1
|
Kumar Am S, Rajan P, Alkhamees M, Holley M, Lakshmanan VK. Prostate cancer theragnostics biomarkers: An update. Investig Clin Urol 2024; 65:527-539. [PMID: 39505512 PMCID: PMC11543649 DOI: 10.4111/icu.20240229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Biomarkers are molecules such as proteins, genes, or other substances that may be tested to determine the stage of the tumor in a patient. The role of prostate cancer biomarkers is pivotal and the combination of prostate cancer immunotherapy with efficient biomarkers has emerged as a beneficial treatment strategy and its use has increased rapidly. The two primary objectives of this current prostate cancer early detection programs were recognizing non-symptomatic individuals with prostate cancer requiring prostatic core biopsy and identifying men with prostate cancer who might benefit from definitive medical treatment. The progress that has been made so far in the identification of the biomarkers that can be used for the classification, prediction and prognostication of prostate cancer, and as major targets for its clinical intervention has been well summarized in this review.
Collapse
Affiliation(s)
- Sathish Kumar Am
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education & Research, Chennai, India
| | - Prabhakar Rajan
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Cancer Research UK City of London Centre, London, UK
| | - Mohammad Alkhamees
- Department of Urology, College of Medicine, Majmaah University, Al Majmaah, Saudi Arabia
| | - Merrel Holley
- International Hyperbaric Medical Foundation, Morgan City, LA, USA
| | - Vinoth-Kumar Lakshmanan
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education & Research, Chennai, India.
| |
Collapse
|
2
|
Fu Z, Rais Y, Bismar TA, Hyndman ME, Le XC, Drabovich AP. Mapping Isoform Abundance and Interactome of the Endogenous TMPRSS2-ERG Fusion Protein by Orthogonal Immunoprecipitation-Mass Spectrometry Assays. Mol Cell Proteomics 2021; 20:100075. [PMID: 33771697 PMCID: PMC8102805 DOI: 10.1016/j.mcpro.2021.100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 01/02/2023] Open
Abstract
TMPRSS2-ERG gene fusion, a molecular alteration found in nearly half of primary prostate cancer cases, has been intensively characterized at the transcript level. However limited studies have explored the molecular identity and function of the endogenous fusion at the protein level. Here, we developed immunoprecipitation-mass spectrometry assays for the measurement of a low-abundance T1E4 TMPRSS2-ERG fusion protein, its isoforms, and its interactome in VCaP prostate cancer cells. Our assays quantified total ERG (∼27,000 copies/cell) and its four unique isoforms and revealed that the T1E4-ERG isoform accounted for 52 ± 3% of the total ERG protein in VCaP cells, and 50 ± 11% in formalin-fixed paraffin-embedded prostate cancer tissues. For the first time, the N-terminal peptide (methionine-truncated and N-acetylated TASSSSDYGQTSK) unique for the T1/E4 fusion was identified. ERG interactome profiling with the C-terminal, but not the N-terminal, antibodies identified 29 proteins, including mutually exclusive BRG1- and BRM-associated canonical SWI/SNF chromatin remodeling complexes. Our sensitive and selective IP-SRM assays present alternative tools to quantify ERG and its isoforms in clinical samples, thus paving the way for development of more accurate diagnostics of prostate cancer.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, and Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - M Eric Hyndman
- Division of Urology, Department of Surgery, Southern Alberta Institute of Urology, University of Calgary, Alberta, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Martin K, Zhang T, Zhang P, Chrisler WB, Thomas FL, Liu F, Liu T, Qian WJ, Smith RD, Shi T. Carrier-assisted One-pot Sample Preparation for Targeted Proteomics Analysis of Small Numbers of Human Cells. J Vis Exp 2020:10.3791/61797. [PMID: 33226031 PMCID: PMC8349108 DOI: 10.3791/61797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Protein analysis of small numbers of human cells is primarily achieved by targeted proteomics with antibody-based immunoassays, which have inherent limitations (e.g., low multiplex and unavailability of antibodies for new proteins). Mass spectrometry (MS)-based targeted proteomics has emerged as an alternative because it is antibody-free, high multiplex, and has high specificity and quantitation accuracy. Recent advances in MS instrumentation make MS-based targeted proteomics possible for multiplexed quantification of highly abundant proteins in single cells. However, there is a technical challenge for effective processing of single cells with minimal sample loss for MS analysis. To address this issue, we have recently developed a convenient protein carrier-assisted one-pot sample preparation coupled with liquid chromatography (LC) - selected reaction monitoring (SRM) termed cLC-SRM for targeted proteomics analysis of small numbers of human cells. This method capitalizes on using the combined excessive exogenous protein as a carrier and low-volume one-pot processing to greatly reduce surface adsorption losses as well as high-specificity LC-SRM to effectively address the increased dynamic concentration range due to the addition of exogeneous carrier protein. Its utility has been demonstrated by accurate quantification of most moderately abundant proteins in small numbers of cells (e.g., 10-100 cells) and highly abundant proteins in single cells. The easy-to-implement features and no need for specific devices make this method readily accessible to most proteomics laboratories. Herein we have provided a detailed protocol for cLC-SRM analysis of small numbers of human cells including cell sorting, cell lysis and digestion, LC-SRM analysis, and data analysis. Further improvements in detection sensitivity and sample throughput are needed towards targeted single-cell proteomics analysis. We anticipate that cLC-SRM will be broadly applied to biomedical research and systems biology with the potential of facilitating precision medicine.
Collapse
Affiliation(s)
- Kendall Martin
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University
| | | | - Fillmore L Thomas
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory;
| |
Collapse
|
4
|
Preparation of Tissue Samples for Large-scale Quantitative Mass Spectrometric Analysis. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0495-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Yu S, Chen T, Zhang Q, Zhou M, Zhu X. Application of DNA nanodevices for biosensing. Analyst 2020; 145:3481-3489. [PMID: 32319463 DOI: 10.1039/d0an00159g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deoxyribonucleic acid (DNA), the carrier of genetic information in living life, is an essential biomacromolecule in almost all living systems. DNA has advantages including, programmability, predictability, high rigidity, and stability. Through self-assembly or combination with other nanomaterials (such as gold nanoparticles, graphene oxides, quantum dots, and polymers), DNA can be applied to construct specific, stable, biocompatible, and functional nanodevices. DNA nanodevices have made greater contributions in a plethora of fields. In this review, we discuss the recent progress of DNA nanodevices in molecular detection and analysis. Meanwhile, we prospect the development of various DNA devices in biological analysis, clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Sinuo Yu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | | | | | | | | |
Collapse
|
6
|
Kim H, Park S, Kang BJ, Jeong Y, Lee H, Lee KH. Quantitative Single-Cell Analysis of Isolated Cancer Cells with a Microwell Array. ACS COMBINATORIAL SCIENCE 2019; 21:98-104. [PMID: 30485057 DOI: 10.1021/acscombsci.8b00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The heterogeneous nature of tumor-cell populations suggests that quantitative analysis at the single-cell level may provide better insights into cancer biology. Specifically, detection of multiple biomarkers from a single cell offers important initial information about cellular behavior. However, conventional approaches limit biomarker detection at the single-cell level. Here, we fabricated a polymer microwell array to capture single cells from prostate-cancer cell lines and quantitatively analyzed the expression of three different cancer-related biomarkers, CD44, EpCAM, and PSMA, without a membrane protein-extraction step. The resulting information on cell-surface biomarker distributions was compared with that from other standard analytical techniques. Interestingly, a large variation in CD44-expression levels was observed when the cell-proliferation cycle was modulated. On the other hand, the expression levels of EpCAM in three different cell lines are consistent among the different analytical methods with the exception of the microarray, where it has a different substrate material to adhere to. This observation clearly emphasizes that biomarker choice and environmental control are critical for properly understanding the single-cell state.
Collapse
Affiliation(s)
- Hojun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sungwook Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Benedict J. Kang
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Youngdo Jeong
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyojin Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Zhang P, Gaffrey MJ, Zhu Y, Chrisler WB, Fillmore TL, Yi L, Nicora CD, Zhang T, Wu H, Jacobs J, Tang K, Kagan J, Srivastava S, Rodland KD, Qian WJ, Smith RD, Liu T, Wiley HS, Shi T. Carrier-Assisted Single-Tube Processing Approach for Targeted Proteomics Analysis of Low Numbers of Mammalian Cells. Anal Chem 2019; 91:1441-1451. [PMID: 30557009 PMCID: PMC6555634 DOI: 10.1021/acs.analchem.8b04258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heterogeneity in composition is inherent in all cell populations, even those containing a single cell type. Single-cell proteomics characterization of cell heterogeneity is currently achieved by antibody-based technologies, which are limited by the availability of high-quality antibodies. Herein we report a simple, easily implemented, mass spectrometry (MS)-based targeted proteomics approach, termed cLC-SRM (carrier-assisted liquid chromatography coupled to selected reaction monitoring), for reliable multiplexed quantification of proteins in low numbers of mammalian cells. We combine a new single-tube digestion protocol to process low numbers of cells with minimal loss together with sensitive LC-SRM for protein quantification. This single-tube protocol builds upon trifluoroethanol digestion and further minimizes sample losses by tube pretreatment and the addition of carrier proteins. We also optimized the denaturing temperature and trypsin concentration to significantly improve digestion efficiency. cLC-SRM was demonstrated to have sufficient sensitivity for reproducible detection of most epidermal growth factor receptor (EGFR) pathway proteins expressed at levels ≥30 000 and ≥3000 copies per cell for 10 and 100 mammalian cells, respectively. Thus, cLC-SRM enables reliable quantification of low to moderately abundant proteins in less than 100 cells and could be broadly useful for multiplexed quantification of important proteins in small subpopulations of cells or in size-limited clinical samples. Further improvements of this method could eventually enable targeted single-cell proteomics when combined with either SRM or other emerging ultrasensitive MS detection.
Collapse
Affiliation(s)
- Pengfei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People’s Republic of China
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Matthew J. Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - William B. Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Thomas L. Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Huanming Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jon Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jacob Kagan
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
8
|
Facile carrier-assisted targeted mass spectrometric approach for proteomic analysis of low numbers of mammalian cells. Commun Biol 2018; 1:103. [PMID: 30271983 PMCID: PMC6123794 DOI: 10.1038/s42003-018-0107-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/10/2018] [Indexed: 01/04/2023] Open
Abstract
There is an unmet technical challenge for mass spectrometry (MS)-based proteomic analysis of single mammalian cells. Quantitative proteomic analysis of single cells has been previously achieved by antibody-based immunoassays but is limited by the availability of high-quality antibodies. Herein we report a facile targeted MS-based proteomics method, termed cPRISM-SRM (carrier-assisted high-pressure, high-resolution separations with intelligent selection and multiplexing coupled to selected reaction monitoring), for reliable analysis of low numbers of mammalian cells. The method capitalizes on using “carrier protein” to assist processing of low numbers of cells with minimal loss, high-resolution PRISM separation for target peptide enrichment, and sensitive SRM for protein quantification. We have demonstrated that cPRISM-SRM has sufficient sensitivity to quantify proteins expressed at ≥200,000 copies per cell at the single-cell level and ≥3000 copies per cell in 100 mammalian cells. We envision that with further improvement cPRISM-SRM has the potential to move toward targeted MS-based single-cell proteomics. Tujin Shi et al. report a mass spectrometry-based proteomics approach, cPRISM-SRM, that allows for accurate quantification of proteins in small numbers of mammalian cells through the use of a carrier protein to prevent sample loss. The sensitivity of cPRISM-SRM allows for measurement of the 2500 most abundant proteins in a human cell.
Collapse
|
9
|
Chen X, Zhao J, Chen T, Gao T, Zhu X, Li G. Nondestructive Analysis of Tumor-Associated Membrane Protein Integrating Imaging and Amplified Detection in situ Based on Dual-Labeled DNAzyme. Am J Cancer Res 2018; 8:1075-1083. [PMID: 29464000 PMCID: PMC5817111 DOI: 10.7150/thno.22794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/05/2017] [Indexed: 12/13/2022] Open
Abstract
Comprehensive analysis of the expression level and location of tumor-associated membrane proteins (TMPs) is of vital importance for the profiling of tumor cells. Currently, two kinds of independent techniques, i.e. ex situ detection and in situ imaging, are usually required for the quantification and localization of TMPs respectively, resulting in some inevitable problems. Methods: Herein, based on a well-designed and fluorophore-labeled DNAzyme, we develop an integrated and facile method, in which imaging and quantification of TMPs in situ are achieved simultaneously in a single system. The labeled DNAzyme not only produces localized fluorescence for the visualization of TMPs but also catalyzes the cleavage of a substrate to produce quantitative fluorescent signals that can be collected from solution for the sensitive detection of TMPs. Results: Results from the DNAzyme-based in situ imaging and quantification of TMPs match well with traditional immunofluorescence and western blotting. In addition to the advantage of two-in-one, the DNAzyme-based method is highly sensitivity, allowing the detection of TMPs in only 100 cells. Moreover, the method is nondestructive. Cells after analysis could retain their physiological activity and could be cultured for other applications. Conclusion: The integrated system provides solid results for both imaging and quantification of TMPs, making it a competitive method over some traditional techniques for the analysis of TMPs, which offers potential application as a toolbox in the future.
Collapse
|
10
|
Shi T, Quek SI, Gao Y, Nicora CD, Nie S, Fillmore TL, Liu T, Rodland KD, Smith RD, Leach RJ, Thompson IM, Vitello EA, Ellis WJ, Liu AY, Qian WJ. Multiplexed targeted mass spectrometry assays for prostate cancer-associated urinary proteins. Oncotarget 2017; 8:101887-101898. [PMID: 29254211 PMCID: PMC5731921 DOI: 10.18632/oncotarget.21710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023] Open
Abstract
Biomarkers for effective early diagnosis and prognosis of prostate cancer are still lacking. Multiplexed assays for cancer-associated proteins could be useful for identifying biomarkers for cancer detection and stratification. Herein, we report the development of sensitive targeted mass spectrometry assays for simultaneous quantification of 10 prostate cancer-associated proteins in urine. The diagnostic utility of these markers was evaluated with an initial cohort of 20 clinical urine samples. Individual marker concentration was normalized against the measured urinary prostate-specific antigen level as a reference of prostate-specific secretion. The areas under the receiver-operating characteristic curves for the 10 proteins ranged from 0.75 for CXL14 to 0.87 for CEAM5. Furthermore, MMP9 level was found to be significantly higher in patients with high Gleason scores, suggesting a potential of MMP9 as a marker for risk level assessment. Taken together, our work illustrated the feasibility of accurate multiplexed measurements of low-abundance cancer-associated proteins in urine and provided a viable path forward for preclinical verification of candidate biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sue-Ing Quek
- Department of Urology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Present address: Singapore Polytechnic, Center for Biomedical and Life Sciences T11A-412 (level 4), Singapore
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Song Nie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas L Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robin J Leach
- Department of Urology and the Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ian M Thompson
- Department of Urology and the Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Elizabeth A Vitello
- Department of Urology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - William J Ellis
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
11
|
Wang H, Barbieri CE, He J, Gao Y, Shi T, Wu C, Schepmoes AA, Fillmore TL, Chae SS, Huang D, Mosquera JM, Qian WJ, Smith RD, Srivastava S, Kagan J, Camp DG, Rodland KD, Rubin MA, Liu T. Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics. J Transl Med 2017; 15:175. [PMID: 28810879 PMCID: PMC5557563 DOI: 10.1186/s12967-017-1276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speckle-type POZ protein (SPOP) is an E3 ubiquitin ligase adaptor protein that functions as a potential tumor suppressor, and SPOP mutations have been identified in ~10% of human prostate cancers. However, it remains unclear if mutant SPOP proteins can be utilized as biomarkers for early detection, diagnosis, prognosis or targeted therapy of prostate cancer. Moreover, the SPOP mutation sites are distributed in a relatively short region with multiple lysine residues, posing significant challenges for bottom-up proteomics analysis of the SPOP mutations. METHODS To address this issue, PRISM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry assays have been developed for quantifying wild-type SPOP protein and 11 prostate cancer-derived SPOP mutations. RESULTS Despite inherent limitations due to amino acid sequence constraints, all the PRISM-SRM assays developed using Arg-C digestion showed a linear dynamic range of at least two orders of magnitude, with limits of quantification ranged from 0.1 to 1 fmol/μg of total protein in the cell lysate. Applying these SRM assays to analyze HEK293T cells with and without expression of the three most frequent SPOP mutations in prostate cancer (Y87N, F102C or F133V) led to confident detection of all three SPOP mutations in corresponding positive cell lines but not in the negative cell lines. Expression of the F133V mutation and wild-type SPOP was at much lower levels compared to that of F102C and Y87N mutations; however, at present, it is unknown if this also affects the biological activity of the SPOP protein. CONCLUSIONS In summary, PRISM-SRM enables multiplexed, isoform-specific detection of mutant SPOP proteins in cell lysates, providing significant potential in biomarker development for prostate cancer.
Collapse
Affiliation(s)
- Hui Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Christopher E. Barbieri
- Institute of Precision Medicine of Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY USA
| | - Jintang He
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Chaochao Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Thomas L. Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Sung-Suk Chae
- Institute of Precision Medicine of Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY USA
| | - Dennis Huang
- Institute of Precision Medicine of Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY USA
| | - Juan Miguel Mosquera
- Institute of Precision Medicine of Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, Cancer Biomarkers Research Group, National Cancer Institute, Bethesda, MD USA
| | - Jacob Kagan
- Division of Cancer Prevention, Cancer Biomarkers Research Group, National Cancer Institute, Bethesda, MD USA
| | - David G. Camp
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| | - Mark A. Rubin
- Institute of Precision Medicine of Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, WA 99354 USA
| |
Collapse
|
12
|
Nie S, Shi T, Fillmore TL, Schepmoes AA, Brewer H, Gao Y, Song E, Wang H, Rodland KD, Qian WJ, Smith RD, Liu T. Deep-Dive Targeted Quantification for Ultrasensitive Analysis of Proteins in Nondepleted Human Blood Plasma/Serum and Tissues. Anal Chem 2017; 89:9139-9146. [PMID: 28724286 DOI: 10.1021/acs.analchem.7b01878] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low nanograms per milliliter to sub-naograms per milliliter level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundance proteins (e.g., ≤ 100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging, especially for these samples without available antibodies for enrichment. To address this need, we have developed an antibody-independent deep-dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide separation and enrichment combined with precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ∼5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue provides precise quantification of endogenous proteins at the ∼10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibodies are not available.
Collapse
Affiliation(s)
- Song Nie
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Thomas L Fillmore
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Athena A Schepmoes
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Heather Brewer
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Yuqian Gao
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ehwang Song
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Hui Wang
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Karin D Rodland
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|
13
|
Patel PG, Selvarajah S, Guérard KP, Bartlett JMS, Lapointe J, Berman DM, Okello JBA, Park PC. Reliability and performance of commercial RNA and DNA extraction kits for FFPE tissue cores. PLoS One 2017. [PMID: 28640876 PMCID: PMC5480995 DOI: 10.1371/journal.pone.0179732] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer biomarker studies often require nucleic acid extraction from limited amounts of formalin-fixed, paraffin-embedded (FFPE) tissues, such as histologic sections or needle cores. A major challenge is low quantity and quality of extracted nucleic acids, which can limit our ability to perform genetic analyses, and have a significant influence on overall study design. This study was aimed at identifying the most reliable and reproducible method of obtaining sufficient high-quality nucleic acids from FFPE tissues. We compared the yield and quality of nucleic acids from 0.6-mm FFPE prostate tissue cores across 16 DNA and RNA extraction protocols, using 14 commercially available kits. Nucleic acid yield was determined by fluorometry, and quality was determined by spectrophotometry. All protocols yielded nucleic acids in quantities that are compatible with downstream molecular applications. However, the protocols varied widely in the quality of the extracted RNA and DNA. Four RNA and five DNA extraction protocols, including protocols from two kits for dual-extraction of RNA and DNA from the same tissue source, were prioritized for further quality assessment based on the yield and purity of their products. Specifically, their compatibility with downstream reactions was assessed using both NanoString nCounter gene expression assays and reverse-transcriptase real-time PCR for RNA, and methylation-specific PCR assays for DNA. The kit deemed most suitable for FFPE tissue was the AllPrep kit by Qiagen because of its yield, quality, and ability to purify both RNA and DNA from the same sample, which would be advantageous in biomarker studies.
Collapse
Affiliation(s)
- Palak G. Patel
- Department of Pathology & Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen’s Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - Shamini Selvarajah
- Department of Pathology & Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Karl-Philippe Guérard
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - John M. S. Bartlett
- Diagnostic Development Program, Ontario Institute for Cancer Research (OICR), Toronto, Ontario, Canada
| | - Jacques Lapointe
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - David M. Berman
- Department of Pathology & Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen’s Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - John B. A. Okello
- Department of Pathology & Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen’s Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - Paul C. Park
- Department of Pathology & Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- * E-mail: ,
| |
Collapse
|
14
|
Faria SS, Morris CFM, Silva AR, Fonseca MP, Forget P, Castro MS, Fontes W. A Timely Shift from Shotgun to Targeted Proteomics and How It Can Be Groundbreaking for Cancer Research. Front Oncol 2017; 7:13. [PMID: 28265552 PMCID: PMC5316539 DOI: 10.3389/fonc.2017.00013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
The fact that cancer is a leading cause of death all around the world has naturally sparked major efforts in the pursuit of novel and more efficient biomarkers that could better serve as diagnostic tools, prognostic predictors, or therapeutical targets in the battle against this type of disease. Mass spectrometry-based proteomics has proven itself as a robust and logical alternative to the immuno-based methods that once dominated the field. Nevertheless, intrinsic limitations of classic proteomic approaches such as the natural gap between shotgun discovery-based methods and clinically applicable results have called for the implementation of more direct, hypothesis-based studies such as those made available through targeted approaches, that might be able to streamline biomarker discovery and validation as a means to increase survivability of affected patients. In fact, the paradigm shifting potential of modern targeted proteomics applied to cancer research can be demonstrated by the large number of advancements and increasing examples of new and more useful biomarkers found during the course of this review in different aspects of cancer research. Out of the many studies dedicated to cancer biomarker discovery, we were able to devise some clear trends, such as the fact that breast cancer is the most common type of tumor studied and that most of the research for any given type of cancer is focused on the discovery diagnostic biomarkers, with the exception of those that rely on samples other than plasma and serum, which are generally aimed toward prognostic markers. Interestingly, the most common type of targeted approach is based on stable isotope dilution-selected reaction monitoring protocols for quantification of the target molecules. Overall, this reinforces that notion that targeted proteomics has already started to fulfill its role as a groundbreaking strategy that may enable researchers to catapult the number of viable, effective, and validated biomarkers in cancer clinical practice.
Collapse
Affiliation(s)
- Sara S Faria
- Mastology Program, Federal University of Uberlandia (UFU) , Uberlandia , Brazil
| | - Carlos F M Morris
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Adriano R Silva
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Micaella P Fonseca
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patrice Forget
- Department of Anesthesiology and Perioperative Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit of Brussel , Brussels , Belgium
| | - Mariana S Castro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| |
Collapse
|
15
|
Liu X, Xue M. Noninvasive Prenatal Diagnosis Significance of ERG Methylation as a Biomarker in Down's Syndrome. Med Sci Monit 2017; 23:398-404. [PMID: 28111453 PMCID: PMC5282964 DOI: 10.12659/msm.898687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Down’s syndrome (DS) is a genetic disease with chromosome abnormality due to the increasing chromosome 21. This study focused on the clinical application value of ERG methylation level in blood of pregnant women as a biomarker in Down’s syndrome. Material/Methods The sham group consisted of 210 nonpregnant women, the positive control group consisted of 33 women with a delivery history of DS fetus, and the negative control group consisted of 60 women with eutocia history. A combination of restriction enzyme digestion experiment and PCR was performed to examine ERG methylation levels, methylation sites, and distribution in blood of pregnant women and in chorion tissues from abortion samples. Gene sequencing was performed to determine the ERG sequence in chromosome 21. Homology between normal tissues and chorion tissues from abortion samples was analyzed with bioinformatics technology. Results ERG methylation in chorion tissues from 210 abortion samples at 8, 9, and 10 weeks gestational age were determined; however, no ERG methylation was determined in blood of pregnant women. Gene sequencing indicated that normal ERG sequence in chromosome 21 was in fetus chorion tissues, and these ERG sequences were aberrantly methylated. Bioinformatics result showed that homology and DNA methylation level was discrepancy in normal tissues and chorion tissues from abortion samples. Conclusions It was worthwhile to use ERG methylation as biomarker in noninvasive prenatal diagnosis, and ERG methylation should be applied with consent of pregnancy and her relatives.
Collapse
Affiliation(s)
- Xiangju Liu
- Genetics Diagnostic Lab, Tai'an Maternity and Child Care Hospital, Tai'an, Shandong, China (mainland)
| | - Ming Xue
- Genetics Diagnostic Lab, Tai'an Maternity and Child Care Hospital, Tai'an, Shandong, China (mainland)
| |
Collapse
|
16
|
Rastogi A, Ali A, Tan SH, Banerjee S, Chen Y, Cullen J, Xavier CP, Mohamed AA, Ravindranath L, Srivastav J, Young D, Sesterhenn IA, Kagan J, Srivastava S, McLeod DG, Rosner IL, Petrovics G, Dobi A, Srivastava S, Srinivasan A. Autoantibodies against oncogenic ERG protein in prostate cancer: potential use in diagnosis and prognosis in a panel with C-MYC, AMACR and HERV-K Gag. Genes Cancer 2017; 7:394-413. [PMID: 28191285 PMCID: PMC5302040 DOI: 10.18632/genesandcancer.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overdiagnosis and overtreatment of prostate cancer (CaP) is attributable to widespread reliance on PSA screening in the US. This has prompted us and others to search for improved biomarkers for CaP, to facilitate early detection and disease stratification. In this regard, autoantibodies (AAbs) against tumor antigens could serve as potential candidates for diagnosis and prognosis of CaP. Towards this, our goals were: i) To investigate whether AAbs against ERG oncoprotein (overexpressed in 25-50% of Caucasian American and African American CaP) are present in the sera of CaP patients; ii) To evaluate an AAb panel to enhance CaP detection. The results using an enzyme-linked immunosorbent assay (ELISA) showed that anti-ERG AAbs are present in a significantly higher proportion in the sera of CaP patients compared to healthy controls (p = 0.0001). Furthermore, a panel of AAbs against ERG, AMACR and human endogenous retrovirus-K Gag successfully differentiated CaP patient sera from healthy controls (AUC = 0.791). These results demonstrate for the first time that anti-ERG AAbs are present in the sera of CaP patients. In addition, the data also suggest that AAbs against ERG together with AMACR and HERV-K Gag may be a useful panel of biomarkers for diagnosis and prognosis of CaP.
Collapse
Affiliation(s)
- Anshu Rastogi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amina Ali
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sreedatta Banerjee
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Charles P Xavier
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jigisha Srivastav
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Denise Young
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Jacob Kagan
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - David G McLeod
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inger L Rosner
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
17
|
Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD. Advances in targeted proteomics and applications to biomedical research. Proteomics 2016; 16:2160-82. [PMID: 27302376 PMCID: PMC5051956 DOI: 10.1002/pmic.201500449] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ehwang Song
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Song Nie
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karin D Rodland
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
18
|
Ippoliti PJ, Kuhn E, Mani DR, Fagbami L, Keshishian H, Burgess MW, Jaffe JD, Carr SA. Automated Microchromatography Enables Multiplexing of Immunoaffinity Enrichment of Peptides to Greater than 150 for Targeted MS-Based Assays. Anal Chem 2016; 88:7548-55. [PMID: 27321643 DOI: 10.1021/acs.analchem.6b00946] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Immunoaffinity enrichment of peptides coupled with analysis by stable isotope dilution multiple reaction mass spectrometry has been shown to have analytical performance and detection limits suitable for many biomarker verification studies and biological applications. Prior studies have shown that antipeptide antibodies can be multiplexed up to 50 in a single assay without significant loss of performance. Achieving higher multiplex levels is relevant to all studies involving precious biological material as this minimizes the amount of sample that must be consumed to measure a given set of analytes and reduces the assay cost per analyte. Here we developed automated methods employing the Agilent AssayMAP Bravo microchromatography platform and used these methods to characterize the performance of immunoaffinity enrichment of peptides up to multiplex levels of 172. Median capture efficiency for the target peptides remained high (88%) even at levels of 150-plex and declined to 70% at 172-plex compared to antibody performance observed at standard lower multiplex levels (n = 25). Subsequently, we developed and analytically characterized a multiplexed immuno-multiple reaction monitoring-mass spectrometry (immuno-MRM-MS) assay (n = 110) and applied it to measure candidate protein biomarkers of cardiovascular disease in plasma of patients undergoing planned myocardial infarction. The median lower limit of detection of all peptides was 71.5 amol/μL (nM), and the coefficient of variation (CV) was less than 15% at the lower limit of quantification. The results demonstrate that high multiplexed immuno-MRM-MS assays are readily achievable using the optimized sample processing and peptide capture methods described here.
Collapse
Affiliation(s)
- Paul J Ippoliti
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Eric Kuhn
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - D R Mani
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Lola Fagbami
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Hasmik Keshishian
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Michael W Burgess
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Jacob D Jaffe
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| |
Collapse
|
19
|
Wang H, Shi T, Qian WJ, Liu T, Kagan J, Srivastava S, Smith RD, Rodland KD, Camp DG. The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification. Expert Rev Proteomics 2015; 13:99-114. [PMID: 26581546 DOI: 10.1586/14789450.2016.1122529] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mass spectrometry (MS) -based proteomics has become an indispensable tool with broad applications in systems biology and biomedical research. With recent advances in liquid chromatography (LC) and MS instrumentation, LC-MS is making increasingly significant contributions to clinical applications, especially in the area of cancer biomarker discovery and verification. To overcome challenges associated with analyses of clinical samples (for example, a wide dynamic range of protein concentrations in bodily fluids and the need to perform high throughput and accurate quantification of candidate biomarker proteins), significant efforts have been devoted to improve the overall performance of LC-MS-based clinical proteomics platforms. Reviewed here are the recent advances in LC-MS and its applications in cancer biomarker discovery and quantification, along with the potentials, limitations and future perspectives.
Collapse
Affiliation(s)
- Hui Wang
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Tujin Shi
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Wei-Jun Qian
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Tao Liu
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Jacob Kagan
- b Division of Cancer Prevention , National Cancer Institute (NCI) , Rockville , MD , USA
| | - Sudhir Srivastava
- b Division of Cancer Prevention , National Cancer Institute (NCI) , Rockville , MD , USA
| | - Richard D Smith
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Karin D Rodland
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - David G Camp
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
20
|
Frantzi M, Latosinska A, Merseburger AS, Mischak H. Recent progress in urinary proteome analysis for prostate cancer diagnosis and management. Expert Rev Mol Diagn 2015; 15:1539-54. [PMID: 26491818 DOI: 10.1586/14737159.2015.1104248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is fifth leading cause of cancer-associated deaths in men worldwide. Although the application of the serum prostate-specific antigen (PSA) screening test resulted in an increase in the PCa diagnosed cases, it demonstrated a negligible benefit regarding the associated mortality. Treatment options vary, with active surveillance to be preferable for patients with low-risk PCa and therapy of advanced castration-resistant PCa to rely on α-emitters and cytotoxic chemotherapy. Although recent developments have led to the approval of novel drugs for the treatment of castration-resistant PCa, the optimal sequence and timing of medication have not been yet determined. New screening modalities could improve the discriminatory accuracy between tumors with favorable clinical prognosis. Implementation of proteomic-based biomarkers appears to be a promising improvement, which could enable a more accurate diagnosis, guide treatment and improve patient outcome. Reviewed here are urinary proteome-based approaches for detection of PCa and patient management.
Collapse
Affiliation(s)
- Maria Frantzi
- a Mosaiques diagnostics GmbH , Hannover , Germany.,b Biotechnology Division , Biomedical Research Foundation Academy of Athens , Athens , Greece
| | - Agnieszka Latosinska
- b Biotechnology Division , Biomedical Research Foundation Academy of Athens , Athens , Greece
| | | | - Harald Mischak
- a Mosaiques diagnostics GmbH , Hannover , Germany.,d Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| |
Collapse
|
21
|
A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis 2015; 18:370-5. [PMID: 26345389 DOI: 10.1038/pcan.2015.40] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND New screening methods that can add predictive diagnostic value for aggressive (high-grade, Gleason score ⩾ 7) prostate cancer (PCa) are needed to reduce unnecessary biopsies for patients with non-aggressive PCa. This is particularly important for men presenting for an initial biopsy with an equivocal PSA in the 2-10 ng ml(-1) range. PCA3 and ERG are biomarkers that can add predictive value for PCa in urine; however, with a limited utility as a digital rectal exam (DRE) is required. METHODS First-catch urine samples were collected at six sites from men scheduled to undergo a prostate biopsy. Exosomal RNA was extracted, RNA copy numbers of ERG and PCA3 were measured by reverse transcription-quantitative PCR (RT-qPCR), and the EXO106 score (the sum of normalized PCA3 and ERG RNA levels) was computed. Performance was compared with standard of care (SOC; PSA, age, race or family history) parameters. Contingency table, logistic regression, receiver operating characteristics curve and box-plot analyses were performed. RESULTS In this cohort (N=195), a dichotomous EXO106 score demonstrated good clinical performance in predicting biopsy result for both any cancer and high-grade disease. For high-grade disease, the negative and positive predictive values were 97.5% and 34.5%, respectively. The discrimination between high-grade and Gleason score ⩽ 6 (including benign) biopsy results by a combination of EXO106 and SOC (area under the curve (AUC)=0.803) was significantly improved compared with SOC without EXO106 (AUC=0.6723, P=0.0009). The median EXO106 score correlated (P<0.001; Spearman's rank order) with histologic grade. CONCLUSIONS A novel molecular signature (EXO106 score) derived from non-DRE urine demonstrated independent, negative predictive value for the diagnosis of high-grade PCa from initial biopsy for men with 'gray zone' serum PSA levels. Its use in the biopsy decision process could result in fewer prostate biopsies for clinically insignificant disease.
Collapse
|