival rate. Cancer-associated fibroblasts (CAFs) are the major component of tumor microenvironment and account for almost 70% of the cells in tumor tissues. By the crosstalk with cancer cells, CAFs reprogrammed cancer cell metabolism, remodeled extracellular matrix (ECM) and created a supportive niche for cancer stem cells. CAFs lead collective invasion of tumor cells and shape tumor immune microenvironment, promoting tumor metastasis and immune escape. In this review, we have summarized the progress of studies regarding CAFs influences on NSCLC in recent five years from the aspects of cell growth, metabolism, therapy resistance, invasion and metastasis and immune suppression. We have discussed the involved mechanisms and implications for the development of anti-NSCLC therapies. The current strategies of CAFs targeting and elimination have also been generalized. Only better understanding of the molecular biology of CAFs may contribute to the development of novel anti-NSCLC strategies.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Hong Jiang
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lucheng Zhu
- Department of Thoracic Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Jiawei Li
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenglin Ma
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Zhejiang University Cancer Center, Hangzhou, 310058, China.
| |
Collapse
|