1
|
Zhan MX, Tang L, Lu YF, Wu HH, Guo ZB, Shi ZM, Yang CL, Zou YQ, Yang F, Chen GZ. Ulinastatin Exhibits Antinociception in Rat Models of Acute Somatic and Visceral Pain Through Inhibiting the Local and Central Inflammation. J Pain Res 2021; 14:1201-1214. [PMID: 33976570 PMCID: PMC8106509 DOI: 10.2147/jpr.s303595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction Ulinastatin, a broad-spectrum serine protease inhibitor, has been widely used to treat various diseases clinically. However, so far, the antinociceptive effect of ulinastatin remains less studied experimentally and the underlying mechanisms of ulinastatin for pain relief remain unclear. This study aimed to find evidence of the analgesic effect of ulinastatin on acute somatic and visceral pain. Methods The analgesic effect of ulinastatin on acute somatic and visceral pain was evaluated by using formalin and acetic acid-induced writhing test. The analgesic mechanism of ulinastatin was verified by detecting the peripheral inflammatory cell infiltration and spinal glial activation with hematoxylin-eosin (H&E) and immunohistochemistry staining. Results We found that both of intraperitoneal (i.p.) pre-administration and post-administration of ulinastatin could reduce the total number of flinching and the licking duration following intraplantar formalin injection in a dose-related manner. However, the inhibitory effect of ulinastatin existed only in the second phase (Phase 2) of formalin-induced spontaneous pain response, with no effect in the first phase (Phase 1). The formalin-induced edema and ulcer were also improved by i.p. administration of ulinastatin. Moreover, i.p. administration of ulinastatin was also able to delay the occurrence of acetic acid-induced writhing and reduced the total number of writhes dose-dependently. We further demonstrated that ulinastatin significantly decreased the local inflammatory cell infiltration in injured paw and peritoneum tissue under formalin and acetic acid test separately. The microglial and astrocytic activation in the spinal dorsal horn induced by intraplantar formalin and i.p. acetic acid injection were also dramatically inhibited by i.p. administration of ulinastatin. Conclusion Our results for the first time provided a new line of evidence showing that ulinastatin could attenuate acute somatic and visceral pain by inhibiting the peripheral and spinal inflammatory reaction.
Collapse
Affiliation(s)
- Mei-Xiang Zhan
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Li Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yun-Fei Lu
- Department of Anesthesiology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Huang-Hui Wu
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Zhi-Bin Guo
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Zhong-Mou Shi
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Chen-Long Yang
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China.,Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Guo-Zhong Chen
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| |
Collapse
|
2
|
Wilson SH, Hellman KM, James D, Adler AC, Chandrakantan A. Mechanisms, diagnosis, prevention and management of perioperative opioid-induced hyperalgesia. Pain Manag 2021; 11:405-417. [PMID: 33779215 DOI: 10.2217/pmt-2020-0105] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Opioid-induced hyperalgesia (OIH) occurs when opioids paradoxically enhance the pain they are prescribed to ameliorate. To address a lack of perioperative awareness, we present an educational review of clinically relevant aspects of the disorder. Although the mechanisms of OIH are thought to primarily involve medullary descending pathways, it is likely multifactorial with several relevant therapeutic targets. We provide a suggested clinical definition and directions for clinical differentiation of OIH from other diagnoses, as this may be confusing but is germane to appropriate management. Finally, we discuss prevention including patient education and analgesic management choices. As prevention may serve as the best treatment, patient risk factors, opioid mitigation, and both pharmacologic and non-pharmacologic strategies are discussed.
Collapse
Affiliation(s)
- Sylvia H Wilson
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kevin M Hellman
- Department of Obstetrics & Gynecology, NorthShore University Health System & Pritzker School of Medicine at the University of Chicago, Evanston, IL 60201, USA
| | - Dominika James
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NCÂ 27599, USA
| | - Adam C Adler
- Department of Anesthesiology & Perioperative Pain Medicine, Texas Children's Hospital, Houston, TXÂ 77030, USA.,Department of Anesthesiology, Baylor College of Medicine, Houston, TXÂ 77030, USA
| | - Arvind Chandrakantan
- Department of Anesthesiology & Perioperative Pain Medicine, Texas Children's Hospital, Houston, TXÂ 77030, USA.,Department of Anesthesiology, Baylor College of Medicine, Houston, TXÂ 77030, USA
| |
Collapse
|
3
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
4
|
Li X, Liu Y, Zhao J, Xiang Z, Ren C, Qiao K. The Safety and Efficacy of Ultrasound-Guided Serratus Anterior Plane Block (SAPB) Combined with Dexmedetomidine for Patients Undergoing Video-Assisted Thoracic Surgery (VATS): A Randomized Controlled Trial. J Pain Res 2020; 13:1785-1795. [PMID: 32801843 PMCID: PMC7381820 DOI: 10.2147/jpr.s258443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
Background Although video-assisted thoracic surgery (VATS) can significantly reduce postoperative pain, the incidence is as high as 30–50%. The purpose of this study was to explore the safety and efficacy of ultrasound-guided serratus anterior plane block (SAPB) combined with dexmedetomidine (Dex) for patients undergoing VATS. Methods Eighty patients were randomized into two groups (20 mL 0.5% ropivacaine plus 0.5 µg/kg or 1 µg/kg Dex). Primary outcome was the visual analog scale of pain while coughing (VASc) score at 24 h after surgery. Secondary outcomes included hemodynamics, sufentanil consumption, number of patients needing rescue analgesia, time to first rescue analgesic, total dose of rescue analgesic, satisfaction scores of patients and surgeons, time of chest tube removal, length of hospital stay, adverse effects, the prevalence of chronic pain and quality of life. Results Compared with D1 group, visual analog scale of pain at rest (VASr) was significantly lower during the first 24 h after surgery, while VASc was significantly lower during the first 48 h after surgery (P<0.05). Mean arterial pressure was significantly decreased from T2 to T8, and heart rate was significantly decreased from T2 to T7 in the D2 group (P<0.05). Consumption of sevoflurane, remifentanil, DEX and the recovery time were significantly reduced in the D2 group (P <0.05). Consumption of sufentanil 8–72 h after surgery was significantly lower in the D2 group (P<0.05). Additionally, the number of patients who required rescue analgesia, the time to the first dose of rescue analgesia, and the total dose of rescue analgesia was significantly lower in the D2 group (P<0.05). Conclusion The results of this study show that 1 µg/kg DEX is a beneficial adjuvant to ropivacaine for single-injection SAPB in VATS patients while stable hemodynamics were maintained.
Collapse
Affiliation(s)
- Xiang Li
- Department of Anesthesiology, The First People's Hospital of Tianmen, Tianmen, Hubei, People's Republic of China
| | - Yanchao Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Jing Zhao
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Zhixiong Xiang
- Department of Anesthesiology, The First People's Hospital of Tianmen, Tianmen, Hubei, People's Republic of China
| | - Chunguang Ren
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Kekun Qiao
- Department of Anesthesiology, The First People's Hospital of Tianmen, Tianmen, Hubei, People's Republic of China
| |
Collapse
|
5
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
6
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
7
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
8
|
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15:81-91. [PMID: 29557749 PMCID: PMC6021214 DOI: 10.2174/1567202615666180319151244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND With the global increase in lifespan expectancy, neurodegenerative disorders continue to affect an ever-increasing number of individuals throughout the world. New treatment strategies for neurodegenerative diseases are desperately required given the lack of current treatment modalities. METHODS Here, we examine novel strategies for neurodegenerative disorders that include circadian clock genes, non-coding Ribonucleic Acids (RNAs), and the mammalian forkhead transcription factors of the O class (FoxOs). RESULTS Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to potentially limit or remove the significant disability and death associated with neurodegenerative disorders. Each of these pathways has an intimate relationship with the programmed death pathways of autophagy and apoptosis and share a common link to the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell development and neuronal differentiation and offer protection against vascular disease such as atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate pathways of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative disorders. CONCLUSION Continued work with circadian clock genes, non-coding RNAs, and FoxOs can offer new prospects and hope for the development of vital strategies for the treatment of neurodegenerative diseases. These innovative investigative avenues have the potential to significantly limit disability and death from these devastating disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
9
|
Porela-Tiihonen S, Kokki M, Kokki H. Sufentanil sublingual formulation for the treatment of acute, moderate to severe postoperative pain in adult patients. Expert Rev Neurother 2016; 17:101-111. [PMID: 27835931 DOI: 10.1080/14737175.2017.1260005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Sufentanil is a highly selective µ-opioid agonist commonly used by intravenous and intrathecal routes for acute pain. Sublingual sufentanil formulation for patient controlled analgesia (PCA) uses an innovative administration device that suspends a 15 µg nanotablet with a fixed lockout interval. The system is a non-invasive, less burdensome method of opioid delivery compared to intravenous and intrathecal routes. Sublingual nanotablet PCA transmucosal bioavailability is 59% and the meaningful analgesic onset time is 60 minutes. Areas covered: This paper focuses on the effectiveness, safety and feasibility of sufentanil PCA sublingual formulation for the management of postoperative pain. The paper is based on PubMed searches and the European Medicine Agency assessment report. Expert commentary: Under-treatment of acute pain is a substantial clinical problem. The initial experiences with the sublingual delivery system are encouraging. Sufentanil sublingual nanotablets intended for PCA device use are approved in Europe, and approval is pending in the United States.
Collapse
Affiliation(s)
- Susanna Porela-Tiihonen
- a Department of Anaesthesia and Operative Services , Kuopio University Hospital , Kuopio , Finland.,b School of Medicine , University of Eastern Finland , Kuopio , Finland
| | - Merja Kokki
- a Department of Anaesthesia and Operative Services , Kuopio University Hospital , Kuopio , Finland.,b School of Medicine , University of Eastern Finland , Kuopio , Finland
| | - Hannu Kokki
- a Department of Anaesthesia and Operative Services , Kuopio University Hospital , Kuopio , Finland.,b School of Medicine , University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
10
|
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11:372-85. [PMID: 27127460 PMCID: PMC4828986 DOI: 10.4103/1673-5374.179032] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Throughout the globe, diabetes mellitus (DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder. DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy. The mechanistic target of rapamycin (mTOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM. mTOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis, insulin resistance, insulin secretion, stem cell proliferation and differentiation, pancreatic β-cell function, and programmed cell death with apoptosis and autophagy. mTOR is central element for the protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), Wnt1 inducible signaling pathway protein 1 (WISP1), and growth factors. As a result, mTOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease. Future studies directed to elucidate the delicate balance mTOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.
Collapse
|
11
|
Maiese K. Erythropoietin and mTOR: A "One-Two Punch" for Aging-Related Disorders Accompanied by Enhanced Life Expectancy. Curr Neurovasc Res 2016; 13:329-340. [PMID: 27488211 PMCID: PMC5079807 DOI: 10.2174/1567202613666160729164900] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Life expectancy continues to increase throughout the world, but is accompanied by a rise in the incidence of non-communicable diseases. As a result, the benefits of an increased lifespan can be limited by aging-related disorders that necessitate new directives for the development of effective and safe treatment modalities. With this objective, the mechanistic target of rapamycin (mTOR), a 289-kDa serine/threonine protein, and its related pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), proline rich Akt substrate 40 kDa (PRAS40), AMP activated protein kinase (AMPK), Wnt signaling, and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), have generated significant excitement for furthering novel therapies applicable to multiple systems of the body. Yet, the biological and clinical outcome of these pathways can be complex especially with oversight of cell death mechanisms that involve apoptosis and autophagy. Growth factors, and in particular erythropoietin (EPO), are one avenue under consideration to implement control over cell death pathways since EPO can offer potential treatment for multiple disease entities and is intimately dependent upon mTOR signaling. In experimental and clinical studies, EPO appears to have significant efficacy in treating several disorders including those involving the developing brain. However, in mature populations that are affected by aging-related disorders, the direction for the use of EPO to treat clinical disease is less clear that may be dependent upon a number of factors including the understanding of mTOR signaling. Continued focus upon the regulatory elements that control EPO and mTOR signaling could generate critical insights for targeting a broad range of clinical maladies.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
12
|
Maiese K. FoxO Transcription Factors and Regenerative Pathways in Diabetes Mellitus. Curr Neurovasc Res 2015; 12:404-13. [PMID: 26256004 PMCID: PMC4567483 DOI: 10.2174/1567202612666150807112524] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
Abstract
Mammalian forkhead transcription factors of the O class (FoxO) are exciting targets under consideration for the development of new clinical entities to treat metabolic disorders and diabetes mellitus (DM). DM, a disorder that currently affects greater than 350 million individuals globally, can become a devastating disease that leads to cellular injury through oxidative stress pathways and affects multiple systems of the body. FoxO proteins can regulate insulin signaling, gluconeogenesis, insulin resistance, immune cell migration, and cell senescence. FoxO proteins also control cell fate through oxidative stress and pathways of autophagy and apoptosis that either lead to tissue regeneration or cell demise. Furthermore, FoxO signaling can be dependent upon signal transduction pathways that include silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), Wnt, and Wnt1 inducible signaling pathway protein 1 (WISP1). Cellular metabolic pathways driven by FoxO proteins are complex, can lead to variable clinical outcomes, and require in-depth analysis of the epigenetic and post-translation protein modifications that drive FoxO protein activation and degradation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|