1
|
Zhe N, Li Q, Huang N, Li H, Chen H, Zhu P. Hotspots evolution and frontiers of immunotherapy for the treatment of acute myeloid leukemia: A bibliometric analysis. Hum Vaccin Immunother 2025; 21:2448888. [PMID: 39819314 DOI: 10.1080/21645515.2024.2448888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/19/2025] Open
Abstract
Given the growing significance of immunotherapy in addressing the limitations of conventional acute myeloid leukemia (AML) treatments, this study aimed to elucidate the hotspot evolution and frontiers of immunotherapy in AML using bibliometric analysis. With a strict retrieval strategy applied in the Web of Science Core Collection, 2411 publications were obtained and exported. The temporal and geographical distributions of these publications and the countries, institutions, journals, and authors who contributed to the field were investigated. An in-depth content analysis was performed. The United States had various research institutions dedicated to AML immunotherapy. Frontiers in Immunology had the highest number of publications, but Blood had the highest H-index. Marion Subklewe was the most productive author. The current research hotspots of AML immunotherapy included chimeric antigen receptor-T-cell therapy, antibody-based immunotherapies, immune checkpoint blockade, and combination therapy, highlighting the key aspects of immunotherapy for AML treatment and providing comprehensive insights into the research status and advances in this field. Novel immunotherapies combined with chemotherapy may become the primary focus of AML treatment.
Collapse
Affiliation(s)
- Nana Zhe
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Qiang Li
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Nanqu Huang
- Department of Pharmacy, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hang Li
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hongyun Chen
- Department of Dermatology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Pinwei Zhu
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| |
Collapse
|
2
|
Xu P, Jiang QH, Fu SH, Lin Y, Zha J, Xu B. Upregulation of LSP1 in AML cells enhances AML resistance to sorafenib and promotes apoptosis in CD8 + T cells. Int Immunopharmacol 2025; 150:114255. [PMID: 39952006 DOI: 10.1016/j.intimp.2025.114255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignancy with immunosuppressive tumor microenvironment (TME), which contributes to the development of drug resistance and poor outcomes of immune therapy in AML patients. Therefore, it is imperative to unveil the mechanisms underlying immune suppression in AML TME and identify novel therapeutic targets for immunotherapy. Here, our study identified two immune-related subtypes via RNA-seq analysis, with Cluster 2 significantly associated with multiple biological characteristics and clinical phenotypes, including patients' age, survival and mutational burden. Meanwhile, differential analysis revealed 397 upregulated genes, 75 downregulated genes and 87 prognosis-related differentially expressed genes (DEGs) between Cluster 1 and Cluster 2. Subsequently, LSP1 was identified as the most significant prognostic marker for AML patients. Furthermore, we found that LSP1 expression was significantly correlated with patients' age, class and prognosis and notably affected the cytotoxicity of sorafenib against AML cells. Finally, scRNA-seq analysis revealed a significant correlation between LSP1 and the expression of immune checkpoint molecules in CD8+ T cells and AML cells, influencing the function of total CD8+ T cells as well as CD8+ Teff and CD8+ Tem cells. Collectively, our study revealed that LSP1 is an immune-related marker that greatly correlated with the prognosis, multiple clinical features and biological characteristics of AML patients. Meanwhile, the effects of LSP1 on sorafenib sensitivity and CD8+ T cell apoptosis were also unveiled, shedding light on LSP1 as a promising therapeutic target for AML.
Collapse
Affiliation(s)
- Peng Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Qiu-Hui Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Shu-Hui Fu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Yun Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| |
Collapse
|
3
|
Yin J, Luo J, Wang L, Liu L, Liu L. STAB1 Promotes Acute Myeloid Leukemia Progression by Activating the IKK/NF-κB Pathway and Increasing M2 Macrophage Polarization. Cancer Sci 2025. [PMID: 40083109 DOI: 10.1111/cas.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
As a multifunctional scavenger receptor, stabilin-1 (STAB1) has been identified to induce chronic inflammation and promote cancer progression. Although in silico studies from multiple data sets showed that STAB1 might facilitate the progression of acute myeloid leukemia (AML) and drug resistance, the real impacts of STAB1 expression on AML patients and the detailed mechanisms remain unclear. Herein, we found that a higher expression of STAB1 is associated with a worse prognosis in AML patients. Subsequent in vitro experiments demonstrated that STAB1 knockdown suppressed proliferation and promoted apoptosis through regulating the IKK/NF-κB pathway in human AML cell lines HEL and NB4. In addition, in vivo studies showed that STAB1 silencing prolonged survival, reduced proliferation, and inhibited aggressiveness of AML cells in xenograft mouse models. Moreover, we investigated the impact of STAB1 expression in AML cells on macrophage differentiation and found that co-culture of macrophages with conditioned medium from STAB1-knockdown AML cells reduced M2 polarization of macrophages. Taken together, our study suggests that STAB1 promotes growth and aggressiveness of AML cells through activating the IKK/NF-κB pathway while also regulating M2 macrophage polarization within the chronic inflammatory environment. Therefore, targeting STAB1 could be a potential therapeutic strategy for treating AML.
Collapse
Affiliation(s)
- Jiaxiu Yin
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology and Hematology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Lanxiang Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Wang J, Zuo Y, Wang W, Xu J, Liu C, Jiang M. The value of plasma sCD25 in diagnosis, therapeutic efficacy, and prognosis of acute myeloid leukemia. Clin Exp Med 2025; 25:70. [PMID: 40029438 DOI: 10.1007/s10238-025-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
This study aims to investigate the clinical importance of soluble CD25 (sCD25) levels in diagnosing acute myeloid leukemia (AML), predicting patient outcomes, and monitoring treatment responses. Plasma sCD25 levels were measured in 190 AML patients and 47 healthy controls. AML patients were further divided into subgroups based on chemotherapy status, therapeutic response, and prognostic risk. Statistical analyses were performed to investigate the relationships between sCD25 levels and various clinical parameters, along with its potential diagnostic and prognostic significance. Plasma sCD25 levels were significantly elevated in AML patients compared to healthy controls (p < 0.0001). High sCD25 levels correlated positively with white blood cell count, age, and pulmonary infection (p < 0.01) and negatively with hemoglobin and platelet counts (p < 0.01). Logistic regression analysis identified sCD25 as a risk factor for both AML diagnosis (OR = 59.240, 95% CI: 11.14-315.0, p < 0.0001) and poor prognosis (OR = 1.651, 95% CI: 1.094-2.492, p < 0.05). ROC curve analysis demonstrated that sCD25 has high diagnostic accuracy for AML (AUC = 0.929, sensitivity = 86.44%, specificity = 93.62%) and moderate predictive value for chemotherapy non-remission (AUC = 0.66, p < 0.05). Plasma sCD25 levels are significantly elevated in AML and show potential as a diagnostic and prognostic biomarker. sCD25 may also be useful for monitoring treatment response in AML patients. Further studies are warranted to elucidate its role in AML pathogenesis.
Collapse
Affiliation(s)
- JiaYi Wang
- Department Of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - YuanLing Zuo
- Department Of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Wen Wang
- Department Of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Jie Xu
- Department Of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215021, China.
| | - Min Jiang
- Department Of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
5
|
Xiao F, Huang C, Chen A, Xiao W, Li Z. Identification of metabolite-disease associations based on knowledge graph. Metabolomics 2025; 21:32. [PMID: 39987424 DOI: 10.1007/s11306-025-02227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/25/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Despite the insights that metabolite analysis can provide into the onset, development, and progression of diseases-thus offering new concepts and methodologies for prevention, diagnosis, and treatment-traditional wet lab experiments are often time-consuming and labor-intensive. Consequently, this study aimed to develop a machine learning model named COM-RAN, which is based on a knowledge graph and random forest algorithm, to identify potential associations between metabolites and diseases. METHODS Firstly, we integrated the known associations between diseases and metabolites. Secondly, we provided a synthesis of the extant data regarding diseases and metabolites, accompanied by supplementary information pertinent to these entities. Thirdly, knowledge graph-based embedded features were used to characterize disease-metabolite associations. Finally, a random forest algorithm was employed to construct a model for identifying potential disease-metabolite associations. RESULTS The experimental results demonstrated that the proposed model achieved an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.968 in 5-fold cross-validations, while the Area Under the Precision-Recall Curve (AUPR) was 0.901, outperforming the vast majority of existing prediction methods. The case studies corroborated the majority of the novel associations identified by COM-RAN, thereby further demonstrating the reliability of the current method in predicting the potential relationship between metabolites and diseases. CONCLUSION The COM-RAN model demonstrated promise in predicting associations between diseases and metabolites, suggesting that integrating knowledge graphs with machine learning methodologies can significantly improve the accuracy and reliability of predictions related to disease-associated metabolites.
Collapse
Affiliation(s)
- Fuheng Xiao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China
| | - Canling Huang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China
| | - Ali Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China.
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, P.R. China.
| | - Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China.
| |
Collapse
|
6
|
Klauer LK, Rejeski HA, Ugur S, Rackl E, Abdulmajid J, Fischer Z, Pepeldjiyska E, Frischhut A, Schmieder N, Völker A, Rank A, Schmid C, Schmohl J, Amberger DC, Schmetzer HM. Leukemia-Derived Dendritic Cells Induce Anti-Leukemic Effects Ex Vivo in AML Independently of Patients' Clinical and Biological Features. Int J Mol Sci 2025; 26:1700. [PMID: 40004163 PMCID: PMC11855365 DOI: 10.3390/ijms26041700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
New therapies are highly needed to stabilize remission in patients with acute myeloid leukemia (AML). This study investigates the value of dendritic cells derived from leukemic blasts (DCleu) to enhance anti-leukemic immunity after T-cell-enriched mixed lymphocyte cultures (MLCs). We correlated induced anti-leukemic activity with patient data, including biological, clinical and prognostic factors. Additionally, we correlated the frequencies of DC/DCleu and leukemic-specific T cells with the achieved anti-leukemic activity after MLC. We show that mature DC/DCleu can be generated using the immunomodulating Kit-M, which contains granulocyte-macrophage colony-stimulating-factor (GM-CSF) and prostaglandin E1 (PGE1), without inducing blast proliferation from leukemic whole blood (WB) samples. Activated leukemia-specific immune and memory cells increased after MLC with Kit-M-pretreated WB, leading to improved blast lysis. Enhanced anti-leukemic activity positively correlated with the frequencies of generated DC/DCleu, proliferating leukemic-specific T cells and memory T cells, but not with leukemic blast counts, hemoglobin levels or platelet counts at diagnosis. No correlation was found between improved blast lysis and patients' prognostic data, including age, gender, ELN risk groups, disease stage and response to induction chemotherapy. These findings underscore the potential of DC/DCleu to evoke robust immune responses and potential immunological memory against AML. Overall, this innovative approach could pave the way for the development of improved immunotherapeutic strategies that function in vivo.
Collapse
Affiliation(s)
- Lara Kristina Klauer
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
| | - Hazal Aslan Rejeski
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
| | - Selda Ugur
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
| | - Elias Rackl
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
| | - Joudi Abdulmajid
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
- Faculty of Biology, University Bielefeld, 33615 Bielefeld, Germany
| | - Zuzanna Fischer
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
| | - Elena Pepeldjiyska
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
| | - Annalena Frischhut
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
| | - Nicolas Schmieder
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
| | - Antje Völker
- Department of Statistics, Ludwig-Maximilian-University Munich, 80539 Munich, Germany
| | - Andreas Rank
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
- Department of Haematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany
| | - Christoph Schmid
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
- Department of Haematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany
| | - Jörg Schmohl
- Department of Haematology and Oncology, Diakonie-Klinikum, 70176 Stuttgart, Germany
| | - Daniel Christoph Amberger
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- First Department of Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Helga Maria Schmetzer
- Department of Medicine III, University Hospital of Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 80539 Munich, Germany
| |
Collapse
|
7
|
Saadh MJ, K Abdulsahib W, Ashurova D, Sanghvi G, Ballal S, Sharma R, Kumar Pathak P, Aman S, Kumar A, Feez Sead F, Chaitanya MVNL. FLT3-mutated AML: immune evasion through exosome-mediated mechanisms and innovative combination therapies targeting immune escape. Expert Rev Anticancer Ther 2025; 25:143-150. [PMID: 39885639 DOI: 10.1080/14737140.2025.2461632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/01/2025]
Abstract
INTRODUCTION Acute Myeloid Leukemia is a heterogeneous hematological malignancy characterized by the uncontrolled proliferation of abnormal myeloid cells. Besides several other genetic abnormalities developed in AML, FLT3 mutations are significant due to their worse prognostic impacts and therapeutic resistance. As a result, these mutations enable AML cells to develop mechanisms for evading immune surveillance. AREAS COVERED This review discusses the ways of immune escape of FLT3-mutated AML cells. A literature search was conducted on PubMed, Scopus, and Web of Science databases, covering articles published between 2010 and 2024 with related keywords. The discussion covers AML cells' downregulation of immune recognition markers, expression of immune checkpoint proteins, and establishment of an immunosuppressive tumor microenvironment. Specific attention is given to small extracellular vesicles and their participation in immune escape. The focus is on exosome-mediated pathways and possible combination therapies. EXPERT OPINION FLT3 mutations in AML represent a formidable therapeutic challenge due to their crucial role in immune evasion. Exosomes are major players in these processes. Combination therapies targeting the exosome pathway could significantly improve these patients' immune recognition and overall outcomes. Understanding the underlying mechanisms, including targeted therapies, will be required to transcend existing therapeutic limitations and push newer strategies in treatment.
Collapse
MESH Headings
- Humans
- Exosomes/genetics
- Exosomes/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- fms-Like Tyrosine Kinase 3/genetics
- Mutation
- Tumor Microenvironment/immunology
- Tumor Escape/genetics
- Molecular Targeted Therapy
- Animals
- Prognosis
Collapse
Affiliation(s)
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Dilfuza Ashurova
- Department of Propedeutics of Pediatric Diseases and Hematology, Tashkent Pediatric Medical Institute, Tashkent, Uzbekistan
| | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science Marwadi University, Marwadi University Research Center, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, India
| | - Rsk Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Shankhyan Aman
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia, Ekaterinburg, Russia
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan
| | - Fadhil Feez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Diwaniyah, Iraq
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
8
|
Hajipirloo LK, Nabigol M, Khayami R, Karami N, Farsani MA, Navidinia AA. Construction of a stromal-related prognostic model in acute myeloid leukemia by comprehensive bioinformatics analysis. Curr Res Transl Med 2025; 73:103492. [PMID: 39818173 DOI: 10.1016/j.retram.2025.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/10/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Stromal cells play a pivotal role in the tumor microenvironment (TME), significantly impacting the progression of acute myeloid leukemia (AML). This study sought to develop a stromal-related prognostic model for AML, aiming to uncover novel prognostic markers and therapeutic targets. METHODS RNA expression data and clinical profiles of AML patients were retrieved from the Cancer Genome Atlas (TCGA). The extent of stromal cell infiltration within the TME was quantified using the ESTIMATE algorithm. Associations between stromal scores and the French-American-British (FAB) classification, overall survival (OS), and the Cancer and Leukemia Group B (CALGB) cytogenetic risk categories were analyzed. Differentially expressed genes (DEGs) were identified, and gene ontology (GO) and protein-protein interaction (PPI) networks were constructed. Prognostic DEGs were selected through LASSO-cox regression analysis. A risk score model was then developed based on these DEGs. A stromal-related prognostic model (SPM) was constructed from the patients' risk scores (RS), and its efficacy was evaluated using Receiver Operating Characteristic (ROC) curves and a nomogram. The association between FAB, CALGB, age, and common mutations and SPM was also assessed. Ultimately, the SPM was validated using an external dataset from 246 patients in the TARGET-AML study. RESULTS Kaplan-Meier analysis revealed a significant association between stromal scores and patient survival (p = 0.04). LASSOCox regression identified four genes (MAP7D2, CDRT1, HOXB9, and IRX5) as highly predictive of survival. The prognostic model showed a strong correlation with overall survival, with higher scores indicating poorer outcomes (p = 1.48e-07). Older patients (over 60 years) faced significantly worse prognoses (p = 0.0055). Although no significant association was found between the SPM and the FAB classification (p = 0.063), both poor and intermediate/normal cytogenetic groups had significantly higher SPM risk scores than the favorable group (p = 0.0057 and 0.0026). External validation of the SPM in the TARGET-AML dataset confirmed a significant association with survival (p = 0.00035), with the area under the curve (AUC) for 10-year survival at 75.81 %. CONCLUSION Our research successfully established a stromal-related prognostic model in AML, offering new perspectives for prognostic evaluation and identifying potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Laya Khodayi Hajipirloo
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nabigol
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najibe Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Navidinia
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Capelletti MM, Montini O, Ruini E, Tettamanti S, Savino AM, Sarno J. Unlocking the Heterogeneity in Acute Leukaemia: Dissection of Clonal Architecture and Metabolic Properties for Clinical Interventions. Int J Mol Sci 2024; 26:45. [PMID: 39795903 PMCID: PMC11719665 DOI: 10.3390/ijms26010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation. Understanding the metabolic diversities among cancer cells and their surrounding environments is therefore essential in unravelling the complexities of leukaemia and improving therapeutic strategies. Here, we describe the currently available methodologies and approaches to addressing the dynamic heterogeneity of leukaemia progression. In the second section, we focus on metabolic leukaemic vulnerabilities in acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL). Lastly, we provide a comprehensive overview of the most interesting clinical trials designed to target these metabolic dependencies, highlighting their potential to advance therapeutic strategies in leukaemia treatment. The integration of multi-omics data for cancer identification with the metabolic states of tumour cells will enable a comprehensive "micro-to-macro" approach for the refinement of clinical practices and delivery of personalised therapies.
Collapse
Affiliation(s)
- Martina Maria Capelletti
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Orsola Montini
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Emilio Ruini
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
| | - Sarah Tettamanti
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Angela Maria Savino
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Jolanda Sarno
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
10
|
Wang Y, Fei Y. Causal relationship between 731 immune cells and the risk of myeloproliferative neoplasms: A 2-sample bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40945. [PMID: 39705412 DOI: 10.1097/md.0000000000040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Myeloproliferative neoplasms (MPN) are chronic hematological disorders marked by the abnormal proliferation of bone marrow cells. The most commonly encountered forms are polycythemia vera (PV), primary myelofibrosis (PMF), and essential thrombocythemia (ET). These disorders are generally associated with increases in blood components, which can lead to conditions like splenomegaly, thrombosis, bleeding tendencies, and a heightened risk of progressing to acute leukemia. Previous research has indicated a possible link between immune cells and MPN, yet this association is still poorly understood. This study seeks to elucidate the causal relationship between immune cell characteristics and the development of MPN. In this study, we employed Mendelian randomization (MR) to investigate potential causal links between 731 immune cell traits and the risk of developing MPN, leveraging data from genome-wide association studies (GWAS). To ensure the robustness of our findings, we conducted extensive sensitivity analyses to assess heterogeneity and detect any pleiotropic effects. Moreover, we implemented a false discovery rate (FDR) correction to mitigate the risk of false positives that may result from the multiple hypothesis testing, thereby adjusting for any statistical biases due to multiple comparisons. The immune phenotype IgD on IgD+ CD24- B cells demonstrated a statistically significant protective effect against MPN (PFDR = 0.047). Upon adjusting the significance threshold to PFDR < 0.20, 16 immune cell phenotypes were significantly associated with MPN. Among these, 11 were found to exert a protective effect against MPN, 5 phenotypes were associated with an elevated risk of MPN. This research highlights a significant association between various immune cell phenotypes and the risk of developing MPN, thereby advancing our understanding of the intricate interplay between immune cell traits and the progression of MPN.
Collapse
Affiliation(s)
- Yao Wang
- Department of Trauma and Orthopaedic, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Yang Fei
- Department of Hematology and Oncology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
11
|
Wang Z, Du X, Zhang P, Zhao M, Zhang T, Liu J, Wang X, Chang D, Liu X, Bian S, Zhang X, Zhang R. Single-cell transcriptome profiling of m 6A regulator-mediated methylation modification patterns in elderly acute myeloid leukemia patients. MOLECULAR BIOMEDICINE 2024; 5:66. [PMID: 39641872 PMCID: PMC11624184 DOI: 10.1186/s43556-024-00234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Millions of people worldwide die of acute myeloid leukaemia (AML) each year. Although N6-methyladenosine (m6A) modification has been reported to regulate the pathogenicity of AML, the mechanisms by which m6A induces dysfunctional hematopoietic differentiation in elderly AML patients remain elusive. This study elucidates the mechanisms of the m6A landscape and the specific roles of m6A regulators in hematopoietic cells of elderly AML patients. Notably, fat mass and obesity-associated protein (FTO) was found to be upregulated in hematopoietic stem cells (HSCs), myeloid cells, and T-cells, where it inhibits their differentiation via the WNT signaling pathway. Additionally, elevated YT521-B homology domain family proteins 2 (YTHDF2) expression in erythrocytes was observed to negatively regulate differentiation through oxidative phosphorylation, resulting in leukocyte activation. Moreover, IGF2BP2 was significantly upregulated in myeloid cells, contributing to an aberrant chromosomal region and disrupted oxidative phosphorylation. m6A regulators were shown to induce abnormal cell-cell communication within hematopoietic cells, mediating ligand-receptor interactions across various cell types through the HMGB1-mediated pathway, thereby promoting AML progression. External validation was conducted using an independent single-cell RNA sequencing (scRNA-Seq) dataset. The THP-1 and MV411 cell lines were utilized to corroborate the m6A regulator profile; in vitro experiments involving short hairpin RNA (shRNA) targeting FTO demonstrated inhibition of cell proliferation, migration, and oxidative phosphorylation, alongside induction of cell cycle arrest and apoptosis. In summary, these findings suggest that the upregulation of m6A regulators in HSCs, erythrocytes, myeloid cells, and T-cells may contribute to the malignant differentiation observed in AML patients. This research provides novel insights into the pathogenesis of AML in elderly patients and identifies potential therapeutic targets.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xin Du
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Peidong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Meiling Zhao
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Tianbo Zhang
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jiang Liu
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaolan Wang
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Doudou Chang
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaxia Liu
- Department of Hematology, Linfen Central Hospital, Linfen, 041000, China
| | - Sicheng Bian
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xialin Zhang
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Ruijuan Zhang
- Department of Hematology, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
12
|
Liu W, Dou C, Zhang C, Chen P, Zhang S, Wang R, Han Q, Zhao H, Li D. PX-478 induces apoptosis in acute myeloid leukemia under hypoxia by inhibiting the PI3K/AKT/mTOR pathway through downregulation of GBE1. Biochem Pharmacol 2024; 230:116620. [PMID: 39528073 DOI: 10.1016/j.bcp.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy characterized by limited therapeutic options and a pronounced tendency for relapse. PX-478, a novel inhibitor of hypoxia-inducible factor 1-alpha (HIF-1α), has demonstrated antitumor activity across various cancer models, but its specific role in AML remains unexplored. This study aimed to explore the potential target and mechanism of PX-478-induced AML cell apoptosis. First, PX-478 induced AML cell apoptosis in vitro under hypoxia via modulation of the Bcl-2 family and activation of the mitochondria-mediated caspase cascade, exhibiting a concentration-dependent effect. Additionally, in vivo administration of PX-478 led to notable inhibition of subcutaneous AML xenograft growth in mice, coupled with increased tumor cell apoptosis. RNA sequencing and cellular studies revealed downregulation of the PI3K/AKT/mTOR signaling pathway in PX-478-treated cells. Consistently, cellular studies also implicated PI3K/AKT/mTOR pathway in PX-478-induced AML cell apoptosis. Furthermore, by screening for RNA sequencing differential genes and subsequent experimental verification, Glycogen branching enzyme 1 (GBE1) may be involved in PX-478-induced apoptosis in AML cells. We found that inhibiting GBE1 expression in AML cells (siGBE1) led to downregulation of the PI3K/AKT/mTOR pathway and induced apoptosis. In experiments using AML cells with reduced GBE1 expression (shGBE1), PX-478 treatment did not further downregulate the pathway or enhance apoptosis. Re-expression of GBE1 in shGBE1 cells alleviated apoptosis and reduced PX-478- induced apoptosis and pathway downregulation. In conclusion, our findings provide convincing evidence that PX-478 induces apoptosis by inhibiting the PI3K/AKT/mTOR pathway through downregulation of GBE1 in AML cells.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Chunhui Dou
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Ce Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, Shandong, China
| | - Ping Chen
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Shu Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Renxiang Wang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, Shandong, China
| | - Qing Han
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Hongyu Zhao
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| | - Daqi Li
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
13
|
Zhang Y, Ren J, Liao Z, Li X, Zhang C, Huang B, Cao Y, Chen J. Downregulating LKB1 in bone marrow mesenchymal stem cells could inhibit CD4 + T cell proliferation via the PD-1/PD-L1 signaling pathway. Immunobiology 2024; 229:152856. [PMID: 39369651 DOI: 10.1016/j.imbio.2024.152856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Our previous research has shown that LKB1 in amniotic mesenchymal stem cells (MSCs) serves as a vital regulator of regulatory T cell differentiation and T cell proliferation, which may have a similar role in bone marrow MSCs (BMMSCs). Therefore, we investigated the role of LKB1 in BMMSCs for regulating CD4+ T cell proliferation in the bone micro-environment of AML. METHODS RT-PCR was used to assessed LKB1 expression in BMMSCs derived from AML patients and healthy controls. Subsequently, LKB1 was knocked down in the BMMSCs line HS-5 (HS-5-LKB1KD). Co-cultures in vitro were established to analyze the effect of HS-5-LKB1KD on CD4+ T cell. Flow cytometry was employed to measure PD-L1 and CD4+ T cell proliferation levels. Western blot was utilized to detect related proteins. RESULTS The expression of LKB1 in BMMSCs derived from AML patients was decreased. Knockdown of LKB1 in HS-5 resulted in upregulation of PD-L1 expression. Co-culture of peripheral blood CD4+ T cell with HS-5-LKB1KD exhibited reduced CD4+ T cell proliferation compared to co-culture with HS-5-LKB1con. Furthermore, blocking PD-L1 in the co-culture conditions could restore the reduced CD4+ T cell proliferation. Additionally, it was found that upregulation of the Wnt signaling pathway-related proteins following LKB1 knockdown in HS-5, indicating that downregulating LKB1 could promote PD-L1 expression through activation of the Wnt signaling pathway. CONCLUSIONS The decreased expression of LKB1 in BMMSCs may activate the Wnt signaling pathway, leading to increased PD-L1 expression. This inhibited CD4+ T cell proliferation, which might lead to impaired anti-tumor immunity in AML patients and promote AML progression.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Jingyi Ren
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Zhongxian Liao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Xiaoyu Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Chunying Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Bihan Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China.
| | - Jiadi Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, PR China.
| |
Collapse
|
14
|
Niscola P, Gianfelici V, Catalano G, Giovannini M, Mazzone C, Noguera NI, de Fabritiis P. Acute Myeloid Leukemia in Older Patients: From New Biological Insights to Targeted Therapies. Curr Oncol 2024; 31:6632-6658. [PMID: 39590121 PMCID: PMC11592437 DOI: 10.3390/curroncol31110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous blood-related neoplasm that predominantly afflicts older adults with a poor prognosis due to their physical condition and the presence of medical accompanying comorbidities, adverse biological disease features, and suitability for induction intensive chemotherapy and allogenic stem cells transplantation. Recent research into the molecular and biological factors contributing to disease development and progression has led to significant advancements in treatment approaches for older patients with AML. This review article discusses the latest biological and therapeutic developments that are transforming the management of AML in older adults.
Collapse
Affiliation(s)
- Pasquale Niscola
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Valentina Gianfelici
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Gianfranco Catalano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (N.I.N.)
| | - Marco Giovannini
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Carla Mazzone
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (N.I.N.)
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy
| | - Paolo de Fabritiis
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (N.I.N.)
| |
Collapse
|
15
|
Wang X, Wang X, Su J, Wang D, Feng W, Wang X, Lu H, Wang A, Liu M, Xia G. A Dual-Function LipoAraN-E5 Coloaded with N4-Myristyloxycarbonyl-1-β-d-arabinofuranosylcytosine (AraN) and a CXCR4 Antagonistic Peptide (E5) for Blocking the Dissemination of Acute Myeloid Leukemia. ACS NANO 2024; 18:27917-27932. [PMID: 39364559 DOI: 10.1021/acsnano.4c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with a high recurrence rate. The interaction of chemokine receptor 4/chemokine ligand 12 (CXCR4/CXCL12) mediates homing and adhesion of AML cells in bone marrow, leading to minimal residual disease in patients, which brings a hidden danger for future AML recurrence. Ara-C is a nonselective chemotherapeutic agent against AML. Due to its short half-life and severe side effects, a lipid-like Ara-C derivative (AraN) was synthesized and a dual-function LipoAraN-E5 (135 nm, encapsulation efficiency 99%) was developed, which coloaded AraN and E5, a peptide of the CXCR4 antagonist. LipoAraN-E5 effectively improved the uptake, enhanced the inhibition of leukemia cell proliferation, migration, and adhesion to stromal cells in bone marrow, and mobilized the leukemia cells from bone marrow to peripheral blood via interfering with the CXCR4/CXCL12 axis. LipoAraN-E5 prolonged the plasma half-life of AraN (8.31 vs 0.56 h) and was highly enriched in peripheral blood (3.67 vs 0.05 μmol/g at 8 h) and bone marrow (379 vs 148 μmol/g at 24 h). LipoAraN-E5 effectively prevented the infiltration of leukemia cells in peripheral blood, bone marrow, spleen, and liver, prolonged the mice survival, and showed outstanding antineoplastic efficacy with negligible toxicity, which were attributed to the ingenious design of AraN, the use of a liposomal delivery carrier, and the introduction of E5. Our work revealed that LipoAraN-E5 may be a promising nanocandidate against AML.
Collapse
Affiliation(s)
- Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
16
|
Capasso G, Mouawad N, Castronuovo M, Ruggeri E, Visentin A, Trentin L, Frezzato F. Focal adhesion kinase as a new player in the biology of onco-hematological diseases: the starting evidence. Front Oncol 2024; 14:1446723. [PMID: 39281374 PMCID: PMC11392731 DOI: 10.3389/fonc.2024.1446723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase mainly found in the focal adhesion regions of the plasma membrane and it has a crucial role in migration and the remodeling of cellular morphology. FAK is also linked to several aspects of cancer biology, from cytokine production to angiogenesis, drug resistance, invasion, and metastasis, as well as epithelial-to-mesenchymal transition. The gene locus of FAK is frequently amplified in several human tumors, thus causing FAK overexpression in several cancers. Furthermore, FAK can influence extracellular matrix production and exosome secretion through cancer-associated fibroblasts, thus it has an important role in tumor microenvironment regulation. Although the role of FAK in solid tumors is well known, its importance in onco-hematological diseases remains poorly explored. This review collects studies related to FAK significance in onco-hematological diseases and their microenvironments. Overall, the importance of FAK in blood tumors is increasingly evident, but further research is required to confirm it as a new therapeutic target in hematological contexts.
Collapse
Affiliation(s)
- Guido Capasso
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Nayla Mouawad
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Maria Castronuovo
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Edoardo Ruggeri
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Andrea Visentin
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Federica Frezzato
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|