1
|
Dang BTN, Duwa R, Lee S, Kwon TK, Chang JH, Jeong JH, Yook S. Targeting tumor-associated macrophages with mannosylated nanotherapeutics delivering TLR7/8 agonist enhances cancer immunotherapy. J Control Release 2024; 372:587-608. [PMID: 38942083 DOI: 10.1016/j.jconrel.2024.06.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute 50-80% of stromal cells in most solid tumors with high mortality and poor prognosis. Tumor-infiltrating dendritic cells (TIDCs) and TAMs are key components mediating immune responses within the tumor microenvironment (TME). Considering their refractory properties, simultaneous remodeling of TAMs and TIDCs is a potential strategy of boosting tumor immunity and restoring immunosurveillance. In this study, mannose-decorated poly(lactic-co-glycolic acid) nanoparticles loading with R848 (Man-pD-PLGA-NP@R848) were prepared to dually target TAMs and TIDCs for efficient tumor immunotherapy. The three-dimensional (3D) cell culture model can simulate tumor growth as influenced by the TME and its 3D structural arrangement. Consequently, cancer spheroids enriched with tumor-associated macrophages (TAMs) were fabricated to assess the therapeutic effectiveness of Man-pD-PLGA-NP@R848. In the TME, Man-pD-PLGA-NP@R848 targeted both TAMs and TIDCs in a mannose receptor-mediated manner. Subsequently, Man-pD-PLGA-NP@R848 released R848 to activate Toll-like receptors 7 and 8, following dual-reprograming of TIDCs and TAMs. Man-pD-PLGA-NP@R848 could uniquely reprogram TAMs into antitumoral phenotypes, decrease angiogenesis, reprogram the immunosuppressive TME from "cold tumor" into "hot tumor", with high CD4+ and CD8+ T cell infiltration, and consequently hinder tumor development in B16F10 tumor-bearing mice. Therefore, dual-reprograming of TIDCs and TAMs with the Man-pD-PLGA-NP@R848 is a promising cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Bao-Toan Nguyen Dang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Shivarudrappa AH, John J, Vashisht M, Ge H, Liu S, Chen J, Siddoway K, Dong R, Chen Z, Wang JH. Differential tumor immune microenvironment coupled with tumor progression or tumor eradication in HPV-antigen expressing squamous cell carcinoma (SCC) models. Front Immunol 2024; 15:1405318. [PMID: 39055715 PMCID: PMC11269233 DOI: 10.3389/fimmu.2024.1405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Human papilloma virus (HPV) is an etiological factor of head and neck squamous cell carcinoma (HNSCC). To investigate the role of HPV antigen in anti-tumor immunity, we established mouse models by expressing HPV16 E6 and E7 in a SCC tumor cell line. We obtained two HPV antigen-expressing clones (C-225 and C-100) transplantable into C57BL/6 recipients. We found that C-225 elicited complete eradication in C57BL/6 mice (eradicated), whereas C-100 grew progressively (growing). We examined immune tumor microenvironment (TME) using flow cytometry and found that eradicated or growing tumors exhibited differential immune profiles that may influence the outcome of anti-tumor immunity. Surprisingly, the percentage of CD8 and CD4 tumor-infiltrating lymphocytes (TILs) was much higher in growing (C-100) than eradicated (C-225) tumor. However, the TILs upregulated PD-1 and LAG-3 more potently and exhibited impaired effector functions in growing tumor compared to their counterparts in eradicated tumor. C-225 TME is highly enriched with myeloid cells, especially polymorphonuclear (PMN) myeloid-derived suppressor cells (MDSC), whereas the percentage of M-MDSC and tumor-associated macrophages (TAMs) was much higher in C-100 TME, especially M2-TAMs (CD206+). The complete eradication of C-225 depended on CD8 T cells and elicited anti-tumor memory responses upon secondary tumor challenge. We employed DNA sequencing to identify differences in the T cell receptor of peripheral blood lymphocytes pre- and post-secondary tumor challenge. Lastly, C-225 and C-100 tumor lines harbored different somatic mutations. Overall, we uncovered differential immune TME that may underlie the divergent outcomes of anti-tumor immunity by establishing two SCC tumor lines, both of which express HPV16 E6 and E7 antigens. Our experimental models may provide a platform for pinpointing tumor-intrinsic versus host-intrinsic differences in orchestrating an immunosuppressive TME in HNSCCs and for identifying new targets that render tumor cells vulnerable to immune attack.
Collapse
Affiliation(s)
- Arpitha H. Shivarudrappa
- University of Pittsburgh Medical Center UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jessy John
- University of Pittsburgh Medical Center UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Monika Vashisht
- University of Pittsburgh Medical Center UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Huaibin Ge
- University of Pittsburgh Medical Center UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jingxin Chen
- University of Pittsburgh Medical Center UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Karen Siddoway
- University of Pittsburgh Medical Center UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rui Dong
- University of Pittsburgh Medical Center UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhangguo Chen
- University of Pittsburgh Medical Center UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jing H. Wang
- University of Pittsburgh Medical Center UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Ding W, Chen WW, Wang YQ, Xu XZ, Wang YB, Yan YM, Tan YL. Immune-related long noncoding RNA zinc finger protein 710-AS1-201 promotes the metastasis and invasion of gastric cancer cells. World J Gastrointest Oncol 2024; 16:458-474. [PMID: 38425400 PMCID: PMC10900153 DOI: 10.4251/wjgo.v16.i2.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/02/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignant tumor of the gastrointestinal system. ZNF710 is a transcription factor (TF), and zinc finger protein 710 (ZNF710)-AS1-201 is an immune-related long noncoding RNA (lncRNA) that is upregulated in GC cells. AIM To assess the correlation between ZNF710-AS1-201 and immune microenvironment features and to investigate the roles of ZNF710-AS1-201 in the invasion and metastasis processes of GC cells. METHODS We obtained data from The Cancer Genome Atlas and Wujin Hospital. We assessed cell growth, migration, invasion, and programmed cell death using cell counting kit-8, EdU, scratch, Transwell, and flow cytometry assays. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to identify the potential downstream targets of ZNF710-AS1-201. RESULTS In GC tissues with low ZNF710-AS1-201 expression, immunoassays detected significant infiltration of various antitumor immune cells, such as memory CD8 T cells and activated CD4 T cells. In the low-expression group, the half-maximal inhibitory concentrations (IC50s) of 5-fluorouracil, cisplatin, gemcitabine, and trametinib were lower, whereas the IC50s of dasatinib and vorinostat were higher. The malignant degree of GC was higher and the stage was later in the high-expression group. Additionally, patients with high expression of ZNF710-AS1-201 had lower overall survival and disease-free survival rates. In vitro, the overexpression of ZNF710-AS1-201 greatly enhanced growth, metastasis, and infiltration while suppressing cell death in HGC-27 cells. In contrast, the reduced expression of ZNF710-AS1-201 greatly hindered cell growth, enhanced apoptosis, and suppressed the metastasis and invasion of MKN-45 cells. The expression changes in ZNF710 were significant, but the corresponding changes in isocitrate dehydrogenase-2, Semaphorin 4B, ARHGAP10, RGMB, hsa-miR-93-5p, and ZNF710-AS1-202 were not consistent or statistically significant after overexpression or knockdown of ZNF710-AS1-201, as determined by qRT-PCR. CONCLUSION Immune-related lncRNA ZNF710-AS1-201 facilitates the metastasis and invasion of GC cells. It appears that ZNF710-AS1-201 and ZNF710 have potential as effective targets for therapeutic intervention in GC. Nevertheless, it is still necessary to determine the specific targets of the ZNF710 TF.
Collapse
Affiliation(s)
- Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213017, Jiangsu Province, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213003, Jiangsu Province, China
| | - Wei-Wei Chen
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, Jiangsu Province, China
| | - Yi-Qin Wang
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, Jiangsu Province, China
| | - Xue-Zhong Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, Jiangsu Province, China
| | - Yi-Bo Wang
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, Jiangsu Province, China
| | - Yong-Min Yan
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213017, Jiangsu Province, China
| | - Yu-Lin Tan
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, Jiangsu Province, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
4
|
Nwozichi C, Ogunmuyiwa AO, Ojewale MO. Nurses' roles in CAR-T therapy for B-cell malignancies and managing associated cytokine release syndrome. Asia Pac J Oncol Nurs 2024; 11:100367. [PMID: 38304228 PMCID: PMC10831260 DOI: 10.1016/j.apjon.2023.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction In recent times, significant innovations have been made in cancer immunotherapy. These innovations have yielded positive outcomes, including a substantial improvement in the clinical outcomes of cancer patients, especially in the B-cell setting involving patients with B-cell malignancies. Method This paper explores oncology nurses' actual and expanded roles in utilizing chimeric antigen receptor T-cell (CAR-T) therapy. Result CAR-T therapy is an exciting innovation in cancer treatment. However, this therapy is often associated with some mild to life-threatening side effects and toxicities, including cytokine release syndrome (CRS). Unfortunately, nurses lack adequate standardized guidelines for monitoring and managing patients with CRS. This paper explains oncology nurses' actual and expanded roles in utilizing CAR-T therapy in treating B-cell malignancies based on experience and published data. Discussion Nurses' responsibilities for patients experiencing CAR-T toxicities with a particular focus on CRS during treatment are discussed.
Collapse
|
5
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|