1
|
Melero-Jerez C, Alonso-Gómez A, Moñivas E, Lebrón-Galán R, Machín-Díaz I, de Castro F, Clemente D. The proportion of myeloid-derived suppressor cells in the spleen is related to the severity of the clinical course and tissue damage extent in a murine model of multiple sclerosis. Neurobiol Dis 2020; 140:104869. [PMID: 32278882 DOI: 10.1016/j.nbd.2020.104869] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/28/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple Sclerosis (MS) is the second cause of paraplegia among young adults, after all types of CNS traumatic lesions. In its most frequent relapsing-remitting form, the severity of the disease course is very heterogeneous, and its reliable evaluation remains a key issue for clinicians. Myeloid-Derived sSuppressor Cells (MDSCs) are immature myeloid cells that suppress the inflammatory response, a phenomenon related to the resolution or recovery of the clinical symptoms associated with experimental autoimmune encephalomyelitis (EAE), the most common model for MS. Here, we establish the severity index as a new parameter for the clinical assessment in EAE. It is derived from the relationship between the maximal clinical score and the time elapsed since disease onset. Moreover, we relate this new index with several histopathological hallmarks in EAE and with the peripheral content of MDSCs. Based on this new parameter, we show that the splenic MDSC content is related to the evolution of the clinical course of EAE, ranging from mild to severe. Indeed, when the severity index indicates a severe disease course, EAE mice display more intense lymphocyte infiltration, demyelination and axonal damage. A direct correlation was drawn between the MDSC population in the peripheral immune system, and the preservation of myelin and axons, which was also correlated with T cell apoptosis within the CNS (being these cells the main target for MDSC suppression). The data presented clearly indicated that the severity index is a suitable tool to analyze disease severity in EAE. Moreover, our data suggest a clear relationship between circulating MDSC enrichment and disease outcome, opening new perspectives for the future targeting of this population as an indicator of MS severity.
Collapse
Affiliation(s)
- Carolina Melero-Jerez
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - Aitana Alonso-Gómez
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Esther Moñivas
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Isabel Machín-Díaz
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
2
|
Wan X, Pei W, Shahzad KA, Zhang L, Song S, Jin X, Wang L, Zhao C, Shen C. A Tolerogenic Artificial APC Durably Ameliorates Experimental Autoimmune Encephalomyelitis by Directly and Selectively Modulating Myelin Peptide–Autoreactive CD4+and CD8+T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1194-1210. [DOI: 10.4049/jimmunol.1800108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/19/2018] [Indexed: 01/19/2023]
|
3
|
Pei W, Wan X, Shahzad KA, Zhang L, Song S, Jin X, Wang L, Zhao C, Shen C. Direct modulation of myelin-autoreactive CD4 + and CD8 + T cells in EAE mice by a tolerogenic nanoparticle co-carrying myelin peptide-loaded major histocompatibility complexes, CD47 and multiple regulatory molecules. Int J Nanomedicine 2018; 13:3731-3750. [PMID: 29983566 PMCID: PMC6027825 DOI: 10.2147/ijn.s164500] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Numerous nanomaterials have been reported in the treatment of multiple sclerosis or experimental autoimmune encephalomyelitis (EAE). But most of these nanoscale therapeutics deliver myelin antigens together with toxins or cytokines and underlay the cellular uptake and induction of tolerogenic antigen-presenting cells by which they indirectly induce T cell tolerance. This study focuses on the on-target and direct modulation of myelin-autoreactive T cells and combined use of multiple regulatory molecules by generating a tolerogenic nanoparticle. Materials and methods Poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) were fabricated by co-coupling MOG40–54/H-2Db-Ig dimer, MOG35–55/I-Ab multimer, anti-Fas, PD-L1-Fc and CD47-Fc and encapsulating transforming growth factor-β1. The resulting 217 nm tolerogenic nanoparticles (tNPs) were administered intravenously into MOG35–55 peptide-induced EAE mice, which was followed by the investigation of therapeutic outcomes and the in vivo mechanism. Results Four infusions of the tNPs durably ameliorated EAE with a marked reduction of clinical score, neuroinflammation and demyelination. They were distributed in secondary lymphoid tissues, various organs and brain after intravenous injection, with retention over 36 h, and made contacts with CD4+ and CD8+ T cells. Two injections of the tNPs markedly decreased the MOG35–55-reactive Th1 and Th17 cells and MOG40–55-reactive Tc1 and Tc17 cells, increased regulatory T cells, inhibited T cell proliferation and elevated T cell apoptosis in spleen. Transforming growth factor-β1 and interleukin-10 were upregulated in the homogenates of central nervous system and supernatant of spleen cells. Conclusion Our data suggest a novel therapeutic nanoparticle to directly modulate autoreactive T cells by surface presentation of multiple ligands and paracrine release of cytokine in the antigen-specific combination immunotherapy for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Weiya Pei
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Xin Wan
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Khawar Ali Shahzad
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Lei Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Shilong Song
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Limin Wang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Chen Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China,
| |
Collapse
|
4
|
Morath C, Schmitt A, Kälble F, Zeier M, Schmitt M, Sandra-Petrescu F, Opelz G, Terness P, Schaier M, Kleist C. Cell therapeutic approaches to immunosuppression after clinical kidney transplantation. Pediatr Nephrol 2018; 33:199-213. [PMID: 28229281 DOI: 10.1007/s00467-017-3599-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/11/2022]
Abstract
Refinement of immunosuppressive strategies has led to further improvement of kidney graft survival in recent years. Currently, the main limitations to long-term graft survival are life-threatening side effects of immunosuppression and chronic allograft injury, emphasizing the need for innovative immunosuppressive regimens that resolve this therapeutic dilemma. Several cell therapeutic approaches to immunosuppression and donor-specific unresponsiveness have been tested in early phase I and phase II clinical trials in kidney transplantation. The aim of this overview is to summarize current cell therapeutic approaches to immunosuppression in clinical kidney transplantation with a focus on myeloid suppressor cell therapy by mitomycin C-induced cells (MICs). MICs show great promise as a therapeutic agent to achieve the rapid and durable establishment of donor-unresponsiveness in living-donor kidney transplantation. Cell-based therapeutic approaches may eventually revolutionize immunosuppression in kidney transplantation in the near future.
Collapse
Affiliation(s)
- Christian Morath
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany.
| | - Anita Schmitt
- Department of Internal Medicine V, GMP Core Facility, University of Heidelberg, Heidelberg, Germany
| | - Florian Kälble
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Martin Zeier
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, GMP Core Facility, University of Heidelberg, Heidelberg, Germany
| | - Flavius Sandra-Petrescu
- Department of Transplantation Immunology, University of Heidelberg, Heidelberg, Germany.,Department of Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Gerhard Opelz
- Department of Transplantation Immunology, University of Heidelberg, Heidelberg, Germany
| | - Peter Terness
- Department of Transplantation Immunology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Christian Kleist
- Department of Transplantation Immunology, University of Heidelberg, Heidelberg, Germany.,Department of Radiology, Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Radu CA, Fischer S, Diehm Y, Hetzel O, Neubrech F, Dittmar L, Kleist C, Gebhard MM, Terness P, Kneser U, Kiefer J. The combination of mitomycin-induced blood cells with a temporary treatment of ciclosporin A prolongs allograft survival in vascularized composite allotransplantation. Langenbecks Arch Surg 2017; 403:83-92. [PMID: 28823033 DOI: 10.1007/s00423-017-1616-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 08/10/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) is a rapidly expanding field of transplantation and provides a potential treatment for complex tissue defects. Peripheral blood mononuclear cells (PBMCs) shortly incubated with the antibiotic and chemotherapeutic agent mitomycin C (MMC) can suppress allogeneic T cell response and control allograft rejection in various organ transplantation models. MMC-incubated PBMCs (MICs) are currently being tested in a phase I clinical trial in kidney transplant patients. Previous studies with MICs in a complex VCA model showed the immunomodulatory potential of these cells. The aim of this study is to optimize and evaluate the use of MICs in combination with a standard immunosuppressive drug in VCA. METHODS Fully mismatched rats were used as hind limb donors [Lewis (RT11)] and recipients [Brown-Norway (RT1n)]. Sixty allogeneic hind limb transplantations were performed in six groups. Group A received donor-derived MICs combined with a temporary ciclosporin A (CsA) treatment. Group B received MICs in combination with a temporarily administered reduced dose of CsA. Group C served as a control and received a standard CsA dose temporarily without an additional administration of MICs, whereas Group D was solely medicated with a reduced CsA dose. Group E received no immunosuppressive therapy, neither CsA nor MICs. Group F was given a continuous standard immunosuppressive regimen consisting of CsA and prednisolone. The endpoint of the study was the onset of allograft rejection which was assessed clinically and histologically. RESULTS In group A and B, the rejection-free interval of the allograft was significantly prolonged to an average of 23.1 ± 1.7 and 24.7 ± 1.8 days compared to the corresponding control groups (p < 0.01). Rejection in groups C, D, and E was noted after 14.3 ± 1.1, 7.8 ± 0.7, and 6.9 ± 0.6 days. No rejection occurred in control group F during the follow-up period of 100 days. No adverse events have been noted. CONCLUSION The findings of this study show that the combination of MICs with a temporary CsA treatment significantly prolongs the rejection-free interval in a complex VCA model. The combination of MICs with CsA showed no adverse events such as graft-versus-host disease. MICs, which are generated by a simple and reliable in vitro technique, represent a potential therapeutic tool for prolonging allograft survival through immunomodulation.
Collapse
Affiliation(s)
- Christian Andreas Radu
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Sebastian Fischer
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Yannick Diehm
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Otto Hetzel
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Florian Neubrech
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Laura Dittmar
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Christian Kleist
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany.,Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - Martha Maria Gebhard
- Department of Experimental Surgery, University of Heidelberg, Heidelberg, Germany
| | - Peter Terness
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Jurij Kiefer
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany.
| |
Collapse
|
6
|
|