1
|
Valiuska S, Elder KK, McKay SJ, Ciudad CJ, Noé V, Brooks TA. Combinatorial Anti-Cancer Effect of Polypurine Reverse Hoogsteen Hairpins against KRAS and MYC Targeting in Prostate and Pancreatic Cancer Cell Lines. Genes (Basel) 2024; 15:1332. [PMID: 39457457 PMCID: PMC11507358 DOI: 10.3390/genes15101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Introduction: KRAS and MYC are proto-oncogenes that are strictly regulated in healthy cells that have key roles in several processes such as cell growth, proliferation, differentiation, or apoptosis. These genes are tightly interconnected, and their dysregulation can lead to cancer progression. We previously individually targeted these oncogenes using Polypurine Reverse Hoogsteen (PPRH) hairpins, mostly targeting the complementary strand of G-quadruplex-forming sequences. We validated them in vitro in different cancer cell lines with deregulated KRAS and/or MYC. In this work we focused on our understanding of the cooperative dynamics between these oncogenes, by investigating the combined impact of PPRHs targeting KRAS and MYC in pancreatic and prostate cancer cells. Results: The combinations had a modulatory impact on the expression of both oncogenes, with transcriptional and translational downregulation occurring five days post-treatment. Out of the four tested PPRHs, MYC-targeting PPRHs, especially HpMYC-G4-PR-C directed against the promoter, showed a greater cytotoxic and expression modulation effect. When both KRAS- and MYC-targeting PPRHs were applied in combination, a synergistic reduction in cell viability was observed. Conclusion: The simultaneous targeting of KRAS and MYC demonstrates efficacy in gene modulation, thus in decreasing cell proliferation and viability.
Collapse
Affiliation(s)
- Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain; (S.V.); (C.J.C.)
- Instituto de Nanociencia y Nanotecnología (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Kayla K. Elder
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (K.K.E.); (S.J.M.)
| | - Steven J. McKay
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (K.K.E.); (S.J.M.)
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain; (S.V.); (C.J.C.)
- Instituto de Nanociencia y Nanotecnología (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain; (S.V.); (C.J.C.)
- Instituto de Nanociencia y Nanotecnología (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Tracy A. Brooks
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (K.K.E.); (S.J.M.)
| |
Collapse
|
2
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
3
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
4
|
Peron G, Mastinu A, Peña-Corona SI, Hernández-Parra H, Leyva-Gómez G, Calina D, Sharifi-Rad J. Silvestrol, a potent anticancer agent with unfavourable pharmacokinetics: Current knowledge on its pharmacological properties and future directions for the development of novel drugs. Biomed Pharmacother 2024; 177:117047. [PMID: 38959604 DOI: 10.1016/j.biopha.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer remains a leading cause of death, with increasing incidence. Conventional treatments offer limited efficacy and cause significant side effects, hence novel drugs with improved pharmacological properties and safety are required. Silvestrol (SLV) is a flavagline derived from some plants of the Aglaia genus that has shown potent anticancer effects, warranting further study. Despite its efficacy in inhibiting the growth of several types of cancer cells, SLV is characterized by an unfavorable pharmacokinetics that hamper its use as a drug. A consistent research over the recent years has led to develop novel SLV derivatives with comparable pharmacodynamics and an ameliorated pharmacokinetic profile, demonstrating potential applications in the clinical management of cancer. This comprehensive review aims to highlight the most recent data available on SLV and its synthetic derivatives, addressing their pharmacological profile and therapeutic potential in cancer treatment. A systematic literature review of both in vitro and in vivo studies focusing on anticancer effects, pharmacodynamics, and pharmacokinetics of these compounds is presented. Overall, literature data highlight that rationale chemical modifications of SLV are critical for the development of novel drugs with high efficacy on a broad variety of cancers and improved bioavailability in vivo. Nevertheless, SLV analogues need to be further studied to better understand their mechanisms of action, which can be partially different to SLV. Furthermore, clinical research is still required to assess their efficacy in humans and their safety.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy.
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Centro de Estudios Tenológicos y Universitarios del Golfo, Veracruz, Mexico.
| |
Collapse
|
5
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
6
|
Hashimoto A, Hashimoto S. ADP-Ribosylation Factor 6 Pathway Acts as a Key Executor of Mesenchymal Tumor Plasticity. Int J Mol Sci 2023; 24:14934. [PMID: 37834383 PMCID: PMC10573442 DOI: 10.3390/ijms241914934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Despite the "big data" on cancer from recent breakthroughs in high-throughput technology and the development of new therapeutic modalities, it remains unclear as to how intra-tumor heterogeneity and phenotypic plasticity created by various somatic abnormalities and epigenetic and metabolic adaptations orchestrate therapy resistance, immune evasiveness, and metastatic ability. Tumors are formed by various cells, including immune cells, cancer-associated fibroblasts, and endothelial cells, and their tumor microenvironment (TME) plays a crucial role in malignant tumor progression and responses to therapy. ADP-ribosylation factor 6 (ARF6) and AMAP1 are often overexpressed in cancers, which statistically correlates with poor outcomes. The ARF6-AMAP1 pathway promotes the intracellular dynamics and cell-surface expression of various proteins. This pathway is also a major target for KRAS/TP53 mutations to cooperatively promote malignancy in pancreatic ductal adenocarcinoma (PDAC), and is closely associated with immune evasion. Additionally, this pathway is important in angiogenesis, acidosis, and fibrosis associated with tumor malignancy in the TME, and its inhibition in PDAC cells results in therapeutic synergy with an anti-PD-1 antibody in vivo. Thus, the ARF6-based pathway affects the TME and the intrinsic function of tumors, leading to malignancy. Here, we discuss the potential mechanisms of this ARF6-based pathway in tumorigenesis, and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
7
|
Wallbillich NJ, Lu H. Role of c-Myc in lung cancer: Progress, challenges, and prospects. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:129-138. [PMID: 37920609 PMCID: PMC10621893 DOI: 10.1016/j.pccm.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite the recent advances in cancer therapies, the 5-year survival of non-small cell lung cancer (NSCLC) patients hovers around 20%. Inherent and acquired resistance to therapies (including radiation, chemotherapies, targeted drugs, and combination therapies) has become a significant obstacle in the successful treatment of NSCLC. c-Myc, one of the critical oncoproteins, has been shown to be heavily associated with the malignant cancer phenotype, including rapid proliferation, metastasis, and chemoresistance across multiple cancer types. The c-Myc proto-oncogene is amplified in small cell lung cancers (SCLCs) and overexpressed in over 50% of NSCLCs. c-Myc is known to actively regulate the transcription of cancer stemness genes that are recognized as major contributors to tumor progression and therapeutic resistance; thus, targeting c-Myc either directly or indirectly in mitigation of the cancer stemness phenotype becomes a promising approach for development of a new strategy against drug resistant lung cancers. This review will summarize what is currently known about the mechanisms underlying c-Myc regulation of cancer stemness and its involvement in drug resistance and offer an overview on the current progress and future prospects in therapeutically targeting c-Myc in both SCLC and NSCLC.
Collapse
Affiliation(s)
- Nicholas J. Wallbillich
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Sabe H. KRAS, MYC, and ARF6: inseparable relationships cooperatively promote cancer malignancy and immune evasion. Cell Commun Signal 2023; 21:106. [PMID: 37158894 PMCID: PMC10165578 DOI: 10.1186/s12964-023-01130-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023] Open
Abstract
Mutations in the KRAS gene and overexpression of protein products of the MYC and ARF6 genes occur frequently in cancer. Here, the inseparable relationships and cooperation of the protein products of these three genes in cancer malignancy and immune evasion are discussed. mRNAs encoded by these genes share the common feature of a G-quadruplex structure, which directs them to be robustly expressed when cellular energy production is increased. These three proteins are also functionally inseparable from each other, as follows. 1) KRAS induces MYC gene expression, and may also promote eIF4A-dependent MYC and ARF6 mRNA translation, 2) MYC induces the expression of genes involved in mitochondrial biogenesis and oxidative phosphorylation, and 3) ARF6 protects mitochondria from oxidative injury. ARF6 may moreover promote cancer invasion and metastasis, and also acidosis and immune checkpoint. Therefore, the inseparable relationships and cooperation of KRAS, MYC, and ARF6 appear to result in the activation of mitochondria and the driving of ARF6-based malignancy and immune evasion. Such adverse associations are frequent in pancreatic cancer, and appear to be further enhanced by TP53 mutations. Video Abstract.
Collapse
Affiliation(s)
- Hisataka Sabe
- Department of Molecular Biology, Graduate School of Medicine, and Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
9
|
Zhai Q, Hou Y, Ye Y, Dai S, Guo G, Yang Q, Pang G, Wei Q. Expression pattern and prognostic value of key regulators for N7-methylguanosine RNA modification in prostate cancer. Acta Biochim Biophys Sin (Shanghai) 2023; 55:561-573. [PMID: 36810782 DOI: 10.3724/abbs.2023017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Alterations in the regulators of RNA methylation modifications, such as N7-methylguanosine (m7G), have been implicated in a variety of diseases. Therefore, the analysis and identification of disease-related m7G modification regulators will accelerate advances in understanding disease pathogenesis. However, the implications of alterations in the regulators of m7G modifications remain poorly understood in prostate adenocarcinoma. In the present study, we analyze the expression patterns of 29 m7G RNA modification regulators in prostate adenocarcinoma using The Cancer Genome Atlas (TCGA) and perform consistent clustering analysis of differentially expressed genes (DEGs). We find that 18 m7G-related genes are differentially expressed in tumor and normal tissues. In different cluster subgroups, DEGs are mainly enriched in tumorigenesis and tumor development. Furthermore, immune analyses demonstrate that patients in cluster 1 have significantly higher scores for stromal and immune cells, such as B cells, T cells, and macrophages. Then, a TCGA-related risk model is developed and successfully validated using a Gene Expression Omnibus external dataset. Two genes ( EIF4A1 and NCBP2) are determined to be prognostically significant. Most importantly, we construct tissue microarrays from 26 tumor specimens and 20 normal specimens, and further confirm that EIF4A1 and NCBP2 are associated with tumor progression and Gleason score. Therefore, we conclude that the m7G RNA methylation regulators may be involved in the poor prognosis of patients with prostate adenocarcinoma. The results of this study may provide support for exploring the underlying molecular mechanisms of m7G regulators, especially EIF4A1 and NCBP2.
Collapse
Affiliation(s)
- Qiliang Zhai
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Urology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Yan Hou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuedian Ye
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sujuan Dai
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Guangxiu Guo
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Qiao Yang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guofu Pang
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai 519000, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Yang Y, Zhang H, Huang S, Chu Q. KRAS Mutations in Solid Tumors: Characteristics, Current Therapeutic Strategy, and Potential Treatment Exploration. J Clin Med 2023; 12:jcm12020709. [PMID: 36675641 PMCID: PMC9861148 DOI: 10.3390/jcm12020709] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Kristen rat sarcoma (KRAS) gene is one of the most common mutated oncogenes in solid tumors. Yet, KRAS inhibitors did not follow suit with the development of targeted therapy, for the structure of KRAS has been considered as being implausible to target for decades. Chemotherapy was the initial recommended therapy for KRAS-mutant cancer patients, which was then replaced by or combined with immunotherapy. KRAS G12C inhibitors became the most recent breakthrough in targeted therapy, with Sotorasib being approved by the Food and Drug Administration (FDA) based on its significant efficacy in multiple clinical studies. However, the subtypes of the KRAS mutations are complex, and the development of inhibitors targeting non-G12C subtypes is still at a relatively early stage. In addition, the monotherapy of KRAS inhibitors has accumulated possible resistance, acquiring the exploration of combination therapies or next-generation KRAS inhibitors. Thus, other non-target, conventional therapies have also been considered as being promising. Here in this review, we went through the characteristics of KRAS mutations in cancer patients, and the prognostic effect that it poses on different therapies and advanced therapeutic strategy, as well as cutting-edge research on the mechanisms of drug resistance, tumor development, and the immune microenvironment.
Collapse
|
11
|
Hashimoto A, Handa H, Hata S, Hashimoto S. Orchestration of mesenchymal plasticity and immune evasiveness via rewiring of the metabolic program in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1005566. [PMID: 36408139 PMCID: PMC9669439 DOI: 10.3389/fonc.2022.1005566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most fatal cancer in humans, due to its difficulty of early detection and its high metastatic ability. The occurrence of epithelial to mesenchymal transition in preinvasive pancreatic lesions has been implicated in the early dissemination, drug resistance, and cancer stemness of PDAC. PDAC cells also have a reprogrammed metabolism, regulated by driver mutation-mediated pathways, a desmoplastic tumor microenvironment (TME), and interactions with stromal cells, including pancreatic stellate cells, fibroblasts, endothelial cells, and immune cells. Such metabolic reprogramming and its functional metabolites lead to enhanced mesenchymal plasticity, and creates an acidic and immunosuppressive TME, resulting in the augmentation of protumor immunity via cancer-associated inflammation. In this review, we summarize our recent understanding of how PDAC cells acquire and augment mesenchymal features via metabolic and immunological changes during tumor progression, and how mesenchymal malignancies induce metabolic network rewiring and facilitate an immune evasive TME. In addition, we also present our recent findings on the interesting relevance of the small G protein ADP-ribosylation factor 6-based signaling pathway driven by KRAS/TP53 mutations, inflammatory amplification signals mediated by the proinflammatory cytokine interleukin 6 and RNA-binding protein ARID5A on PDAC metabolic reprogramming and immune evasion, and finally discuss potential therapeutic strategies for the quasi-mesenchymal subtype of PDAC.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| | - Haruka Handa
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Soichiro Hata
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| |
Collapse
|
12
|
Zhang Y, Liu Q, Cui M, Wang M, Hua S, Gao J, Liao Q. Comprehensive Analysis of Expression, Prognostic Value, and Immune Infiltration for Ubiquitination-Related FBXOs in Pancreatic Ductal Adenocarcinoma. Front Immunol 2022; 12:774435. [PMID: 35046938 PMCID: PMC8761623 DOI: 10.3389/fimmu.2021.774435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory human malignancies. F-box only proteins (FBXO) are the core components of SKP1-cullin 1-F-box E3 ubiquitin ligase, which have been reported to play crucial roles in tumor initiation and progression via ubiquitination-mediated proteasomal degradation. However, the clinical implications and biological functions of FBXOs in PDAC have not been fully clarified. Herein we perform a comprehensive analysis for the clinical values and functional roles of FBXOs in PDAC using different public databases. We found that FBXO1 (CCNF), FBXO20 (LMO7), FBXO22, FBXO28, FBXO32, and FBXO45 (designated six-FBXOs) were robustly upregulated in PDAC tissues, which predicted an adverse prognosis of PDAC patients. There was a significant correlation between the expression levels of six-FBXOs and the clinicopathological features in PDAC. The transcriptional levels of six-FBXOs were subjected to the influence of promoter methylation levels. There were more than 40% genetic alterations and mutations of six-FBXOs, which affected the clinical outcome of PDAC patients. Furthermore, the expression of six-FBXOs was associated with immune infiltrations and activated status, including B cells, CD8+ T cells, CD4+ T cells, NK cells, macrophages, and dendritic cells. The functional prediction revealed that the six-FBXOs were involved in ubiquitination-related pathways and other vital signaling pathways, such as p53, PI3K/Akt, and Hippo pathway. Therefore, six-FBXOs are the promising prognostic biomarkers or potential targets for PDAC diagnosis and treatment.
Collapse
Affiliation(s)
- Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Surong Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Junyi Gao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Schneider G, Wirth M, Keller U, Saur D. Rationale for MYC imaging and targeting in pancreatic cancer. EJNMMI Res 2021; 11:104. [PMID: 34637026 PMCID: PMC8511206 DOI: 10.1186/s13550-021-00843-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The incidence and lethality of pancreatic ductal adenocarcinoma (PDAC) will continue to increase in the next decade. For most patients, chemotherapeutic combination therapies remain the standard of care. The development and successful implementation of precision oncology in other gastrointestinal tumor entities point to opportunities also for PDAC. Therefore, markers linked to specific therapeutic responses and important subgroups of the disease are needed. The MYC oncogene is a relevant driver in PDAC and is linked to drug resistance and sensitivity. Here, we update recent insights into MYC biology in PDAC, summarize the connections between MYC and drug responses, and point to an opportunity to image MYC non-invasively. In sum, we propose MYC-associated biology as a basis for the development of concepts for precision oncology in PDAC.
Collapse
Affiliation(s)
- Günter Schneider
- Medical Clinic and Policlinic II, Klinikum Rechts Der Isar, TU Munich, 81675, Munich, Germany. .,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany. .,Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Matthias Wirth
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany. .,Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany.
| | - Ulrich Keller
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,Insititute for Translational Cancer Research and Experimental Cancer Therapy, MRI, TU Munich, 81675, Munich, Germany
| |
Collapse
|