1
|
Hao Y, Zou R, Tao J, Jiang M, Li D. SP1/RNASEH2A accelerates the development of hepatocellular carcinoma by regulating EMT. Heliyon 2023; 9:e18127. [PMID: 37520960 PMCID: PMC10374915 DOI: 10.1016/j.heliyon.2023.e18127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Background The expression level of Ribonuclease H2, subunit A (RNASEH2A) in hepatocellular carcinoma (HCC) has been reported, but the function of RNASEH2A on HCC cells development and the related molecular mechanisms remain unclear. Herein, we intend to explore the upstream regulator of RNASEH2A and its role in the HCC progression. Methods GEPIA website was employed to determine the level of RNASEH2A in HCC tissues and get a survival analysis. After reducing RNASEH2A expression by RNA interference, cell counting kit-8, colony formation, Western blot, Transwell and wound healing assays were performed to estimate the malignant properties of HCC cells. The transcriptional factor of RNASEH2A was predicted by UCSC and JASPAR database and confirmed by dual luciferase assay and Ch-IP assay. The expression level of EMT pathway related molecules was determined by western blotting. Results An increased expression of RNASEH2A was presented in HCC and predicted worse prognosis of HCC patients. Functionally, the results demonstrated that depletion of RNASEH2A suppressed HCC cell proliferation, cell cycle, migration and invasion. Moreover, we illustrated that SP1 targeted to the promoter of RNASEH2A and modulated its expression in HCC cell lines. RNASEH2A knockdown counteracted the function of SP1 overexpression in modulating HCC cell growth, cell cycle, and mobility. Then, our data showed that the SP1/RNASEH2A axis affected the malignant behaviors of HCC cells by regulating EMT process. Conclusions In summary, these results demonstrated that RNASEH2A promoted HCC cells development through regulating EMT process and was transcriptionally modulated by SP1.
Collapse
Affiliation(s)
- Yunhe Hao
- Department of Hepatobiliary Surgery, Hainan Cancer Hospital, No. 9 West 4th Changbin Street, Xiuying District, Haikou, 570100, Hainan, China
| | - Rui Zou
- Department of Hepatobiliary Surgery, Hainan Cancer Hospital, No. 9 West 4th Changbin Street, Xiuying District, Haikou, 570100, Hainan, China
| | - Jiashou Tao
- Department of Hepatobiliary Surgery, Hainan Cancer Hospital, No. 9 West 4th Changbin Street, Xiuying District, Haikou, 570100, Hainan, China
| | - Manfei Jiang
- Department of Hepatobiliary Surgery, Hainan Cancer Hospital, No. 9 West 4th Changbin Street, Xiuying District, Haikou, 570100, Hainan, China
| | - Duo Li
- Department of Hepatobiliary Surgery, Hainan Cancer Hospital, No. 9 West 4th Changbin Street, Xiuying District, Haikou, 570100, Hainan, China
| |
Collapse
|
2
|
Liu X, Sun C, Wang Q, Li P, Zhao T, Li Q. Sp1 Upregulation Bolsters the Radioresistance of Glioblastoma Cells by Promoting Double Strand Breaks Repair. Int J Mol Sci 2023; 24:10658. [PMID: 37445835 PMCID: PMC10342049 DOI: 10.3390/ijms241310658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Radioresistance remains a critical obstacle in the clinical management of glioblastoma (GBM) by radiotherapy. Therefore, it is necessary to explore the molecular mechanisms underlying radioresistance to improve patient response to radiotherapy and increase the treatment efficacy. The present study aimed to elucidate the role of specificity protein 1 (Sp1) in the radioresistance of GBM cells. Different human GBM cell lines and tumor-bearing mice were exposed to ionizing radiation (IR). Cell survival was determined by the colony formation assay. The expression of genes and proteins in the cells and tissues was analyzed by RT-PCR and western blotting, respectively. The γ-H2AX, p-Sp1 and dependent protein kinase catalytic subunit (DNA-PKcs phospho S2056) foci were analyzed by immunofluorescence. Apoptotic rates were measured by flow cytometry. Sp1 was upregulated after IR in vitro and in vivo and knocking down Sp1-sensitized GBM cells to IR. Sp1 activated the DNA-PKcs promoter and increased its expression and activity. Furthermore, the loss of Sp1 delayed double-strand breaks (DSB) repair and increased IR-induced apoptosis of GBM cells. Taken together, IR upregulates Sp1 expression in GBM cells, enhancing the activity of DNA-PKcs and promoting IR-induced DSB repair, thereby leading to increased radioresistance.
Collapse
Affiliation(s)
- Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiqi Wang
- College of Life Science, Northwest Normal University, Lanzhou 730030, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
miR-145-5p Targets Sp1 in Non-Small Cell Lung Cancer Cells and Links to BMI1 Induced Pemetrexed Resistance and Epithelial-Mesenchymal Transition. Int J Mol Sci 2022; 23:ijms232315352. [PMID: 36499676 PMCID: PMC9741456 DOI: 10.3390/ijms232315352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Pemetrexed is a folic acid inhibitor used as a second-line chemotherapeutic agent for the treatment of locally advanced or metastatic non-small cell lung cancer (NSCLC), which accounts for 85% of lung cancers. However, prolonged treatment with pemetrexed may cause cancer cells to develop resistance. In this study, we found increased expressions of BMI1 (B Lymphoma Mo-MLV insertion region 1 homolog) and Sp1 and a decreased expression of miR-145-5p was found in pemetrexed-resistant A400 cells than in A549 cells. Direct Sp1 targeting activity of miR-145-5p was demonstrated by a luciferase based Sp1 3'-UTR reporter. Changed expression of miR-145-5p in A400 or A549 cells by transfection of miR-145-5p mimic or inhibitor affected the sensitivity of the cells to pemetrexed. On the other hand, the overexpression of Sp1 in A549 cells caused the decreased sensitivity to pemetrexed, induced cell migratory capability, and epithelial-mesenchymal transition (EMT) related transcription factors such as Snail Family Transcriptional Repressor 1 and Zinc Finger E-Box Binding Homeobox 1. In addition, the overexpression of BMI1 in the A549 cells resulted in an increase in Sp1 and a decrease in miR-145-5p accompanied by the elevations of cell proliferation and EMT transcription factors, which could be reduced by the overexpression of miR-145-5p or by treatment with the Sp1 inhibitor of mithramycin A. In conclusion, the results of this study suggest that the downregulation of miR-145-5p by BMI1 overexpression could lead to the enhanced expression of Sp1 to induce the EMT process in pemetrexed-resistant NSCLC cells. These results suggest that increasing miR-145-5p expression by delivering RNA drugs may serve as a sensitizing agent for pemetrexed-resistant NSCLC patients.
Collapse
|
4
|
Exploring the Novel Computational Drug Target and Associated Key Pathways of Oral Cancer. Curr Issues Mol Biol 2022; 44:3552-3572. [PMID: 36005140 PMCID: PMC9406749 DOI: 10.3390/cimb44080244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Oral cancer (OC) is a serious health concern that has a high fatality rate. The oral cavity has seven kinds of OC, including the lip, tongue, and floor of the mouth, as well as the buccal, hard palate, alveolar, retromolar trigone, and soft palate. The goal of this study is to look into new biomarkers and important pathways that might be used as diagnostic biomarkers and therapeutic candidates in OC. The publicly available repository the Gene Expression Omnibus (GEO) was to the source for the collection of OC-related datasets. GSE74530, GSE23558, and GSE3524 microarray datasets were collected for analysis. Minimum cut-off criteria of |log fold-change (FC)| > 1 and adjusted p < 0.05 were applied to calculate the upregulated and downregulated differential expression genes (DEGs) from the three datasets. After that only common DEGs in all three datasets were collected to apply further analysis. Gene ontology (GO) and pathway analysis were implemented to explore the functional behaviors of DEGs. Then protein−protein interaction (PPI) networks were built to identify the most active genes, and a clustering algorithm was also implemented to identify complex parts of PPI. TF-miRNA networks were also constructed to study OC-associated DEGs in-depth. Finally, top gene performers from PPI networks were used to apply drug signature analysis. After applying filtration and cut-off criteria, 2508, 3377, and 670 DEGs were found for GSE74530, GSE23558, and GSE3524 respectively, and 166 common DEGs were found in every dataset. The GO annotation remarks that most of the DEGs were associated with the terms of type I interferon signaling pathway. The pathways of KEGG reported that the common DEGs are related to the cell cycle and influenza A. The PPI network holds 88 nodes and 492 edges, and CDC6 had the highest number of connections. Four clusters were identified from the PPI. Drug signatures doxorubicin and resveratrol showed high significance according to the hub genes. We anticipate that our bioinformatics research will aid in the definition of OC pathophysiology and the development of new therapies for OC.
Collapse
|
5
|
Meharena HS, Marco A, Dileep V, Lockshin ER, Akatsu GY, Mullahoo J, Watson LA, Ko T, Guerin LN, Abdurob F, Rengarajan S, Papanastasiou M, Jaffe JD, Tsai LH. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell 2022; 29:116-130.e7. [PMID: 34995493 PMCID: PMC8805993 DOI: 10.1016/j.stem.2021.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/30/2021] [Accepted: 12/09/2021] [Indexed: 01/09/2023]
Abstract
Down syndrome (DS) is a genetic disorder driven by the triplication of chromosome 21 (T21) and characterized by a wide range of neurodevelopmental and physical disabilities. Transcriptomic analysis of tissue samples from individuals with DS has revealed that T21 induces a genome-wide transcriptional disruption. However, the consequences of T21 on the nuclear architecture and its interplay with the transcriptome remain unknown. In this study, we find that unlike human induced pluripotent stem cells (iPSCs), iPSC-derived neural progenitor cells (NPCs) exhibit genome-wide "chromosomal introversion," disruption of lamina-associated domains, and global chromatin accessibility changes in response to T21, consistent with the transcriptional and nuclear architecture changes characteristic of senescent cells. Treatment of T21-harboring NPCs with senolytic drugs alleviates the transcriptional, molecular, and cellular dysfunctions associated with DS. Our findings provide a mechanistic link between T21 and global transcriptional disruption and indicate that senescence-associated phenotypes may play a key role in the neurodevelopmental pathogenesis of DS.
Collapse
Affiliation(s)
- Hiruy S. Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| | - Asaf Marco
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elana R. Lockshin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace Y. Akatsu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James Mullahoo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - L. Ashley Watson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lindsey N. Guerin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fatema Abdurob
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shruthi Rengarajan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Jacob D. Jaffe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| |
Collapse
|
6
|
Hu D, Shao W, Liu L, Wang Y, Yuan S, Liu Z, Liu J, Zhang J. Intricate crosstalk between MYB and noncoding RNAs in cancer. Cancer Cell Int 2021; 21:653. [PMID: 34876130 PMCID: PMC8650324 DOI: 10.1186/s12935-021-02362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
MYB is often overexpressed in malignant tumors and plays a carcinogenic role in the initiation and development of cancer. Deletion of the MYB regulatory C-terminal domain may be a driving mutation leading to tumorigenesis, therefore, different tumor mechanisms produce similar MYB proteins. As MYB is a transcription factor, priority has been given to identifying the genes that it regulates. All previous attention has been focused on protein-coding genes. However, an increasing number of studies have suggested that MYB can affect the complexity of cancer progression by regulating tumor-associated noncoding RNAs (ncRNAs), such as microRNAs, long-non-coding RNAs and circular RNAs. ncRNAs can regulate the expression of numerous downstream genes at the transcription, RNA processing and translation levels, thereby having various biological functions. Additionally, ncRNAs play important roles in regulating MYB expression. This review focuses on the intricate crosstalk between oncogenic MYB and ncRNAs, which play a pivotal role in tumorigenesis, including proliferation, apoptosis, angiogenesis, metastasis, senescence and drug resistance. In addition, we discuss therapeutic strategies for crosstalk between MYB and ncRNAs to prevent the occurrence and development of cancer.
Collapse
Affiliation(s)
- Dingyu Hu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjun Shao
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yanyan Wang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shunling Yuan
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
7
|
Almeida TC, Seibert JB, Amparo TR, de Souza GHB, da Silva GN, Dos Santos DH. Modulation of Long Non-Coding RNAs by Different Classes of Secondary Metabolites from Plants: A Mini-Review on Antitumor Effects. Mini Rev Med Chem 2021; 22:1232-1255. [PMID: 34720079 DOI: 10.2174/1389557521666211101161548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinical-pathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.
Collapse
Affiliation(s)
- Tamires Cunha Almeida
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Tatiane Roquete Amparo
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Glenda Nicioli da Silva
- Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | |
Collapse
|
8
|
Horvath S, Zoller JA, Haghani A, Lu AT, Raj K, Jasinska AJ, Mattison JA, Salmon AB. DNA methylation age analysis of rapamycin in common marmosets. GeroScience 2021; 43:2413-2425. [PMID: 34482522 PMCID: PMC8599537 DOI: 10.1007/s11357-021-00438-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Human DNA methylation data have previously been used to develop highly accurate biomarkers of aging ("epigenetic clocks"). Subsequent studies demonstrate that similar epigenetic clocks can also be developed for mice and many other mammals. Here, we describe epigenetic clocks for common marmosets (Callithrix jacchus) based on novel DNA methylation data generated from highly conserved mammalian CpGs that were profiled using a custom Infinium array (HorvathMammalMethylChip40). From these, we developed and present here two epigenetic clocks for marmosets that are applicable to whole blood samples. We find that the human-marmoset clock for relative age exhibits moderately high age correlations in two other non-human primate species: vervet monkeys and rhesus macaques. In a separate cohort of marmosets, we tested whether intervention with rapamycin, a drug shown to extend lifespan in mice, would alter the epigenetic age of marmosets, as measured by the marmoset epigenetic clocks. These clocks did not detect significant effects of rapamycin on the epigenetic age of marmoset blood. The common marmoset stands out from other mammals in that it is not possible to build accurate estimators of sex based on DNA methylation data: the accuracy of a random forest predictor of sex (66%) was substantially lower than that observed for other mammals (which is close to 100%). Overall, the epigenetic clocks developed here for the common marmoset are expected to be useful for age estimation of wild-born animals and for anti-aging studies in this species.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Dickerson, MD USA
| | - Adam B. Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, and Department of Molecular Medicine, UT Health San Antonio, and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX USA
| |
Collapse
|
9
|
Epigenetic clock and methylation studies in vervet monkeys. GeroScience 2021; 44:699-717. [PMID: 34591235 PMCID: PMC9135907 DOI: 10.1007/s11357-021-00466-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets.
Collapse
|
10
|
Citron F, Segatto I, Musco L, Pellarin I, Rampioni Vinciguerra GL, Franchin G, Fanetti G, Miccichè F, Giacomarra V, Lupato V, Favero A, Concina I, Srinivasan S, Avanzo M, Castiglioni I, Barzan L, Sulfaro S, Petrone G, Viale A, Draetta GF, Vecchione A, Belletti B, Baldassarre G. miR-9 modulates and predicts the response to radiotherapy and EGFR inhibition in HNSCC. EMBO Mol Med 2021; 13:e12872. [PMID: 34062049 PMCID: PMC8261495 DOI: 10.15252/emmm.202012872] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) plus the anti-EGFR monoclonal antibody Cetuximab (CTX) is an effective combination therapy for a subset of head and neck squamous cell carcinoma (HNSCC) patients. However, predictive markers of efficacy are missing, resulting in many patients treated with disappointing results and unnecessary toxicities. Here, we report that activation of EGFR upregulates miR-9 expression, which sustains the aggressiveness of HNSCC cells and protects from RT-induced cell death. Mechanistically, by targeting KLF5, miR-9 regulates the expression of the transcription factor Sp1 that, in turn, stimulates tumor growth and confers resistance to RT+CTX in vitro and in vivo. Intriguingly, high miR-9 levels have no effect on the sensitivity of HNSCC cells to cisplatin. In primary HNSCC, miR-9 expression correlated with Sp1 mRNA levels and high miR-9 expression predicted poor prognosis in patients treated with RT+CTX. Overall, we have discovered a new signaling axis linking EGFR activation to Sp1 expression that dictates the response to combination treatments in HNSCC. We propose that miR-9 may represent a valuable biomarker to select which HNSCC patients might benefit from RT+CTX therapy.
Collapse
Affiliation(s)
- Francesca Citron
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ilenia Segatto
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Lorena Musco
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Ilenia Pellarin
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Gian Luca Rampioni Vinciguerra
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
- Faculty of Medicine and PsychologyDepartment of Clinical and Molecular MedicineUniversity of Rome “Sapienza”Santo Andrea HospitalRomeItaly
| | - Giovanni Franchin
- Oncologic Radiotherapy UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Giuseppe Fanetti
- Oncologic Radiotherapy UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Francesco Miccichè
- Università Cattolica del Sacro CuoreFondazione Policlinico Universitario Agostino GemelliPolo Scienze Oncologiche ed EmatologicheRomeItaly
| | - Vittorio Giacomarra
- Division of OtorhinolaryngologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Valentina Lupato
- Division of OtorhinolaryngologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Andrea Favero
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Isabella Concina
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Sanjana Srinivasan
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Michele Avanzo
- Medical Physics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and PhysiologyNational Research Council (IBFM‐CNR)MilanItaly
- Department of PhysicsUniversità degli Studi di Milano‐BicoccaMilanItaly
| | - Luigi Barzan
- Division of OtorhinolaryngologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Sandro Sulfaro
- Division of PathologyAzienda Ospedaliera Santa Maria degli AngeliPordenoneItaly
| | - Gianluigi Petrone
- Università Cattolica del Sacro CuoreFondazione Policlinico Universitario Agostino GemelliPolo Scienze Oncologiche ed EmatologicheRomeItaly
- Present address:
Centro Diagnostica MINERVARomeItaly
| | - Andrea Viale
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Giulio F Draetta
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Andrea Vecchione
- Faculty of Medicine and PsychologyDepartment of Clinical and Molecular MedicineUniversity of Rome “Sapienza”Santo Andrea HospitalRomeItaly
| | - Barbara Belletti
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| | - Gustavo Baldassarre
- Molecular Oncology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSNational Cancer InstituteAvianoItaly
| |
Collapse
|
11
|
Dai Z, Liu P. High copy number variations, particular transcription factors, and low immunity contribute to the stemness of prostate cancer cells. J Transl Med 2021; 19:206. [PMID: 33985534 PMCID: PMC8117623 DOI: 10.1186/s12967-021-02870-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background Tumor metastasis is the main cause of death of cancer patients, and cancer stem cells (CSCs) is the basis of tumor metastasis. However, systematic analysis of the stemness of prostate cancer cells is still not abundant. In this study, we explore the effective factors related to the stemness of prostate cancer cells by comprehensively mining the multi-omics data from TCGA database. Methods Based on the prostate cancer transcriptome data in TCGA, gene expression modules that strongly relate to the stemness of prostate cancer cells are obtained with WGCNA and stemness scores. Copy number variation of stemness genes of prostate cancer is calculated and the difference of transcription factors between prostate cancer and normal tissues is evaluated by using CNV (copy number variation) data and ATAC-seq data. The protein interaction network of stemness genes in prostate cancer is constructed using the STRING database. Meanwhile, the correlation between stemness genes of prostate cancer and immune cells is analyzed. Results Prostate cancer with higher Gleason grade possesses higher cell stemness. The gene set highly related to prostate cancer stemness has higher CNV in prostate cancer samples than that in normal samples. Although the transcription factors of stemness genes have similar expressions, they have different contributions between normal and prostate cancer tissues; and particular transcription factors enhance the stemness of prostate cancer, such as PUM1, CLOCK, SP1, TCF12, and so on. In addition, the lower tumor immune microenvironment is conducive to the stemness of prostate cancer. CD8 + T cells and M1 macrophages may play more important role in the stemness of prostate cancer than other immune cells in the tumor microenvironment. Finally, EZH2 is found to play a central role in stemness genes and is negatively correlated with resting mast cells and positively correlated with activated memory CD4 + T cells. Conclusions Based on the systematic and combined analysis of multi-omics data, we find that high copy number variation, specific transcription factors, and low immune microenvironment jointly contribute to the stemness of prostate cancer cells. These findings may provide us new clues and directions for the future research on stemness of prostate cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02870-x.
Collapse
Affiliation(s)
- Zao Dai
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ping Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Khader N, Shchuka VM, Shynlova O, Mitchell JA. Transcriptional control of parturition: insights from gene regulation studies in the myometrium. Mol Hum Reprod 2021; 27:gaab024. [PMID: 33823545 PMCID: PMC8126590 DOI: 10.1093/molehr/gaab024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
The onset of labour is a culmination of a series of highly coordinated and preparatory physiological events that take place throughout the gestational period. In order to produce the associated contractions needed for foetal delivery, smooth muscle cells in the muscular layer of the uterus (i.e. myometrium) undergo a transition from quiescent to contractile phenotypes. Here, we present the current understanding of the roles transcription factors play in critical labour-associated gene expression changes as part of the molecular mechanistic basis for this transition. Consideration is given to both transcription factors that have been well-studied in a myometrial context, i.e. activator protein 1, progesterone receptors, oestrogen receptors, and nuclear factor kappa B, as well as additional transcription factors whose gestational event-driving contributions have been demonstrated more recently. These transcription factors may form pregnancy- and labour-associated transcriptional regulatory networks in the myometrium to modulate the timing of labour onset. A more thorough understanding of the transcription factor-mediated, labour-promoting regulatory pathways holds promise for the development of new therapeutic treatments that can be used for the prevention of preterm labour in at-risk women.
Collapse
Affiliation(s)
- Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Virlana M Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, ON, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Singh A, Gupta A, Chowdhary M, Brahmbhatt HD. Integrated analysis of miRNA-mRNA networks reveals a strong anti-skin cancer signature in vitiligo epidermis. Exp Dermatol 2021; 30:1309-1319. [PMID: 33682215 DOI: 10.1111/exd.14317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Expression of microRNAs (miRNAs) is often dysregulated in several cancers, including non-melanoma skin cancer (NMSC). Individuals with vitiligo possess a deregulated miRnome along with a lower risk of developing NMSCs. We used data sets from our previously published studies on vitiligo epidermis to construct functional miRNA-mRNA networks to understand the molecular basis underlying the lower incidence of NMSC observed in individuals with vitiligo. miRTarBase database was used to fetch the experimentally validated targets of differentially expressed miRNAs and two protein-protein interaction (PPI) networks were constructed for the miRNA-mRNA interactions (230 downregulated targets of 5 upregulated miRNAs and 47 upregulated mRNAs targeted by 12 downregulated miRNAs). Pathway enrichment analysis identified RNA biogenesis and transport as well as cell adhesion to be perturbed in vitiligo. Further, oncogenic transcription factors (OTFs) that were upregulated in publicly available squamous cell carcinoma (SCC) or basal cell carcinoma (BCC) microarray data were compared with that of vitiligo to decode skin cancer-specific molecular signatures. We identified three significantly upregulated miRNAs, miR-31-5p, miR-31-3p and miR-194-3p in lesional epidermis that could negatively regulate seven oncogenic transcription factors, FOXC1, AR, SP1, YY1, GLI2, TP53 and RARA, known to be over-expressed in SCC or BCC. Taken together, our study identified a perturbed miRNA-regulated transcriptome, which potentially confers protection to vitiligo skin from an increased incidence of NMSC.
Collapse
Affiliation(s)
- Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aayush Gupta
- Dr. D. Y. Patil Medical College, Pune, Maharashtra, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hemang D Brahmbhatt
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Jin H, Liang G, Yang L, Liu L, Wang B, Yan F. SP1-induced AFAP1-AS1 contributes to proliferation and invasion by regulating miR-497-5p/CELF1 pathway in nasopharyngeal carcinoma. Hum Cell 2021; 34:491-501. [PMID: 33400247 DOI: 10.1007/s13577-020-00475-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma is a type of otolaryngological malignancy with high incidence. Long non-coding RNAs (lncRNAs) are closely related to nasopharyngeal carcinoma. LncRNA AFAP1-AS1 (AFAP1-AS1) has been found to play important roles in nasopharyngeal carcinoma progression and poor prognosis. However, the mechanism underlying AFAP1-AS1 in regulating nasopharyngeal carcinoma is still unclear. In current study, AFAP1-AS1 was found to be up-regulated in nasopharyngeal carcinoma tissues and cells. AFAP1-AS1 overexpression and knockdown were conducted in nasopharyngeal carcinoma cells. The results proved that AFAP1-AS1 promoted the survival and migration of nasopharyngeal carcinoma cells. Additionally, specificity protein 1 (SP1) was enhanced in nasopharyngeal carcinoma tissues and cells, and induced AFAP1-AS1 expression. The interaction between AFAP1-AS1 and miR-497-5p was confirmed. AFAP1-AS1 was demonstrated to regulate CELF1, a target gene of miR-497-5p. Further functional analysis revealed that AFAP1-AS1 knockdown attenuated SP1-induced nasopharyngeal carcinoma progression. These results indicate that SP1-induced AFAP1-AS1 facilitates nasopharyngeal carcinoma progression by regulating miR-497-5p/CELF1 pathway, which provides a new target for nasopharyngeal carcinoma treatment.
Collapse
Affiliation(s)
- Hui Jin
- Department of Otolaryngology, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Gengtian Liang
- Department of Otolaryngology, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Liping Yang
- Department of Otolaryngology, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Li Liu
- Department of Otolaryngology, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Binru Wang
- Department of Otolaryngology, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Fengqin Yan
- Department of Head and Neck Radiation Therapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 Banshan Road, Gongshu District, Hangzhou, 310021, Zhejiang, China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
15
|
Gao Y, Gan K, Liu K, Xu B, Chen M. SP1 Expression and the Clinicopathological Features of Tumors: A Meta-Analysis and Bioinformatics Analysis. Pathol Oncol Res 2021; 27:581998. [PMID: 34257529 PMCID: PMC8262197 DOI: 10.3389/pore.2021.581998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022]
Abstract
Objective: Specificity protein 1 (SP1) plays a vital role to promote carcinogenesis in a variety of tumors, and its up-regulated expression is reported to be a hinter of poor prognosis of patients. We conducted this meta-analysis to elucidate the clinical significance and prognostic value of SP1 in malignant tumors. Methods: PubMed and Cochrane Library were searched for studies published between January 1, 2000 and June 1, 2020. The combined odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to investigate the correlation of SP1 with clinical behaviors and prognosis in patients with solid tumors. UALCAN was used to conduct bioinformatics analysis. Results: A total of 24 documents involving 2,739 patients were enrolled in our review. The random-effect model was used to perform this analysis due to the high level of heterogeneity. SP1 low expression was not conducive to lymph node metastasis (OR = 0.42; 95% CI: 0.28-0.64; p < 0.05), progression of TNM stage (OR = 0.34; 95% CI: 0.20-0.57; p < 0.05) and tumor infiltration (OR = 0.33; 95% CI: 0.18-0.60; p < 0.05). Elevated SP1 expression was connected with shorter survival time of patients with hepatocellular carcinoma, pancreatic cancer, gastric cancer and esophageal cancer (HR = 1.95; 95% CI: 1.16-3.28; p < 0.05). According to UALCAN database, breast cancer, ovarian cancer, colon cancer and lung adenocarcinoma display an elevated SP1 expression in comparison with normal tissues. Kaplan-Meier survival plots indicate SP1 mRNA level has negative effects on prognosis of liver hepatocellular carcinoma and brain lower grade glioma. Conclusion: SP1 was associated with lymph node metastasis, TNM stage and depth of invasion, and indicated poor clinical outcome, which brought new insights on the potential candidacy of SP1 in clinical usage.
Collapse
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Kai Gan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Kuangzheng Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Liu W, Zou J, Ren R, Liu J, Zhang G, Wang M. A Novel 10-Gene Signature Predicts Poor Prognosis in Low Grade Glioma. Technol Cancer Res Treat 2021; 20:1533033821992084. [PMID: 33550903 PMCID: PMC7876581 DOI: 10.1177/1533033821992084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022] Open
Abstract
AIM Low grade glioma (LGG) is a lethal brain cancer with relatively poor prognosis in young adults. Thus, this study was performed to develop novel molecular biomarkers to effectively predict the prognosis of LGG patients and finally guide treatment decisions. METHODS survival-related genes were determined by Kaplan-Meier survival analysis and multivariate Cox regression analysis using the expression and clinical data of 506 LGG patients from The Cancer Genome Atlas (TCGA) database and independently validated in a Chinese Glioma Genome Atlas (CGGA) dataset. A prognostic risk score was established based on a linear combination of 10 gene expression levels using the regression coefficients of the multivariate Cox regression models. GSEA was performed to analyze the altered signaling pathways between the high and low risk groups stratified by median risk score. RESULTS We identified a total of 1489 genes significantly correlated with patients' prognosis in LGG. The top 5 protective genes were DISP2, CKMT1B, AQP7, GPR162 and CHGB, the top 5 risk genes were SP1, EYA3, ZSCAN20, ITPRIPL1 and ZNF217 in LGG. The risk score was predictive of poor overall survival and relapse-free survival in LGG patients. Pathways of small cell lung cancer, pathways in cancer, chronic myeloid leukemia, colorectal cancer were the top 4 most enriched pathways in the high risk group. SP1, EYA3, ZSCAN20, ITPRIPL1, ZNF217 and GPR162 were significantly up-regulated, while DISP2, CKMT1B, AQP7 were down-regulated in 523 LGG tissues as compared to 1141 normal brain controls. CONCLUSIONS The 10-gene signature may become novel prognostic and diagnostic biomarkers to considerably improve the prognostic prediction in LGG.
Collapse
Affiliation(s)
- Wentao Liu
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Jiaxuan Zou
- Fuzhou Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Rijun Ren
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Jingping Liu
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Gentang Zhang
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| | - Maokai Wang
- Department of Neurosurgery, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong Province, China
| |
Collapse
|
17
|
Zhu H, Wang S, Shen H, Zheng X, Xu X. SP1/AKT/FOXO3 Signaling Is Involved in miR-362-3p-Mediated Inhibition of Cell-Cycle Pathway and EMT Progression in Renal Cell Carcinoma. Front Cell Dev Biol 2020; 8:297. [PMID: 32432112 PMCID: PMC7214730 DOI: 10.3389/fcell.2020.00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence has indicated that dysregulation of miR-362-3p is involved in the initiation and progression of several types of human cancers. However, the molecular mechanism of miR-362-3p in renal cell carcinoma (RCC) is still not completely clear. In this study, we found that miR-362-3p was frequently down-regulated in human RCC tissues. Overexpression of miR-362-3p in RCC cells significantly suppressed the proliferation, cell cycle and motility in vitro and in vivo via regulating AKT/FOXO3 signaling. We further confirmed that SP1 was a direct target of miR-362-3p. Knockdown of SP1 expression by a small interfering RNA (siRNA) phenocopied the effect of miR-362-3p overexpression in RCC cells. In conclusion, the current results provide evidence for the role of miR-362-3p in the pathogenesis of RCC and thus miR-362-3p may serve as an attractive candidate for RCC therapy.
Collapse
Affiliation(s)
- Hejia Zhu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Song Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haixiang Shen
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangyi Zheng
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Shen L, Hong X, Liu Y, Zhou W, Zhang Y. The miR-25-3p/Sp1 pathway is dysregulated in ovarian endometriosis. J Int Med Res 2020; 48:300060520918437. [PMID: 32299271 PMCID: PMC7169359 DOI: 10.1177/0300060520918437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
Objective The transcription factor Specificity protein 1 (Sp1) plays important roles in many critical biological functions; however, its expression and underlying functions in endometriosis remain undefined. Bioinformatics has suggested that Sp1 is potentially regulated by miR-25-3p. This study investigated Sp1 and miR-25-3p expression and their interaction during the pathogenesis of endometriosis. Methods Fifteen women with American Fertility Society stage III/IV ovarian endometriosis and 14 disease-free controls were included. Sp1 expression was detected by qPCR, immunohistochemistry, and western blotting. Using both bioinformatics and genetics, we identified that Sp1 was a potential target of miR-25-3p. Then, the relationship between miR-25-3p and Sp1 was investigated by knockdown and overexpression experiments. Results Sp1 mRNA and protein levels were increased in ectopic and eutopic endometrium compared with normal endometrium samples, with the highest expression in ectopic endometrium samples. In vitro experiments and luciferase reporter assays demonstrated that Sp1 was upregulated when miR-25-3p was depleted and that Sp1 was a direct target of miR-25-3p, respectively. Conclusions Our study revealed increased Sp1 expression in ovarian endometriosis and subsequently demonstrated that miR-25-3p directly targets Sp1. This suggests a novel miRNA/Sp1 pathway in the pathogenesis of endometriosis, which should be further explored for other potential therapeutic targets.
Collapse
Affiliation(s)
- Licong Shen
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, P. R. China
| | - Xiaxia Hong
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, P. R. China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, P. R. China
| | - Wenjun Zhou
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, P. R. China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, P. R. China
| |
Collapse
|
19
|
Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and Indirect Targeting of HOXA9 Transcription Factor in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060837. [PMID: 31213012 PMCID: PMC6627208 DOI: 10.3390/cancers11060837] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
HOXA9 (Homeobox A9) is a homeotic transcription factor known for more than two decades to be associated with leukemia. The expression of HOXA9 homeoprotein is associated with anterior-posterior patterning during embryonic development, and its expression is then abolished in most adult cells, with the exception of hematopoietic progenitor cells. The oncogenic function of HOXA9 was first assessed in human acute myeloid leukemia (AML), particularly in the mixed-phenotype associated lineage leukemia (MPAL) subtype. HOXA9 expression in AML is associated with aggressiveness and a poor prognosis. Since then, HOXA9 has been involved in other hematopoietic malignancies and an increasing number of solid tumors. Despite this, HOXA9 was for a long time not targeted to treat cancer, mainly since, as a transcription factor, it belongs to a class of protein long considered to be an "undruggable" target; however, things have now evolved. The aim of the present review is to focus on the different aspects of HOXA9 targeting that could be achieved through multiple ways: (1) indirectly, through the inhibition of its expression, a strategy acting principally at the epigenetic level; or (2) directly, through the inhibition of its transcription factor function by acting at either the protein/protein interaction or the protein/DNA interaction interfaces.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Meryem Alioui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Samy Jambon
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Sabine Depauw
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Isabelle Van Seuningen
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
| | - Marie-Hélène David-Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| |
Collapse
|
20
|
ROR1-targeted delivery of miR-29b induces cell cycle arrest and therapeutic benefit in vivo in a CLL mouse model. Blood 2019; 134:432-444. [PMID: 31151986 DOI: 10.1182/blood.2018882290] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) occurs in 2 major forms: aggressive and indolent. Low miR-29b expression in aggressive CLL is associated with poor prognosis. Indiscriminate miR-29b overexpression in the B-lineage of mice causes aberrance, thus warranting the need for selective introduction of miR-29b into B-CLL cells for therapeutic benefit. The oncofetal antigen receptor tyrosine kinase orphan receptor 1 (ROR1) is expressed on malignant B-CLL cells, but not normal B cells, encouraging us with ROR1-targeted delivery for therapeutic miRs. Here, we describe targeted delivery of miR-29b to ROR1+ CLL cells leading to downregulation of DNMT1 and DNMT3A, modulation of global DNA methylation, decreased SP1, and increased p21 expression in cell lines and primary CLL cells in vitro. Furthermore, using an Eμ-TCL1 mouse model expressing human ROR1, we report the therapeutic benefit of enhanced survival via cellular reprograming by downregulation of DNMT1 and DNMT3A in vivo. Gene expression profiling of engrafted murine leukemia identified reprogramming of cell cycle regulators with decreased SP1 and increased p21 expression after targeted miR-29b treatment. This finding was confirmed by protein modulation, leading to cell cycle arrest and survival benefit in vivo. Importantly, SP1 knockdown results in p21-dependent compensation of the miR-29b effect on cell cycle arrest. These studies form a basis for leukemic cell-targeted delivery of miR-29b as a promising therapeutic approach for CLL and other ROR1+ B-cell malignancies.
Collapse
|
21
|
Zhang H, Jiang S, Guo L, Li X. MicroRNA-1258, regulated by c-Myb, inhibits growth and epithelial-to-mesenchymal transition phenotype via targeting SP1 in oral squamous cell carcinoma. J Cell Mol Med 2019; 23:2813-2821. [PMID: 30734471 PMCID: PMC6433684 DOI: 10.1111/jcmm.14189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 01/05/2023] Open
Abstract
The biological function and underlying mechanism of miR-1258 has seldom been investigated in cancer progression, including in oral squamous cell carcinoma (OSCC). In the current study, we revealed that the expression level of miR-1258 was significantly down-regulated in OSCC tissues and cell lines. Restoration of miR-1258 decreased OSCC cell growth and invasion. The luciferase and Western blot assays revealed that SP1 protein was a downstream target of miR-1258. Overexpression of SP1 dismissed miR-1258's effect on cell growth and invasion. We also revealed that c-Myb inhibited miR-1258 by directly binding at its promoter. In addition, miR-1258 inhibited PI3K/AKT and ERK signalling pathway activity. Taken together, these findings demonstrated that miR-1258 may function as a tumour-suppressive micorRNA in OSCC and suggested that miR-1258 may be a potential therapeutic target for OSCC patients.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Medical OncologyGuangdong General Hospital and Guangdong Academy of Medical SciencesGuangzhouChina
| | - Sui Jiang
- Department of Oral and Maxillofacial SurgeryGuangdong General Hospital and Guangdong Academy of Medical SciencesGuangzhouChina
| | - Longbin Guo
- Department of Operation RoomAffiliated Cancer Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xi Li
- Department of Thyroid and Breast SurgeryThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
22
|
Li Y, Ju K, Wang W, Liu Z, Xie H, Jiang Y, Jiang G, Lu J, Dong Z, Tang F. Dinitrosopiperazine-decreased PKP3 through upregulating miR-149 participates in nasopharyngeal carcinoma metastasis. Mol Carcinog 2018; 57:1763-1779. [PMID: 30144176 PMCID: PMC6282612 DOI: 10.1002/mc.22895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) has a high metastatic clinicopathological feature. As a carcinogen factor, N,N'-dinitrosopiperazine (DNP) is involved in NPC metastasis, but its precise mechanism has not been fully elucidated. Herein, we showed that DNP promotes NPC metastasis through upregulating miR-149. DNP was found to decrease Plakophilin3 (PKP3) expression, further DNP-decreased PKP3 was verified to be through upregulating miR-149. We also found that DNP induced proliferation, adhesion, migration and invasion of NPC cell, which was inhibited by miR-149-inhibitor. DNP may promote NPC metastasis through miR-149-decreased PKP3 expression. Therefore, DNP-increased miR-149 expression may be an important factor of NPC high metastasis, and miR-149 may serve as a molecular target for anti-metastasis therapy of NPC.
Collapse
Affiliation(s)
- Yuejin Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Zhuhai Hospital of Jinan University, Zhuhai, China
| | - Kunyu Ju
- Metallurgical Science and Engineering, Central South University, Changsha, China
| | - Weiwei Wang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zheliang Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Haitao Xie
- The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yuan Jiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Guanmin Jiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinping Lu
- Zhuhai Hospital of Jinan University, Zhuhai, China
| | - Zigang Dong
- Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Faqing Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Zhuhai Hospital of Jinan University, Zhuhai, China
| |
Collapse
|
23
|
Liu R, Tan Q, Luo Q. Decreased expression level and DNA-binding activity of specificity protein 1 via cyclooxygenase-2 inhibition antagonizes radiation resistance, cell migration and invasion in radiation-resistant lung cancer cells. Oncol Lett 2018; 16:3029-3037. [PMID: 30127893 PMCID: PMC6096147 DOI: 10.3892/ol.2018.9035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
Radiation is able to inhibit tumor growth, promote tumor cell apoptosis and prolong patient survival. However, radiation resistance remains a major impediment to radiotherapy. Local and metastatic recurrences following radiation are still large impediments to overall survival. Although cyclooxygenase-2 (COX-2) inhibitors may induce radiation sensitivity in cancer cells, the underlying mechanisms are not fully understood. The present study demonstrated high potential for cell proliferation, migration and invasion in radiation-resistant lung cancer cell lines. The present study observed the overexpression of specificity protein 1 (Sp1) in these cells, and the overexpression of Sp1 induced upregulation of matrix metalloproteinase (MMP)-2, MMP-9, B cell lymphoma-2, in addition to a high potential for radiation resistance, migration and invasion in these cells. The present study revealed that the COX-2 selective inhibitor, celecoxib, enhanced radiation sensitivity and inhibited migration and invasion in these cells by inhibiting the expression and DNA-binding activity of Sp1. Furthermore, celecoxib downregulated Sp1 by inhibiting c-Jun N-terminal kinase (JNK). Taken together, the present study demonstrated that Sp1 overexpression in radiation-resistant cancer cells and COX-2 inhibitors enhanced radiation sensitivity and inhibited the migration and invasion of cancer cells, at least partially, via inactivation of the JNK/Sp1 signaling pathway and a decrease in Sp1 DNA-binding activity.
Collapse
Affiliation(s)
- Ruijun Liu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Qiang Tan
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Qingquan Luo
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
24
|
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018; 23:molecules23061479. [PMID: 29921764 PMCID: PMC6100431 DOI: 10.3390/molecules23061479] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcription factors are involved in a large number of human diseases such as cancers for which they account for about 20% of all oncogenes identified so far. For long time, with the exception of ligand-inducible nuclear receptors, transcription factors were considered as “undruggable” targets. Advances knowledge of these transcription factors, in terms of structure, function (expression, degradation, interaction with co-factors and other proteins) and the dynamics of their mode of binding to DNA has changed this postulate and paved the way for new therapies targeted against transcription factors. Here, we discuss various ways to target transcription factors in cancer models: by modulating their expression or degradation, by blocking protein/protein interactions, by targeting the transcription factor itself to prevent its DNA binding either through a binding pocket or at the DNA-interacting site, some of these inhibitors being currently used or evaluated for cancer treatment. Such different targeting of transcription factors by small molecules is facilitated by modern chemistry developing a wide variety of original molecules designed to specifically abort transcription factor and by an increased knowledge of their pathological implication through the use of new technologies in order to make it possible to improve therapeutic control of transcription factor oncogenic functions.
Collapse
Affiliation(s)
- Mélanie Lambert
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Samy Jambon
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Sabine Depauw
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Marie-Hélène David-Cordonnier
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
25
|
Sun Y, Xu K, He M, Fan G, Lu H. Overexpression of Glypican 5 (GPC5) Inhibits Prostate Cancer Cell Proliferation and Invasion via Suppressing Sp1-Mediated EMT and Activation of Wnt/β-Catenin Signaling. Oncol Res 2018; 26:565-572. [PMID: 28893348 PMCID: PMC7844840 DOI: 10.3727/096504017x15044461944385] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glypican 5 (GPC5) belongs to the family of heparan sulfate proteoglycans (HSPGs). It was initially known as a regulator of growth factors and morphogens. Recently, there have been reports on its correlation with the tumorigenic process in the development of some cancers. However, little is known about its precise role in prostate cancer (PCa). In the present study, we explored the expression pattern and biological functions of GPC5 in PCa cells. Our results showed that GPC5 was lowly expressed in PCa cell lines. Upregulation of GPC5 significantly inhibited PCa cell proliferation and invasion in vitro as well as attenuated tumor growth in vivo. We also found that overexpression of GPC5 inhibited the epithelial-mesenchymal transition (EMT) and Wnt/β-catenin signaling activation, which was mediated by Sp1. Taken together, we suggest GPC5 as a tumor suppressor in PCa and provide promising therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, P.R. China
| | - Kai Xu
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, P.R. China
| | - Miao He
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, P.R. China
| | - Guilian Fan
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, P.R. China
| | - Hongming Lu
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, P.R. China
| |
Collapse
|
26
|
Xia SS, Zhang GJ, Liu ZL, Tian HP, He Y, Meng CY, Li LF, Wang ZW, Zhou T. MicroRNA-22 suppresses the growth, migration and invasion of colorectal cancer cells through a Sp1 negative feedback loop. Oncotarget 2018; 8:36266-36278. [PMID: 28422727 PMCID: PMC5482653 DOI: 10.18632/oncotarget.16742] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs have recently emerged as regulators of many biological processes including cell proliferation, development and differentiation. This study identified that miR-22 was statistically decreased in colorectal cancer clinical specimens and highly metastatic cell lines. Moreover, low miR-22 expression was associated with tumor metastasis, advanced clinical stage and relapse. Consistent with clinical observations, miR-22 significantly suppressed the ability of colorectal cancer cells to growth and metastasize in vitro and in vivo. Sp1 was validated as a target of miR-22, and ectopic expression of Sp1 compromised the inhibitory effects of miR-22. In addition, Sp1 repressed miR-22 transcription by binding to the miR-22 promoter, hence forming a negative feedback loop. Further study has shown that miR-22 suppresses the activity of PTEN/AKT pathway by Sp1. Our present results implicate the newly indentified miR-22/Sp1/PTEN/AKT axis might represent a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Shu-Sen Xia
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Guang-Jun Zhang
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zuo-Liang Liu
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Hong-Peng Tian
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yi He
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Chang-Yuan Meng
- The Department of Pathology, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Li-Fa Li
- The Department of Medical Microbiology and Parasitology, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zi-Wei Wang
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tong Zhou
- The Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| |
Collapse
|
27
|
Hyperglycemia and aberrant O-GlcNAcylation: contributions to tumor progression. J Bioenerg Biomembr 2018; 50:175-187. [DOI: 10.1007/s10863-017-9740-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022]
|
28
|
Karam J, Fadous-Khalifé MC, Tannous R, Fakhreddine S, Massoud M, Hadchity J, Aftimos G, Hadchity E. Role of Krüppel-like factor 4 and heat shock protein 27 in cancer of the larynx. Mol Clin Oncol 2017; 7:808-814. [PMID: 29181170 DOI: 10.3892/mco.2017.1412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022] Open
Abstract
Late detection and lack of standard treatment strategies in larynx cancer patients result in high levels of mortality and poor prognosis. Prognostic stratification of larynx cancer patients based on molecular prognostic tumor biomarkers may lead to more efficient clinical management. Krüppel-like factor 4 (KLF4) and Heat Shock Protein 27 (HSP27) have an important role in tumorigenesis and are considered promising candidate biomarkers for various types of cancer. However, their role in larynx carcinoma remains to be elucidated. The present study aimed to determine KLF4 and HSP27 expression profiles in laryngeal tumors. The protein and mRNA expression levels of KLF4 and HSP27 were evaluated by immunohistochemical and reverse transcription-polymerase chain reaction analyses in 44 larynx carcinoma samples and 21 normal tissue samples, and then correlated with clinical characteristics. A differential expression of KLF4 and HSP27 was observed between normal and tumor tissues. The protein and mRNA expression levels of KLF4 were significantly decreased in larynx squamous cell carcinoma (LSCC) compared with normal tissue, whereas HSP27 was significantly overexpressed in tumor tissues compared with normal tissues, at the protein and mRNA levels. KLF4 expression decreased gradually with tumor progression whereas HSP27 expression increased. A significant difference was observed between stages I and IV. KLF4 and HSP27 exhibit opposite functions and roles in the carcinogenic process of LSCC. Their role in laryngeal cancer initiation and progression emphasizes their use as potential future targets for prognosis and treatment. KLF4 and HSP27 expression levels may act as potential biomarkers in patients with cancer of the larynx.
Collapse
Affiliation(s)
- Jihad Karam
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| | - Marie Claude Fadous-Khalifé
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon.,Notre Dame de Secours University Hospital, Jbeil 1401, Lebanon
| | - Rita Tannous
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| | - Sally Fakhreddine
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| | - Marcel Massoud
- Notre Dame de Secours University Hospital, Jbeil 1401, Lebanon
| | - Joseph Hadchity
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon.,Department of Surgery, St. Therese Hospital, Hadat 1003, Lebanon
| | | | - Elie Hadchity
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| |
Collapse
|
29
|
Wang XX, Liao Y, Hong L, Zeng Z, Yuan TB, Xia X, Qin J. Tissue microarray staining reveals PLD1 and Sp1 have a collaborative, pro-tumoral effect in patients with osteosarcomas. Oncotarget 2017; 8:74340-74347. [PMID: 29088790 PMCID: PMC5650345 DOI: 10.18632/oncotarget.20605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022] Open
Abstract
It has been reported that phospholipase D1 (PLD1) - a key enzyme involved in lipid metabolism - is important for the initiation and progression of various human solid cancers; however, its biological significance and regulation in human osteosarcomas remain elusive. In this study, We found that PLD1 and Specificity Protein 1 (Sp1) expression were elevated in 137 osteosarcoma specimens with immunohistochemical staining. Our results showed that both PLD1 and Sp1 were expressed at much higher rates in the cancerous tissue compared to adjacent normal tissue. A correlation analyze also indicated that PLD1 was significantly associated with lactate dehydrogenase expression (p = 0.041) and the Enneking stage (p = 0.000), while Sp1 was significantly associated with the nuclear grade (p = 0.024). Furthermore, survival analyses showed that elevated PLD1 confers a poor prognosis on patients with osteosarcomas, acting as an independent prognostic factor. Of note, we showed a positive correlation between PLD1 and Sp1 expression in the cancer tissues (r = 0.357; p < 0.001). High co-expression of the two molecules results in the worst prognosis for the patients, and can also be regarded as independent prognostic factor (p = 0.001; HR = 2.71; 95% CI 1.53–4.80).
Collapse
Affiliation(s)
- Xiao-Xu Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanhua University, Hengyang, Hunan, People's Republic of China
| | - Ying Liao
- Department of Rehabilitation, The First Affiliated Hospital of Nanhua University, Hengyang, Hunan, People's Republic of China
| | - Liang Hong
- Department of Orthopaedics, The Second Affiliated Hospital of Nanhua University, Hengyang, Hunan, People's Republic of China
| | - Zhi Zeng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanhua University, Hengyang, Hunan, People's Republic of China
| | - Tang-Bo Yuan
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Xia
- Department of Orthopaedics, The Second Affiliated Hospital of Nanhua University, Hengyang, Hunan, People's Republic of China
| | - Jian Qin
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Soleimani T, Falsafi N, Fallahi H. Dissection of Regulatory Elements During Direct Conversion of Somatic Cells Into Neurons. J Cell Biochem 2017; 118:3158-3170. [DOI: 10.1002/jcb.25944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Tahereh Soleimani
- Bioinformatics LabDepartment of BiologySchool of SciencesRazi UniversityKermanshahIran
| | - Nafiseh Falsafi
- Bioinformatics LabDepartment of BiologySchool of SciencesRazi UniversityKermanshahIran
| | - Hossein Fallahi
- Bioinformatics LabDepartment of BiologySchool of SciencesRazi UniversityKermanshahIran
| |
Collapse
|
31
|
Wang J, Kang M, Wen Q, Qin YT, Wei ZX, Xiao JJ, Wang RS. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT. Oncol Rep 2017; 37:2425-2432. [PMID: 28350122 DOI: 10.3892/or.2017.5499] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/07/2016] [Indexed: 11/05/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor of epithelial origin with radiotherapy as its standard treatment. However, radioresistance remains a critical issue in the treatment of NPC. This study aimed to investigate the effect of berberine on the proliferation, cell cycle regulation, apoptosis, radioresistance of NPC cells and whether specificity protein 1 (Sp1) is a functional target of berberine. Our results showed that treatment with berberine reduced the proliferation and viability of CNE-2 cells in a dose- and time‑dependent manner. Berberine induced cell cycle arrest in the G0/G1 phase and apoptosis. In CNE-2 cells exposed to gamma‑ray irradiation, berberine reduced cell viability at various concentrations (25, 50, 75 and 100 µmol/l). Berberine significantly decreased mRNA and protein expression of Sp1 in the CNE-2 cells. Mithramycin A, a selective Sp1 inhibitor, enhanced the radiosensitivity and the rate of apoptosis in the CNE-2 cells. Berberine inhibited transforming growth factor-β (TGF-β)-induced tumor invasion and suppressed epithelial-to-mesenchymal transition (EMT) process, as evidenced by increased E-cadherin and decreased vimentin proteins. Sp1 may be required for the TGF-β1-induced invasion and EMT by berberine. In conclusion, berberine demonstrated the ability to suppress proliferation, induce cell cycle arrest and apoptosis, and enhance radiosensitivity of the CNE-2 NPC cells. Sp1 may be a target of berberine which is decreased during the radiosensitization of berberine.
Collapse
Affiliation(s)
- Jun Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Min Kang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qin Wen
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yu-Tao Qin
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhu-Xin Wei
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing-Jian Xiao
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ren-Sheng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
32
|
Yao PL, Chen L, Dobrzański TP, Zhu B, Kang BH, Müller R, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation. Mol Carcinog 2017; 56:1472-1483. [PMID: 27996177 DOI: 10.1002/mc.22607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/22/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients.
Collapse
Affiliation(s)
- Pei-Li Yao
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Liping Chen
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Tomasz P Dobrzański
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Bokai Zhu
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Boo-Hyon Kang
- Non-clinical Research Institute, Chemon, Jeil-Ri, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, Korea
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
33
|
Pang MJ, Yang Z, Zhang XL, Liu ZF, Fan J, Zhang HY. Physcion, a naturally occurring anthraquinone derivative, induces apoptosis and autophagy in human nasopharyngeal carcinoma. Acta Pharmacol Sin 2016; 37:1623-1640. [PMID: 27694907 PMCID: PMC5260837 DOI: 10.1038/aps.2016.98] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/24/2016] [Indexed: 12/23/2022] Open
Abstract
AIM Physcion is a major bioactive ingredient in the traditional Chinese medicine Radix et Rhizoma Rhei, which has an anthraquinone chemical structure and exhibits a variety of pharmacological activities including laxative, hepatoprotective, anti-inflammatory, anti-microbial and anti-proliferative effects. In this study we investigated the effect of physcion on human nasopharyngeal carcinoma in vitro and in vivo, as well as the mechanisms underlying the anti-tumor action. METHODS The nasopharyngeal carcinoma cell line CNE2 was treated with physcion, and cell viability was detected using MTT and colony formation assays. Flow cytometry was used to assess the cell cycle arrest, mitochondrial membrane potential loss, apoptosis, autophagy and intracellular ROS generation. Apoptotic cell death was also confirmed by a TUNEL assay. The expression of target or marker molecules was determined using Western blotting. The activity of caspase-3, 8, and 9 was detected with an ELISA kit. A xenograft murine model was used to evaluate the in vivo anti-tumor action of physcion, the mice were administered physcion (10, 20 mg·kg-1·d-1, ip) for 30 d. RESULTS Treatment with physcion (5, 10, and 20 μmol/L) dose-dependently suppressed the cell viability and colony formation in CNE2 cells. Physcion (10 and 20 μmol/L) dose-dependently blocked cell cycle progression at G1 phase and induced both caspase-dependent apoptosis and autophagy in CNE2 cells. Furthermore, physcion treatment induced excessive ROS generation in CNE2 cells, and subsequently disrupted the miR-27a/ZBTB10 axis, resulting in repression of the transcription factor Sp1 that was involved in physcion-induced apoptosis and autophagy. Moreover, physcion-induced autophagy acted as a pro-apoptotic factor, and possibly contributed to physcion-induced apoptosis. In the xenograft murine model, administration of physcion dose-dependently suppressed the tumor growth without affecting the body weight. Furthermore, the anti-tumor effects of physcion were correlated with downregulation of Sp1 and suppression of miR-27a in the tumor tissues. CONCLUSION Physcion induces apoptosis and autophagy in human nasopharyngeal carcinoma by targeting Sp1, which was mediated by ROS/miR-27a/ZBTB10 signaling. The results suggest that physcion is a promising candidate for the treatment of human nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Ming-jie Pang
- Department of Otolaryngology, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Zhun Yang
- Department of Otolaryngology, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Xing-lin Zhang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Zhao-fang Liu
- Department of Otolaryngology, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Jun Fan
- Department of Otolaryngology, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Hong-ying Zhang
- Department of Dermatology, Qingdao Municipal Hospital, Qingdao 266011, China
| |
Collapse
|
34
|
Zhou DS, Wang HB, Zhou ZG, Zhang YJ, Zhong Q, Xu L, Huang YH, Yeung SC, Chen MS, Zeng MS. TACC3 promotes stemness and is a potential therapeutic target in hepatocellular carcinoma. Oncotarget 2016. [PMID: 26219398 PMCID: PMC4695177 DOI: 10.18632/oncotarget.4643] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming acidic coiled-coil protein 3 (TACC3) is essential for cell mitosis and transcriptional functions. In the present study, we first demonstrated that both TACC3 protein and mRNA levels were elevated in HCC tissue samples compared with non-cancerous tissue biopsies according to western blot analyses, immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) assays. Moreover, high TACC3 expression was positively correlated with poor overall survival (OS) and disease-free survival (DFS) (p < 0.001). Using HCC cell lines, we then demonstrated that either TACC3 knockdown or treatment with the potential TACC3 inhibitor KHS101 suppressed cell growth and sphere formation as well as the expression of stem cell transcription factors, including Bmi1, c-Myc and Nanog. Silencing TACC3 may suppress the Wnt/β-catenin and PI3K/AKT signaling pathways, which regulate cancer stem cell-like characteristics. Taken together, these data suggest that TACC3 is enriched in HCC and that TACC3 down-regulation inhibits the proliferation, clonogenicity, and cancer stem cell-like phenotype of HCC cells. KHS101, a TACC3 inhibitor, may serve as a novel therapeutic agent for HCC patients with tumors characterized by high TACC3 expression.
Collapse
Affiliation(s)
- Dong-Sheng Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Shandong Provincial Qianfoshan Hospital, Jinan, P. R. China
| | - Hong-Bo Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhong-Guo Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yao-Jun Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Li Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Sai-Ching Yeung
- Department of General Internal Medicine, Ambulatory Treatment and Emergency Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min-Shan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Mu-Sheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
35
|
Tornin J, Martinez-Cruzado L, Santos L, Rodriguez A, Núñez LE, Oro P, Hermosilla MA, Allonca E, Fernández-García MT, Astudillo A, Suarez C, Morís F, Rodriguez R. Inhibition of SP1 by the mithramycin analog EC-8042 efficiently targets tumor initiating cells in sarcoma. Oncotarget 2016; 7:30935-50. [PMID: 27105533 PMCID: PMC5058729 DOI: 10.18632/oncotarget.8817] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022] Open
Abstract
Tumor initiating cells (TICs), responsible for tumor initiation, and cancer stem cells (CSCs), responsible for tumor expansion and propagation, are often resistant to chemotherapeutic agents. To find therapeutic targets against sarcoma initiating and propagating cells we used models of myxoid liposarcoma (MLS) and undifferentiated pleomorphic sarcoma (UPS) developed from human mesenchymal stromal/stem cells (hMSCs), which constitute the most likely cell-of-origin for sarcoma. We found that SP1-mediated transcription was among the most significantly altered signaling. To inhibit SP1 activity, we used EC-8042, a mithramycin (MTM) analog (mithralog) with enhanced anti-tumor activity and highly improved safety. EC-8042 inhibited the growth of TIC cultures, induced cell cycle arrest and apoptosis and upregulated the adipogenic factor CEBPα. SP1 knockdown was able to mimic the anti-proliferative effects induced by EC-8042. Importantly, EC-8042 was not recognized as a substrate by several ABC efflux pumps involved in drug resistance, and, opposite to the chemotherapeutic drug doxorubicin, repressed the expression of many genes responsible for the TIC/CSC phenotype, including SOX2, C-MYC, NOTCH1 and NFκB1. Accordingly, EC-8042, but not doxorubicin, efficiently reduced the survival of CSC-enriched tumorsphere sarcoma cultures. In vivo, EC-8042 induced a profound inhibition of tumor growth associated to a strong reduction of the mitotic index and the induction of adipogenic differentiation and senescence. Finally, EC-8042 reduced the ability of tumor cells to reinitiate tumor growth. These data suggest that EC-8042 could constitute an effective treatment against both TIC and CSC subpopulations in sarcoma.
Collapse
Affiliation(s)
- Juan Tornin
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Laura Santos
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Aida Rodriguez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | | | | | - Eva Allonca
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Suarez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Rene Rodriguez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
36
|
Offermann B, Knauer S, Singh A, Fernández-Cachón ML, Klose M, Kowar S, Busch H, Boerries M. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation. Front Genet 2016; 7:44. [PMID: 27148350 PMCID: PMC4830832 DOI: 10.3389/fgene.2016.00044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/14/2016] [Indexed: 12/18/2022] Open
Abstract
The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.
Collapse
Affiliation(s)
- Barbara Offermann
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Steffen Knauer
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Amit Singh
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - María L Fernández-Cachón
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Martin Klose
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Silke Kowar
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University FreiburgFreiburg, Germany; German Cancer ConsortiumFreiburg, Germany; German Cancer Research CenterHeidelberg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University FreiburgFreiburg, Germany; German Cancer ConsortiumFreiburg, Germany; German Cancer Research CenterHeidelberg, Germany
| |
Collapse
|
37
|
Hellweg CE, Spitta LF, Henschenmacher B, Diegeler S, Baumstark-Khan C. Transcription Factors in the Cellular Response to Charged Particle Exposure. Front Oncol 2016; 6:61. [PMID: 27047795 PMCID: PMC4800317 DOI: 10.3389/fonc.2016.00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also neighboring cells in the bystander effect.
Collapse
Affiliation(s)
- Christine E. Hellweg
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Luis F. Spitta
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Bernd Henschenmacher
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Christa Baumstark-Khan
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| |
Collapse
|
38
|
Liu Z, Cheng C, Luo X, Xia Q, Zhang Y, Long X, Jiang Q, Fang W. CDK4 and miR-15a comprise an abnormal automodulatory feedback loop stimulating the pathogenesis and inducing chemotherapy resistance in nasopharyngeal carcinoma. BMC Cancer 2016; 16:238. [PMID: 26993269 PMCID: PMC4797221 DOI: 10.1186/s12885-016-2277-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 03/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background In previous investigation, we reported that stably knocking down cyclin-dependent kinase 4(CDK4) induced expression of let-7c, which further suppressed cell cycle transition and cell growth by modulating cell cycle signaling in nasopharyngeal carcinoma (NPC). In this study, we further explored the molecular function and mechanism of CDK4 modulating miRNAs to stimulate cell cycle transition, cell growth, and Cisplatin (DDP) -resistance on in NPC. Methods We identified changes in miRNAs by miRNA array and real-time PCR and the effect on DDP after knocking down CDK4 in NPC cells. Further, we investigated the molecular mechanisms by which CDK4 modulated miR-15a in NPC. Moreover, we also explored the role of miR-15a and the effect on DDP in NPC. Finally, we analyzed the correlation of miR-15a and CDK4 expression in NPC tissues. Results In addition to let-7 family members, we observed that upregulated expression of miR-15a was significantly induced in CDK4-suppressed NPC cells. Further, we found that knocking down CDK4 suppressed c-Myc expression, and the latter directly suppressed the expression of miR-15a in NPC. Furthermore, miR-15a as a tumor suppressor antagonized CDK4 repressing cell cycle progression and cell growth in vitro and in vivo and induced the sensitivity of cells to DDP by regulating the c-Myc/CCND1/CDK4/E2F1 pathway in NPC. Finally, miR-15a was negatively weak correlated with the expression of CDK4 in NPC. Conclusions Our studies demonstrate that CDK4 and miR-15a comprise an abnormal automodulatory feedback loop stimulating the pathogenesis and inducing chemotherapy resistance in NPC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2277-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen Liu
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.,Department of Pathology, Basic School of Guangzhou Medical University, Guangzhou, 510182, China
| | - Chao Cheng
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China.,Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, P.R. China
| | - Xiaojun Luo
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China.,Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Qiong Xia
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Yejie Zhang
- Department of Pathology, Basic School of Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiaobing Long
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China. .,Otorhinolaryngology of Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, P.R. China.
| | - Qingping Jiang
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.
| | - Weiyi Fang
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China. .,Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, 510315, China.
| |
Collapse
|
39
|
Kwon YJ, Baek HS, Ye DJ, Shin S, Kim D, Chun YJ. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation. PLoS One 2016; 11:e0151598. [PMID: 26981862 PMCID: PMC4794175 DOI: 10.1371/journal.pone.0151598] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 03/01/2016] [Indexed: 01/06/2023] Open
Abstract
Cytochrome P450 1B1 (CYP1B1) is a major E2 hydroxylase involved in the metabolism of potential carcinogens. CYP1B1 expression has been reported to be higher in tumors compared to normal tissues, especially in hormone-related cancers including breast, ovary, and prostate tumors. To explore the role of CYP1B1 in cancer progression, we investigated the action of CYP1B1 in cells with increased CYP1B1 via the inducer 7,12-dimethylbenz[α]anthracene (DMBA) or an overexpression vector, in addition to decreased CYP1B1 via the inhibitor tetramethoxystilbene (TMS) or siRNA knockdown. We observed that CYP1B1 promoted cell proliferation, migration, and invasion in MCF-7 and MCF-10A cells. To understand its molecular mechanism, we measured key oncogenic proteins including β-catenin, c-Myc, ZEB2, and matrix metalloproteinases following CYP1B1 modulation. CYP1B1 induced epithelial-mesenchymal transition (EMT) and activated Wnt/β-catenin signaling via upregulation of CTNNB1, ZEB2, SNAI1, and TWIST1. Sp1, a transcription factor involved in cell growth and metastasis, was positively regulated by CYP1B1, and suppression of Sp1 expression by siRNA or DNA binding activity using mithramycin A blocked oncogenic transformation by CYP1B1. Therefore, we suggest that Sp1 acts as a key mediator for CYP1B1 action. Treatment with 4-hydroxyestradiol (4-OHE2), a major metabolite generated by CYP1B1, showed similar effects as CYP1B1 overexpression, indicating that CYP1B1 activity mediated various oncogenic events in cells. In conclusion, our data suggests that CYP1B1 promotes cell proliferation and metastasis by inducing EMT and Wnt/β-catenin signaling via Sp1 induction.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | - Dong-Jin Ye
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
40
|
Cofunctional Subpathways Were Regulated by Transcription Factor with Common Motif, Common Family, or Common Tissue. BIOMED RESEARCH INTERNATIONAL 2015; 2015:780357. [PMID: 26688819 PMCID: PMC4672121 DOI: 10.1155/2015/780357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 11/17/2022]
Abstract
Dissecting the characteristics of the transcription factor (TF) regulatory subpathway is helpful for understanding the TF underlying regulatory function in complex biological systems. To gain insight into the influence of TFs on their regulatory subpathways, we constructed a global TF-subpathways network (TSN) to analyze systematically the regulatory effect of common-motif, common-family, or common-tissue TFs on subpathways. We performed cluster analysis to show that the common-motif, common-family, or common-tissue TFs that regulated the same pathway classes tended to cluster together and contribute to the same biological function that led to disease initiation and progression. We analyzed the Jaccard coefficient to show that the functional consistency of subpathways regulated by the TF pairs with common motif, common family, or common tissue was significantly greater than the random TF pairs at the subpathway level, pathway level, and pathway class level. For example, HNF4A (hepatocyte nuclear factor 4, alpha) and NR1I3 (nuclear receptor subfamily 1, group I, member 3) were a pair of TFs with common motif, common family, and common tissue. They were involved in drug metabolism pathways and were liver-specific factors required for physiological transcription. In short, we inferred that the cofunctional subpathways were regulated by common-motif, common-family, or common-tissue TFs.
Collapse
|
41
|
Liu ZH, Hu JL, Liang JZ, Zhou AJ, Li MZ, Yan SM, Zhang X, Gao S, Chen L, Zhong Q, Zeng MS. Far upstream element-binding protein 1 is a prognostic biomarker and promotes nasopharyngeal carcinoma progression. Cell Death Dis 2015; 6:e1920. [PMID: 26469968 PMCID: PMC4632288 DOI: 10.1038/cddis.2015.258] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor with tremendous invasion and metastasis capacities, and it has a high incidence in southeast Asia and southern China. Previous studies identified that far upstream element-binding protein 1 (FBP1), a transcriptional regulator of c-Myc that is one of the most frequently aberrantly expressed oncogenes in various human cancers, including NPC, is an important biomarker for many cancers. Our study aimed to investigate the expression and function of FBP1 in human NPC. Quantitative real-time RT-PCR (qRT-PCR), western blot and immunohistochemical staining (IHC) were performed in NPC cells and biopsies. Furthermore, the effect of FBP1 knockdown on cell proliferation, colony formation, side population tests and tumorigenesis in nude mice were measured by MTT, clonogenicity analysis, flow cytometry and a xenograft model, respectively. The results showed that the mRNA and protein levels of FBP1, which are positively correlated with c-Myc expression, were substantially higher in NPC than that in nasopharyngeal epithelial cells. IHC revealed that the patients with high FBP1 expression had a significantly poorer prognosis compared with the patients with low expression (P=0.020). In univariate analysis, high FBP1 and c-Myc expression predicted poorer overall survival (OS) and poorer progression-free survival. Multivariate analysis indicated that high FBP1 and c-Myc expression were independent prognostic markers. Knockdown of FBP1 reduced cell proliferation, clonogenicity and the ratio of side populations, as well as tumorigenesis in nude mice. These data indicate that FBP1 expression, which is closely correlated with c-Myc expression, is an independent prognostic factor and promotes NPC progression. Our results suggest that FBP1 can not only serve as a useful prognostic biomarker for NPC but also as a potential therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Z-H Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, National Institute of Biological Sciences, Beijing, China
| | - J-L Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - J-Z Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - A-J Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - M-Z Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - S-M Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - X Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - S Gao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - L Chen
- Collaborative Innovation Center of Cancer Medicine, National Institute of Biological Sciences, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Q Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - M-S Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
42
|
Koo BH, Kim Y, Je Cho Y, Kim DS. Distinct roles of transforming growth factor-β signaling and transforming growth factor-β receptor inhibitor SB431542 in the regulation of p21 expression. Eur J Pharmacol 2015; 764:413-423. [PMID: 26187313 DOI: 10.1016/j.ejphar.2015.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/07/2015] [Accepted: 07/13/2015] [Indexed: 11/23/2022]
Abstract
Transforming growth factor-β (TGF-β) has both tumor suppressive and oncogenic activities. Autocrine TGF-β signaling supports tumor survival and growth in certain types of cancer, and the TGF-β signaling pathway is a potential therapeutic target for these types of cancer. TGF-β induces p21 expression, and p21 is considered as an oncogene as well as a tumor suppressor, due to its anti-apoptotic activity. Thus, we hypothesized that autocrine TGF-β signaling maintains the expression of p21 at levels that can support cell growth. To verify this hypothesis, we sought to examine p21 expression and cell growth in various cancer cells following the inhibition of autocrine TGF-β signaling using siRNAs targeting TGF-β signaling components and SB431542, a TGF-β receptor inhibitor. Results from the present study show that p21 expression and cell growth were reduced by knockdown of TGF-β signaling components using siRNA in MDA-MB231 and A549 cells. Cell growth was also reduced in p21 siRNA-transfected cells. Downregulation of p21 expression induced cellular senescence in MDA-MB231 cells but did not induce apoptosis in both cells. These data suggest that autocrine TGF-β signaling is required to sustain p21 levels for positive regulation of cell cycle. On the other hand, treatment with SB431542 up-regulated p21 expression while inhibiting cell growth. The TGF-β signaling pathway was not associated with the SB431542-mediated induction of p21 expression. Specificity protein 1 (Sp1) was downregulated by treatment with SB431542, and p21 expression was increased by Sp1 knockdown. These findings suggest that downregulation of Sp1 expression is responsible for SB43154-induced p21 expression.
Collapse
Affiliation(s)
- Bon-Hun Koo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.
| | - Yeaji Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.
| | - Yang Je Cho
- R & D Center, EyeGene Inc., Seoul 120-113, Republic of Korea.
| | - Doo-Sik Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.
| |
Collapse
|
43
|
Vizcaíno C, Mansilla S, Portugal J. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol Ther 2015; 152:111-24. [PMID: 25960131 DOI: 10.1016/j.pharmthera.2015.05.008] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 11/25/2022]
Abstract
Sp1 (specificity protein 1) is a well-known member of a family of transcription factors that also includes Sp2, Sp3 and Sp4, which are implicated in an ample variety of essential biological processes and have been proven important in cell growth, differentiation, apoptosis and carcinogenesis. Sp1 activates the transcription of many cellular genes that contain putative CG-rich Sp-binding sites in their promoters. Sp1 and Sp3 proteins bind to similar, if not the same, DNA tracts and compete for binding, thus they can enhance or repress gene expression. Evidences exist that the Sp-family of proteins regulates the expression of genes that play pivotal roles in cell proliferation and metastasis of various tumors. In patients with a variety of cancers, high levels of Sp1 protein are considered a negative prognostic factor. A plethora of compounds can interfere with the trans-activating activities of Sp1 and other Sp proteins on gene expression. Several pathways are involved in the down-regulation of Sp proteins by compounds with different mechanisms of action, which include not only the direct interference with the binding of Sp proteins to their putative DNA binding sites, but also promoting the degradation of Sp protein factors. Down-regulation of Sp transcription factors and Sp1-regulated genes is drug-dependent and it is determined by the cell context. The acknowledgment that several of those compounds are safe enough might accelerate their introduction into clinical usage in patients with tumors that over-express Sp1.
Collapse
Affiliation(s)
- Carolina Vizcaíno
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | - Sylvia Mansilla
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | - José Portugal
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain.
| |
Collapse
|
44
|
Wang J, Kang M, Qin YT, Wei ZX, Xiao JJ, Wang RS. Sp1 is over-expressed in nasopharyngeal cancer and is a poor prognostic indicator for patients receiving radiotherapy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6936-43. [PMID: 26261581 PMCID: PMC4525915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Nasopharyngeal cancer (NPC) is a tumor of epithelial origin with complex etiology. Currently the standard treatment of NPC is radiotherapy, but therapy failure is quite common, making radioresistance an important issue. This study explores the association of specificity protein 1 (Sp1) protein expression with clinicopathological significance and disease prognosis in NPC patients receiving radiotherapy. A total of 82 NPC patients (55 males and 27 females, median age: 48 years old) were enrolled and received radiotherapy between September 2011 and March 2014. Tumor tissue and grossly adjacent normal mucosa were obtained in each patient. Sp1 expression was detected by western blot and immunohistochemical analysis, and the associations with clinicopathological status and radiotherapy response were analyzed. Our Results showed Sp1 protein expression was higher in CNE-1 and CNE-2 nasopharyngeal cancer cells than in normal nasopharyngeal mucosal NP69 cells. All 82 patients' tissue sections were stained positive for the Sp1 protein, and 39 (47.6%) patients showed higher level than adjacent normal mucosa. Sp1-overexpression in the tumor tissue was correlated with a higher tumor stage, nodal status, clinical stage and distant metastasis (P < 0.01). Patients with higher Sp1 expression in pretreatment biopsies had a lower radiotherapy response compared to those with lower expression. In conclusion, Sp1 may play roles in radioresistance of nasopharyngeal cancer which attributes to tumor invasiveness, and serve as a novel prognostic marker of NPC radiotherapy. However, further studies are required to validate our findings in larger samples and explore more detailed mechanisms underlying radioresistance of Sp1.
Collapse
Affiliation(s)
- Jun Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, P.R. China
| | - Min Kang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, P.R. China
| | - Yu-Tao Qin
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, P.R. China
| | - Zhu-Xin Wei
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, P.R. China
| | - Jing-Jian Xiao
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, P.R. China
| | - Ren-Sheng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, P.R. China
| |
Collapse
|