1
|
Vadaq N, van de Wijer L, van Eekeren LE, Koenen H, de Mast Q, Joosten LAB, Netea MG, Matzaraki V, van der Ven AJAM. Targeted plasma proteomics reveals upregulation of distinct inflammatory pathways in people living with HIV. iScience 2022; 25:105089. [PMID: 36157576 PMCID: PMC9494231 DOI: 10.1016/j.isci.2022.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite antiretroviral therapy (ART), people living with HIV (PLHIV) display persistent inflammation leading to non-AIDS-related co-morbidities. To better understand underlying mechanisms, we compared targeted plasma inflammatory protein concentration (n = 92) between a cohort of 192 virally suppressed PLHIV, who were followed-up for five years, and 416 healthy controls (HC). Findings were validated in an independent cohort of 649 virally suppressed PLHIV and 98 HC. Compared to HC, PLHIV exhibited distinctively upregulated inflammatory proteins, including mucosal defense chemokines, CCR5 and CXCR3 ligands, and growth factors. Unsupervised clustering of inflammatory proteins clearly differentiated PLHIV with low (n = 123) and high inflammation (n = 65), the latter having a 3.4 relative risk (95% confidence interval 1.2-9.8) to develop malignancies and trend for cardiovascular events during a 5-year follow-up. The best protein predictors discriminating the two inflammatory endotypes were PD-L1, VEGFA, LAP TGF β-1, and TNFRSF9. Our data provide insights into co-morbidities associated inflammatory changes in PLHIV on long-term ART.
Collapse
Affiliation(s)
- Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.,Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Lisa van de Wijer
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Louise E van Eekeren
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Germany
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - André J A M van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Asnaghi MA, Power L, Barbero A, Haug M, Köppl R, Wendt D, Martin I. Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage. Front Bioeng Biotechnol 2020; 8:283. [PMID: 32318561 PMCID: PMC7154140 DOI: 10.3389/fbioe.2020.00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023] Open
Abstract
The definition of quality controls for cell therapy and engineered product manufacturing processes is critical for safe, effective, and standardized clinical implementation. Using the example context of cartilage grafts engineered from autologous nasal chondrocytes, currently used for articular cartilage repair in a phase II clinical trial, we outlined how gene expression patterns and generalized linear models can be introduced to define molecular signatures of identity, purity, and potency. We first verified that cells from the biopsied nasal cartilage can be contaminated by cells from a neighboring tissue, namely perichondrial cells, and discovered that they cannot deposit cartilaginous matrix. Differential analysis of gene expression enabled the definition of identity markers for the two cell populations, which were predictive of purity in mixed cultures. Specific patterns of expression of the same genes were significantly correlated with cell potency, defined as the capacity to generate tissues with histological and biochemical features of hyaline cartilage. The outlined approach can now be considered for implementation in a good manufacturing practice setting, and offers a paradigm for other regenerative cellular therapies.
Collapse
Affiliation(s)
- M Adelaide Asnaghi
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Power
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Martin Haug
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Ruth Köppl
- Otorhinolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | - David Wendt
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Toupchian O, Sotoudeh G, Mansoori A, Abdollahi S, Ali Keshavarz S, Djalali M, Nasli-Esfahani E, Alvandi E, Chahardoli R, Koohdani F. DHA-enriched fish oil upregulates cyclin-dependent kinase inhibitor 2A (P16INK) expression and downregulates telomerase activity without modulating effects of PPARγ Pro12Ala polymorphism in type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 2018; 37:91-98. [DOI: 10.1016/j.clnu.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023]
|
4
|
Sample size calculations for skewed distributions. BMC Med Res Methodol 2015; 15:28. [PMID: 25886883 PMCID: PMC4423589 DOI: 10.1186/s12874-015-0023-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/24/2015] [Indexed: 11/10/2022] Open
Abstract
Background Sample size calculations should correspond to the intended method of analysis. Nevertheless, for non-normal distributions, they are often done on the basis of normal approximations, even when the data are to be analysed using generalized linear models (GLMs). Methods For the case of comparison of two means, we use GLM theory to derive sample size formulae, with particular cases being the negative binomial, Poisson, binomial, and gamma families. By simulation we estimate the performance of normal approximations, which, via the identity link, are special cases of our approach, and for common link functions such as the log. The negative binomial and gamma scenarios are motivated by examples in hookworm vaccine trials and insecticide-treated materials, respectively. Results Calculations on the link function (log) scale work well for the negative binomial and gamma scenarios examined and are often superior to the normal approximations. However, they have little advantage for the Poisson and binomial distributions. Conclusions The proposed method is suitable for sample size calculations for comparisons of means of highly skewed outcome variables. Electronic supplementary material The online version of this article (doi:10.1186/s12874-015-0023-0) contains supplementary material, which is available to authorized users.
Collapse
|