1
|
Braidotti S, Granzotto M, Curci D, Faganel Kotnik B, Maximova N. Advancing Allogeneic Hematopoietic Stem Cell Transplantation Outcomes through Immunotherapy: A Comprehensive Review of Optimizing Non-CAR Donor T-Lymphocyte Infusion Strategies. Biomedicines 2024; 12:1853. [PMID: 39200317 PMCID: PMC11351482 DOI: 10.3390/biomedicines12081853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Optimized use of prophylactic or therapeutic donor lymphocyte infusions (DLI) is aimed at improving clinical outcomes in patients with malignant and non-malignant hematological diseases who have undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT). Memory T-lymphocytes (CD45RA-/CD45RO+) play a crucial role in immune reconstitution post-HSCT. The infusion of memory T cells is proven to be safe and effective in improving outcomes due to the enhanced reconstitution of immunity and increased protection against viremia, without exacerbating graft-versus-host disease (GVHD) risks. Studies indicate their persistence and efficacy in combating viral pathogens, suggesting a viable therapeutic avenue for patients. Conversely, using virus-specific T cells for viremia control presents challenges, such as regulatory hurdles, cost, and production time compared to CD45RA-memory T lymphocytes. Additionally, the modulation of regulatory T cells (Tregs) for therapeutic use has become an important area of investigation in GVHD, playing a pivotal role in immune tolerance modulation, potentially mitigating GVHD and reducing pharmacological immunosuppression requirements. Finally, donor T cell-mediated graft-versus-leukemia immune responses hold promise in curbing relapse rates post-HSCT, providing a multifaceted approach to therapeutic intervention in high-risk disease scenarios. This comprehensive review underscores the multifaceted roles of T lymphocytes in HSCT outcomes and identifies avenues for further research and clinical application.
Collapse
Affiliation(s)
- Stefania Braidotti
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Marilena Granzotto
- Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI), 34125 Trieste, Italy;
| | - Debora Curci
- Advanced Translational Diagnostic Laboratory, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Barbara Faganel Kotnik
- Department of Hematology and Oncology, University Children’s Hospital, 1000 Ljubljana, Slovenia;
| | - Natalia Maximova
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| |
Collapse
|
2
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Tang SQ, Xing T, Lyu ZS, Guo LP, Liang M, Li CY, Zhang YY, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. Repair of dysfunctional bone marrow endothelial cells alleviates aplastic anemia. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2553-2570. [PMID: 37289327 DOI: 10.1007/s11427-022-2310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/07/2023] [Indexed: 06/09/2023]
Abstract
Aplastic anemia (AA) is a life-threatening disease characterized by bone marrow (BM) failure and pancytopenia. As an important component of the BM microenvironment, endothelial cells (ECs) play a crucial role in supporting hematopoiesis and regulating immunity. However, whether impaired BM ECs are involved in the occurrence of AA and whether repairing BM ECs could improve hematopoiesis and immune status in AA remain unknown. In this study, a classical AA mouse model and VE-cadherin blocking antibody that could antagonize the function of ECs were used to validate the role of BM ECs in the occurrence of AA. N-acetyl-L-cysteine (NAC, a reactive oxygen species scavenger) or exogenous EC infusion was administered to AA mice. Furthermore, the frequency and functions of BM ECs from AA patients and healthy donors were evaluated. BM ECs from AA patients were treated with NAC in vitro, and then the functions of BM ECs were evaluated. We found that BM ECs were significantly decreased and damaged in AA mice. Hematopoietic failure and immune imbalance became more severe when the function of BM ECs was antagonized, whereas NAC or EC infusion improved hematopoietic and immunological status by repairing BM ECs in AA mice. Consistently, BM ECs in AA patients were decreased and dysfunctional. Furthermore, dysfunctional BM ECs in AA patients led to their impaired ability to support hematopoiesis and dysregulate T cell differentiation toward proinflammatory phenotypes, which could be repaired by NAC in vitro. The reactive oxygen species pathway was activated, and hematopoiesis- and immune-related signaling pathways were enriched in BM ECs of AA patients. In conclusion, our data indicate that dysfunctional BM ECs with impaired hematopoiesis-supporting and immunomodulatory abilities are involved in the occurrence of AA, suggesting that repairing dysfunctional BM ECs may be a potential therapeutic approach for AA patients.
Collapse
Affiliation(s)
- Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Li-Ping Guo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Mi Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Chen-Yuan Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
4
|
Müskens KF, Lindemans CA, Dandis R, Nierkens S, Belderbos ME. Definitions, incidence and outcome of poor graft function after hematopoietic cell transplantation: A systematic review and meta-analysis. Blood Rev 2023; 60:101076. [PMID: 36990959 DOI: 10.1016/j.blre.2023.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Poor graft function (PGF) after allogeneic hematopoietic stem cell transplantation (HCT) is a serious complication with high morbidity and mortality. The reported incidence of PGF, its risk factors and outcome vary substantially between studies. This variability may be explained by heterogeneity in patient cohorts and HCT strategies, differences in the underlying causes of cytopenia, as well as by differences in PGF definition. In this systematic review and meta-analysis, we provide an overview of the various PGF definitions used and determined the impact of this variability on the reported incidence and outcome. We searched MEDLINE, EMBASE and Web of Science up to July 2022, for any study on PGF in HCT recipients. We performed random-effect meta-analyses for incidence and outcome and subgroup analyses based on different PGF criteria. Among 69 included studies (14.265 HCT recipients), we found 63 different PGF definitions, using various combinations of 11 common criteria. The median incidence of PGF was 7% (IQR: 5-11%, 22 cohorts). The pooled survival of PGF patients was 53% (95% CI: 45-61%, 23 cohorts). The most commonly reported risk factors associated with PGF were history of cytomegalovirus infection and prior graft-versus-host disease. Incidence was lower in studies with strict cytopenic cutoffs, while survival was lower for primary compared to secondary PGF. This work indicates that a standardized, quantitative definition of PGF is needed to facilitate clinical guideline development and to advance scientific progress.
Collapse
Affiliation(s)
- Konradin F Müskens
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Rana Dandis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Center for Translational Immunology, Utrecht University, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Mirjam E Belderbos
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
5
|
Wen Q, Xu ZL, Wang Y, Lv M, Song Y, Lyv ZS, Xing T, Xu LP, Zhang XH, Huang XJ, Kong Y. Glucocorticoid and glycolysis inhibitors cooperatively abrogate acute graft-versus-host disease. SCIENCE CHINA. LIFE SCIENCES 2023; 66:528-544. [PMID: 36166182 DOI: 10.1007/s11427-022-2170-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
Although glucorticosteroids (GCs) are the standard first-line therapy for acute graft-versus-host disease (aGvHD), nearly 50% of aGvHD patients have no response to GCs. The role of T cell metabolism in murine aGvHD was recently reported. However, whether GCs and metabolism regulators could cooperatively suppress T cell alloreactivity and ameliorate aGvHD remains to be elucidated. Increased glycolysis, characterized by elevated 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), and higher rates of glucose consumption and lactate production were found in T cells from aGvHD patients. Genetic upregulation of PFKFB3 induced T cell proliferation and differentiation into proinflammatory cells. In a humanized mouse model, PFKFB3-overexpressing or PFKFB3-silenced T cells aggravated or prevented aGvHD, respectively. Importantly, our integrated data from patient samples in vitro, in a humanized xenogeneic murine model of aGvHD and graft-versus-leukaemia (GVL) demonstrate that GCs combined with a glycolysis inhibitor could cooperatively reduce the alloreactivity of T cells and ameliorate aGvHD without loss of GVL effects. Together, the current study indicated that glycolysis is critical for T cell activation and induction of human aGvHD. Therefore, the regulation of glycolysis offers a potential pathogenesis-oriented therapeutic strategy for aGvHD patients. GCs combined with glycolysis inhibitors promises to be a novel first-line combination therapy for aGvHD patients.
Collapse
Affiliation(s)
- Qi Wen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yang Song
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Zhong-Shi Lyv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
6
|
Non-relapse cytopenias following allogeneic stem cell transplantation, a case based review. Bone Marrow Transplant 2022; 57:1489-1499. [DOI: 10.1038/s41409-022-01761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
|
7
|
Man Y, Lu Z, Yao X, Gong Y, Yang T, Wang Y. Recent Advancements in Poor Graft Function Following Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:911174. [PMID: 35720412 PMCID: PMC9202575 DOI: 10.3389/fimmu.2022.911174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/06/2022] [Indexed: 01/05/2023] Open
Abstract
Poor graft function (PGF) is a life-threatening complication that occurs after transplantation and has a poor prognosis. With the rapid development of haploidentical hematopoietic stem cell transplantation, the pathogenesis of PGF has become an important issue. Studies of the pathogenesis of PGF have resulted in some success in CD34+-selected stem cell boosting. Mesenchymal stem cells, N-acetyl-l-cysteine, and eltrombopag have also been investigated as therapeutic strategies for PGF. However, predicting and preventing PGF remains challenging. Here, we propose that the seed, soil, and insect theories of aplastic anemia also apply to PGF; CD34+ cells are compared to seeds; the bone marrow microenvironment to soil; and virus infection, iron overload, and donor-specific anti-human leukocyte antigen antibodies to insects. From this perspective, we summarize the available information on the common risk factors of PGF, focusing on its potential mechanism. In addition, the safety and efficacy of new strategies for treating PGF are discussed to provide a foundation for preventing and treating this complex clinical problem.
Collapse
Affiliation(s)
- Yan Man
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zhixiang Lu
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiangmei Yao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yuemin Gong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Tonghua Yang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China,*Correspondence: Tonghua Yang, ; Yajie Wang,
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China,*Correspondence: Tonghua Yang, ; Yajie Wang,
| |
Collapse
|
8
|
Lin F, Han T, Zhang Y, Cheng Y, Xu Z, Mo X, Wang F, Yan C, Sun Y, Wang J, Tang F, Han W, Chen Y, Wang Y, Zhang X, Liu K, Huang X, Xu L. The Incidence, Outcomes, and Risk Factors of Secondary Poor Graft Function in Haploidentical Hematopoietic Stem Cell Transplantation for Acquired Aplastic Anemia. Front Immunol 2022; 13:896034. [PMID: 35615363 PMCID: PMC9124828 DOI: 10.3389/fimmu.2022.896034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023] Open
Abstract
Secondary poor graft function (sPGF) increases the risk of life-threatening complications after hematopoietic stem cell transplantation (HSCT). The incidence, clinical outcomes, and risk factors of sPGF have not been elucidated in haploidentical (haplo-) HSCT for acquired aplastic anemia (AA) patients. We retrospectively reviewed 423 consecutive AA patients who underwent haplo-HSCT between January 2006 and December 2020 and report a 3-year cumulative incidence of 4.62% (95% confidence interval [CI]: 3.92%-10.23%) of sPGF. While no primary PGF occurred. The median time to sPGF was 121 days (range 30-626 days) after transplantation. To clarify the risk factors for sPGF, 17 sPGF cases and 382 without PGF were further analyzed. Compared to patients without PGF, the 2-year overall survival was significantly poorer for sPGF patients (67.7% vs 90.8%, p =.002). Twelve sPGF patients were alive until the last follow-up, and 7 achieved transfusion independency. The multivariable analyses revealed that later neutrophil engraftment (OR 2.819, p=.049) and a history of refractory cytomegalovirus viremia (OR=7.038, p=.002) post-transplantation were associated with sPGF. There was weak evidence that a history of grade 3-4 acute graft-versus-host disease increased the risk of sPGF (p=.063). We advocated better post-transplantation strategies to balance the risk of immunosuppression and viral reactivation for haplo-HSCT in AA patients.
Collapse
Affiliation(s)
- Fan Lin
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Tingting Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Yifei Cheng
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Zhengli Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Mo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Fengrong Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Chenhua Yan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Yuqian Sun
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Jingzhi Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Feifei Tang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Wei Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Yuhong Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Xiaohui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Kaiyan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
- Peking-Tsinghua Centre for Life Sciences, Beijing, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
9
|
Xing T, Lyu ZS, Duan CW, Zhao HY, Tang SQ, Wen Q, Zhang YY, Lv M, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. Dysfunctional bone marrow endothelial progenitor cells are involved in patients with myelodysplastic syndromes. J Transl Med 2022; 20:144. [PMID: 35351133 PMCID: PMC8962499 DOI: 10.1186/s12967-022-03354-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal disorders characterized by ineffective haematopoiesis and immune deregulation. Emerging evidence has shown the effect of bone marrow (BM) endothelial progenitor cells (EPCs) in regulating haematopoiesis and immune balance. However, the number and functions of BM EPCs in patients with different stages of MDS remain largely unknown. METHODS Patients with MDS (N = 30), de novo acute myeloid leukaemia (AML) (N = 15), and healthy donors (HDs) (N = 15) were enrolled. MDS patients were divided into lower-risk MDS (N = 15) and higher-risk MDS (N = 15) groups according to the dichotomization of the Revised International Prognostic Scoring System. Flow cytometry was performed to analyse the number of BM EPCs. Tube formation and migration assays were performed to evaluate the functions of BM EPCs. In order to assess the gene expression profiles of BM EPCs, RNA sequencing (RNA-seq) were performed. BM EPC supporting abilities of haematopoietic stem cells (HSCs), leukaemia cells and T cells were assessed by in vitro coculture experiments. RESULTS Increased but dysfunctional BM EPCs were found in MDS patients compared with HDs, especially in patients with higher-risk MDS. RNA-seq indicated the progressive change and differences of haematopoiesis- and immune-related pathways and genes in MDS BM EPCs. In vitro coculture experiments verified that BM EPCs from HDs, lower-risk MDS, and higher-risk MDS to AML exhibited a progressively decreased ability to support HSCs, manifested as elevated apoptosis rates and intracellular reactive oxygen species (ROS) levels and decreased colony-forming unit plating efficiencies of HSCs. Moreover, BM EPCs from higher-risk MDS patients demonstrated an increased ability to support leukaemia cells, characterized by increased proliferation, leukaemia colony-forming unit plating efficiencies, decreased apoptosis rates and apoptosis-related genes. Furthermore, BM EPCs induced T cell differentiation towards more immune-tolerant cells in higher-risk MDS patients in vitro. In addition, the levels of intracellular ROS and the apoptosis ratios were increased in BM EPCs from MDS patients, especially in higher-risk MDS patients, which may be therapeutic candidates for MDS patients. CONCLUSION Our results suggest that dysfunctional BM EPCs are involved in MDS patients, which indicates that improving haematopoiesis supporting ability and immuneregulation ability of BM EPCs may represent a promising therapeutic approach for MDS patients.
Collapse
Affiliation(s)
- Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Yan Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qi Wen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
10
|
Prabahran A, Koldej R, Chee L, Ritchie D. Clinical features, pathophysiology, and therapy of poor graft function post-allogeneic stem cell transplantation. Blood Adv 2022; 6:1947-1959. [PMID: 34492685 PMCID: PMC8941468 DOI: 10.1182/bloodadvances.2021004537] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Poor graft function (PGF), defined by the presence of multilineage cytopenias in the presence of 100% donor chimerism, is a serious complication of allogeneic stem cell transplant (alloSCT). Inducers or potentiators of alloimmunity such as cytomegalovirus reactivation and graft-versus-host disease are associated with the development of PGF, however, more clinical studies are required to establish further risk factors and describe outcomes of PGF. The pathophysiology of PGF can be conceptualized as dysfunction related to the number or productivity of the stem cell compartment, defects in bone marrow microenvironment components such as mesenchymal stromal cells and endothelial cells, or immunological suppression of post-alloSCT hematopoiesis. Treatment strategies focused on improving stem cell number and function and microenvironment support of hematopoiesis have been attempted with variable success. There has been limited use of immune manipulation as a therapeutic strategy, but emerging therapies hold promise. This review details the current understanding of the causes of PGF and methods of treatment to provide a framework for clinicians managing this complex problem.
Collapse
Affiliation(s)
- Ashvind Prabahran
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel Koldej
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Lynette Chee
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - David Ritchie
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
高 洋, 陈 晓, 罗 荣. Research advances on haploidentical hematopoietic stem cell transplantation in the treatment of severe aplastic anemia in children. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:854-859. [PMID: 34511177 PMCID: PMC8428919 DOI: 10.7499/j.issn.1008-8830.2105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022]
Abstract
Haploidentical hematopoietic stem cell transplantation is a recommended alternative therapy for children with severe aplastic anemia who lack a human leukocyte antigen (HLA)-identical sibling donor and do not respond well to immunosuppressive therapy; however, due to non-identical HLA, the patients may have donor-specific anti-HLA antibody, which may lead to a relatively high incidence rate of poor graft function. Compared with HLA-identical transplantation, conditioning regimen for haploidentical transplantation still needs to be explored. This article reviews the detection and treatment of donor-specific anti-HLA antibody, the selection of conditioning regimen, and the mechanism and treatment of poor graft function in haploidentical hematopoietic stem cell transplantation.
Collapse
|
12
|
Tang SQ, Yao WL, Wang YZ, Zhang YY, Zhao HY, Wen Q, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. Improved function and balance in T cell modulation by endothelial cells in young people. Clin Exp Immunol 2021; 206:196-207. [PMID: 34382213 DOI: 10.1111/cei.13654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Elderly individuals exhibit unbalanced bone marrow (BM) effector T cell subset differentiation, such as increased T helper type 1 (Th1) and T cytotoxic type 1 (Tc1) cell frequencies, but the underlying mechanism is still unclear. Endothelial cells (ECs), which are instructive components of the BM microenvironment, exhibit the phenotype of semi-professional antigen-presenting cells and regulate T cell recruitment and activation. Thus, we compared the frequency and function of BM ECs, especially their capacity to regulate effector T cell subsets, between young and elderly healthy individuals, and explored the underlying mechanism of this immunomodulatory discrepancy. Although the young and elderly EC percentages were comparable, young ECs showed fewer reactive oxygen species and better migratory and tube-forming abilities than elderly ECs. Notably, increased T cell activation molecules and inflammatory cytokines were found in elderly ECs which regulated T cells to differentiate into more proinflammatory T cells, including Th1 and Tc1 cells, than young ECs.
Collapse
Affiliation(s)
- Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Wei-Li Yao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Hong-Yan Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qi Wen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
13
|
Hong F, Chen Y, Gao H, Shi J, Lu W, Ju W, Fu C, Qiao J, Xu K, Zeng L. NLRP1 in Bone Marrow Microenvironment Controls Hematopoietic Reconstitution After Transplantation. Transplant Cell Ther 2021; 27:908.e1-908.e11. [PMID: 34303016 DOI: 10.1016/j.jtct.2021.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022]
Abstract
Pretreatment before transplantation initiates an inflammatory response. Inflammasomes are key regulators of immune and inflammatory responses, but their role in regulating hematopoiesis is unclear. Our study intended to assess the role and mechanism of nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 1 (NLRP1) in the bone marrow microenvironment on hematopoiesis regulation. To explore the effects of an absence of NLRP1 on hematopoietic reconstitution, we established a hematopoietic cell transplantation model by infusing bone marrow mononuclear cells of wild-type C57BL/6 mice into either NLRP1 knockout (NLRP1-KO) or wild-type C57BL/6 mice. Using the transplantation model, the role of NLRP1 in the bone marrow microenvironment was determined by flow cytometry, hemacytometry, and hematoxylin and eosin staining. As the major component of the bone marrow microenvironment, mesenchymal stem cells (MSCs) were isolated to analyze the effects of NLRP1 on them by osteogenic and adipogenic induction. Endothelial cells (ECs) were isolated and sorted by magnetic beads. The expression of adhesion molecules and their relationship with nuclear factor kappa B (NF-κB) were measured by immunofluorescence, enzyme-linked immunosorbent assay, and western blot. Finally, the effect of NLRP1-deleted MSCs or ECs on hematopoietic stem and progenitor cells (HSPCs) was examined by establishing co-culture models. Compared with C57BL/6 recipients, reduced inflammatory cell infiltration, decreased levels of proinflammatory cytokines interleukin (IL)-18, IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ), together with reduced pathological injury of bone marrow, were observed in NLRP1-KO recipients after transplantation. However, increased HSPC engraftment and hematopoietic reconstitution were detected in NLRP1-KO recipients after transplantation. Furthermore, MSCs isolated from NLRP1-KO mice had decreased osteogenic and adipogenic differentiation and increased proliferation and differentiation of HSPCs. The expression of adhesion molecules in ECs from NLRP1-KO mice was increased due to the promotion of nuclear translocation of NF-κB; these adhesion molecules are critical for hematopoietic stem cell homing. Knockout of NLRP1 in the bone marrow microenvironment could significantly relieve bone marrow inflammatory response and promote hematopoietic reconstitution, perhaps by regulating MSCs and ECs, indicating that NLRP1 might be a target for the treatment of delayed hematopoietic and immune recovery in patients after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Fei Hong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yuting Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Hui Gao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Jinrui Shi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Wenyi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China.
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China.
| |
Collapse
|
14
|
Shahzad M, Siddiqui RS, Anwar I, Chaudhary SG, Ali T, Naseem M, Ahmed TF, Ahmed Z, Khurana S, Ahmed N, Balusu R, Singh AK, Hematti P, Callander NS, Abhyankar SH, McGuirk JP, Mushtaq MU. Outcomes with CD34-Selected Stem Cell Boost for Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Transplant Cell Ther 2021; 27:877.e1-877.e8. [PMID: 34284148 DOI: 10.1016/j.jtct.2021.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/28/2022]
Abstract
Poor graft function (PGF) is a life-threatening complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT) characterized by multilineage cytopenia in the absence of mixed donor chimerism (<95% donor), relapse, or severe graft-versus-host disease (GVHD). We present a systemic review and meta-analysis aimed at assessing the outcomes with CD34-selected stem cell boost (SCB) for PGF in adult allo-HSCT recipients. We screened a total of 1753 records identified from 4 databases (PubMed, Embase, Cochrane, and ClinicalTrials.gov) following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, using the search terms "hematological malignancies," "hematopoietic stem cell transplantation," "CD34 antigen(s)," "graft failure," and "poor graft function," from the date of inception to January 2021. After excluding review, duplicate, and nonrelevant articles, we included 7 studies reporting outcomes following administration of CD34-selected SCB for PGF after allo-HSCT, including hematologic complete response (CR) and overall response rate (ORR), GVHD, and overall survival (OS). Quality evaluation was done using the National Institutes of Health quality assessment tool. Pooled analysis was done using the R 'meta' package, and proportions with 95% confidence intervals (CIs) were computed. The inter-study variance was calculated using the Der Simonian-Laird estimator. We identified 209 patients who received CD34-selected SCB for PGF after allo-HSCT. The median age was 49 years (range, 18 to 69 years), and 61% were men. Primary graft sources included peripheral blood stem cells (72%) and bone marrow (28%). Donor types were matched sibling (37%), matched unrelated (36%), mismatched unrelated (22%), and haploidentical donors (5%). The median time from allo-HSCT to SCB was 138 days (range, 113 to 450 days). The median SCB dose was 3.45 × 106 CD34 cells/kg (range, 3.1 to 4.9 × 106 cells/kg). CR and ORR were 72% (95% CI, 63% to 79%; I2 = 26%) and 80% (95% CI, 74% to 85%; I2 = 0%), respectively. After a median follow-up of 42 months (range, 30 to 77 months), the actuarial survival rate was 54% (95% CI, 47% to 61%; I2 = 0%). OS ranged from 80% at 1 year to 40% at 9 years. The incidences of acute and chronic GVHD after SCB were 17% (95% CI, 13% to 23%; I2 = 0%) and 18% (95% CI, 8% to 34%; I2 = 76%), respectively. Nonrelapse mortality was reported in 42 patients, with a pooled rate of 27% (95% CI, 17% to 40; I2 = 59%), and death due to relapse was reported in 25 patients, with a pooled rate of 17% (95% CI, 11% to 23%; I2 = 0%). Our data show that CD34-selected SCB improves outcomes after PGF post allo-HSCT with an acceptable toxicity profile. The literature lacks high-quality randomized evidence, and there remains an unmet need for prospective studies to address the optimal dosing and manipulation of SCB. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Moazzam Shahzad
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas; Department of Medicine, St Mary's Medical Center, Huntington, West Virginia
| | - Raheel S Siddiqui
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas; Department of Medicine, Icahn School of Medicine at Mount Sinai/Queens, New York, New York
| | - Iqra Anwar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Sibgha Gull Chaudhary
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Tayyaba Ali
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Masooma Naseem
- Department of Medicine, Icahn School of Medicine at Mount Sinai/Queens, New York, New York
| | - Tehniat F Ahmed
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Zahoor Ahmed
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Sharad Khurana
- Division of Hematology & Oncology, University of Arizona College of Medicine, Tucson, Arizona
| | - Nausheen Ahmed
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Ramesh Balusu
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anurag K Singh
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Peiman Hematti
- Division of Hematology & Oncology, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin
| | - Natalie S Callander
- Division of Hematology & Oncology, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin
| | - Sunil H Abhyankar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Joseph P McGuirk
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Muhammad Umair Mushtaq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
15
|
Prabahran A, Koldej R, Chee L, Wong E, Ritchie D. Evaluation of risk factors for and subsequent mortality from poor graft function (PGF) post allogeneic stem cell transplantation. Leuk Lymphoma 2021; 62:1482-1489. [PMID: 33522344 DOI: 10.1080/10428194.2021.1872072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Poor Graft Function (PGF) is defined by multi-lineage cytopenias with complete donor chimerism post allogeneic transplantation, Risk factors for and subsequent mortality from PGF were assessed in our transplant cohort. Non-sibling donor [OR 1.97; 95% CI 1.02-3.70], ICU admission [OR 5.28; 95% CI 2.29-11.88] or blood culture positivity within the first 30 days [OR 1.67; 95% CI 1.07-2.62], grade III-IV acute graft vs host disease (GVHD) [OR 4.082; 95% CI 2.31-7.16] and CMV viremia [OR 2.43; 95% CI 1.53-3.88] and were significantly associated with development of PGF. PGF patients without count recovery had a 2 year OS of 6%. Severe GVHD, thrombocytopenia and anemia portended inferior survival and were used to develop a prognostic score for mortality from PGF. This analysis identifies risk factors predictive of PGF and poor survival in those without recovery.
Collapse
Affiliation(s)
- Ashvind Prabahran
- Department, of Clinical Haematology, Peter MacCallum Cancer/Royal Melbourne Hospital, Parkville, Australia.,Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, Australia.,The University of Melbourne, Parkville, Australia
| | - Rachel Koldej
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, Australia.,The University of Melbourne, Parkville, Australia
| | - Lynette Chee
- Department, of Clinical Haematology, Peter MacCallum Cancer/Royal Melbourne Hospital, Parkville, Australia.,Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, Australia.,The University of Melbourne, Parkville, Australia
| | - Eric Wong
- Department, of Clinical Haematology, Peter MacCallum Cancer/Royal Melbourne Hospital, Parkville, Australia.,Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, Australia
| | - David Ritchie
- Department, of Clinical Haematology, Peter MacCallum Cancer/Royal Melbourne Hospital, Parkville, Australia.,Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, Australia.,The University of Melbourne, Parkville, Australia
| |
Collapse
|
16
|
Man Y, Yao X, Yang T, Wang Y. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Front Cell Dev Biol 2021; 9:621214. [PMID: 33553181 PMCID: PMC7862549 DOI: 10.3389/fcell.2021.621214] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Self-renewal and multidirectional differentiation of hematopoietic stem cells (HSCs) are strictly regulated by numerous cellular components and cytokines in the bone marrow (BM) microenvironment. Several cell types that regulate HSC niche have been identified, including both non-hematopoietic cells and HSC-derived cells. Specific changes in the niche composition can result in hematological malignancies. Furthermore, processes such as homing, proliferation, and differentiation of HSCs are strongly controlled by the BM niche and have been reported to be related to the success of hematopoietic stem cell transplantation (HSCT). Single-cell sequencing and in vivo imaging are powerful techniques to study BM microenvironment in hematological malignancies and after HSCT. In this review, we discuss how different components of the BM niche, particularly non-hematopoietic and hematopoietic cells, regulate normal hematopoiesis, and changes in the BM niche in leukemia and after HSCT. We believe that this comprehensive review will provide clues for further research on improving HSCT efficiency and exploring potential therapeutic targets for leukemia.
Collapse
Affiliation(s)
- Yan Man
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Xiangmei Yao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Tonghua Yang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
17
|
Yao WL, Wen Q, Zhao HY, Tang SQ, Zhang YY, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. Different subsets of haematopoietic cells and immune cells in bone marrow between young and older donors. Clin Exp Immunol 2020; 203:137-149. [PMID: 33020903 DOI: 10.1111/cei.13531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Young donors are reported to be associated with better transplant outcomes than older donors in allogeneic hematopoietic stem cell transplantation (allo-HSCT), but the mechanism is still unclear. The current study compared the different subsets of haematopoietic stem cells (HSCs) and their progenitors as well as immune cells in bone marrow (BM) between young and older donors. The frequencies of HSCs, multipotent progenitors (MPPs) and myeloid progenitors, including common myeloid progenitors (CMPs) and megakaryocyte-erythroid progenitors (MEPs), were decreased, whereas those of lymphoid progenitors, including multi-potent lymphoid progenitors (MLPs) and common lymphoid progenitors (CLPs), were increased in the BM of young donors compared with in that of older donors. Lower reactive oxygen species (ROS) levels were observed in BM HSCs and six progenitor lines in young donors. Furthermore, young donors demonstrated higher frequencies of naive T cells and immune suppressor cells, such as alternative macrophages (M2) and lower frequencies of memory T cells and immune effectors, including T helper-1 and T cytotoxic-1 cells, in BM than older donors. Multivariate analysis demonstrated that donor age was independently correlated with BM HSC frequency. Although further validation is required, our results suggest that the differences in the frequency and immune differentiation potential of HSCs in BM between young donors and older donors may partly explain the different outcomes of allo-HSCT.
Collapse
Affiliation(s)
- W-L Yao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Q Wen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - H-Y Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - S-Q Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Y-Y Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - L-P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - X-H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - X-J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Y Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
18
|
Chen J, Wang H, Zhou J, Feng S. Advances in the understanding of poor graft function following allogeneic hematopoietic stem-cell transplantation. Ther Adv Hematol 2020; 11:2040620720948743. [PMID: 32874483 PMCID: PMC7436797 DOI: 10.1177/2040620720948743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Poor graft function (PGF) following allogeneic hematopoietic stem-cell transplantation (allo-HSCT) is a life-threatening complication and is characterized by bilineage or trilineage blood cell deficiency and hypoplastic marrow with full chimerism. With the rapid development of allo-HSCT, especially haploidentical-HSCT, PGF has become a growing concern. The most common risk factors illustrated by recent studies include low dose of infused CD34+ cells, donor-specific antibody, cytomegalovirus infection, graft versus host disease (GVHD), iron overload and splenomegaly, among others. Because of the poor prognosis of PGF, it is crucial to uncover the underlying mechanism, which remains elusive. Recent studies have suggested that the bone marrow microenvironment may play an important role in the pathogenesis of PGF. Deficiency and dysfunction of endothelial cells and mesenchymal stem cells, elevated reactive oxygen species (ROS) levels, and immune abnormalities are believed to contribute to PGF. In this review, we also discuss recent clinical trials that evaluate the safety and efficacy of new strategies in patients with PGF. CD34+-selected stem-cell boost (SCB) is effective with an acceptable incidence of GVHD, despite the need for a second donation. Alternative strategies including the applications of mesenchymal stem cells, N-acetyl-l-cysteine (NAC), and eltrombopag have shown favorable outcomes, but further large-scale studies are needed due to the small sample sizes of the recent clinical trials.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| |
Collapse
|
19
|
Prabahran AA, Ritchie DS. Poor graft function, a significant and emerging clinical challenge post allogeneic stem cell transplantation. Leuk Lymphoma 2020; 61:2786-2787. [PMID: 32762478 DOI: 10.1080/10428194.2020.1803301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ashvind A Prabahran
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Melbourne, Australia.,Australian Cancer Research Fund Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,University of Melbourne, Melbourne
| | - David S Ritchie
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Melbourne, Australia.,Australian Cancer Research Fund Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,University of Melbourne, Melbourne
| |
Collapse
|
20
|
Autophagy in endothelial cells regulates their haematopoiesis-supporting ability. EBioMedicine 2020; 53:102677. [PMID: 32114389 PMCID: PMC7047195 DOI: 10.1016/j.ebiom.2020.102677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Endothelial cells (ECs) function as an instructive platform to support haematopoietic stem cell (HSC) homeostasis. Our recent studies found that impaired bone marrow (BM) ECs are responsible for the defective haematopoiesis in patients with poor graft function (PGF), which is characterised by pancytopenia post-allotransplant. Although activated autophagy was reported to benefit ECs, whether EC autophagy plays a critical role in supporting HSCs and its effect on PGF patients post-allotransplant remain unclear. Methods To evaluate whether the autophagy status of ECs modulates their ability to support haematopoiesis, human umbilical vein endothelial cells (HUVECs) and primary BM ECs derived from healthy donors were subjected to knockdown or overexpression of Beclin-1 (an autophagy-related protein). Moreover, BM ECs derived from PGF patients were studied. Findings Beclin-1 knockdown significantly reduced the haematopoiesis-supporting ability of ECs by suppressing autophagy, which could be restored by activating autophagy via Beclin-1 upregulation. Moreover, autophagy positively regulated haematopoiesis-related genes in HUVECs. Subsequently, a prospective case-control study demonstrated that defective autophagy reduced Beclin-1 expression and the colony-forming unit (CFU) plating efficiency in BM ECs from PGF patients compared to matched patients with good graft function. Rapamycin, an autophagy activator, quantitatively and functionally improved BM ECs from PGF patients in vitro and enhanced their ability to support HSCs by activating the Beclin-1 pathway. Interpretation Our results suggest that the autophagy status of ECs modulates their ability to support haematopoiesis by regulating the Beclin-1 pathway. Defective autophagy in BM ECs may be involved in the pathogenesis of PGF post-allotransplant. Rapamycin provides a promising therapeutic approach for PGF patients. Funding Please see funding sources.
Collapse
|
21
|
Wang JL, Han MZ. [The pathogenesis of poor graft function after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 40:792-795. [PMID: 31648490 PMCID: PMC7342449 DOI: 10.3760/cma.j.issn.0253-2727.2019.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- J L Wang
- Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | | |
Collapse
|
22
|
Yan CH, Wang Y, Mo XD, Sun YQ, Wang FR, Fu HX, Chen Y, Han TT, Kong J, Cheng YF, Zhang XH, Xu LP, Liu KY, Huang XJ. Incidence, risk factors, and outcomes of cytomegalovirus retinitis after haploidentical hematopoietic stem cell transplantation. Bone Marrow Transplant 2020; 55:1147-1160. [PMID: 31992849 DOI: 10.1038/s41409-020-0790-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
This study investigated the epidemiological characteristics of cytomegalovirus retinitis (CMVR) after haploidentical hematopoietic stem cell transplantation (HSCT). We studied a cohort of 1466 consecutive patients who had undergone haploidentical HSCT between 2013 and 2017. We documented 34 episodes of CMVR in 31 patients, with a median onset of 167 days after the transplant. The cumulative incidence of CMVR was 2.3% 1 year after the transplant. Multivariate analysis suggested that platelet engraft failure at 100 days, EBV DNAemia, refractory or recurrent CMV DNAemia, and acute graft-versus-host disease were related to the development of CMVR in patients with CMV DNAemia. Patients with ≥3 risk factors (high risk) had a higher 1-year incidence of CMVR than patients with ≤2 risk factors (low risk) (26.2% vs. 0.6%, P < 0.001). In patients with CMVR, visual acuity (VA) improved in 16 episodes, remained stable in 10 episodes, and worsened in 8 episodes. The variable related to the improvement of VA was VA ≥ 0.1 at time of CMVR diagnosis. Our study showed that CMVR was a rare complication after haploidentical HSCT but that the risk was greater in patients with multiple risk factors.
Collapse
Affiliation(s)
- Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Suzhou, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Suzhou, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Yao Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Suzhou, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China.
| |
Collapse
|
23
|
Chang YJ, Zhao XY, Huang XJ. Granulocyte Colony-Stimulating Factor-Primed Unmanipulated Haploidentical Blood and Marrow Transplantation. Front Immunol 2019; 10:2516. [PMID: 31749802 PMCID: PMC6842971 DOI: 10.3389/fimmu.2019.02516] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF), a growth factor for neutrophils, has been successfully used for stem cell mobilization and T cell immune tolerance induction. The establishment of G-CSF-primed unmanipulated haploidentical blood and marrow transplantation (The Beijing Protocol) has achieved outcomes for the treatment of acute leukemia, myelodysplastic syndrome, and severe aplastic anemia with haploidentical allografts comparable to those of human leukocyte antigen (HLA)-matched sibling donor transplantation. Currently, G-CSF-mobilized bone marrow and/or peripheral blood stem cell sources have been widely used in unmanipulated haploidentical transplant settings. In this review, we summarize the roles of G-CSF in inducing T cell immune tolerance. We discuss the recent advances in the Beijing Protocol, mainly focusing on strategies that have been used to improve transplant outcomes in cases of poor graft function, virus infections, and relapse. The application of G-CSF-primed allografts in other haploidentical modalities is also discussed.
Collapse
Affiliation(s)
- Ying-Jun Chang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiang-Yu Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
24
|
Virus reactivation and low dose of CD34+ cell, rather than haploidentical transplantation, were associated with secondary poor graft function within the first 100 days after allogeneic stem cell transplantation. Ann Hematol 2019; 98:1877-1883. [DOI: 10.1007/s00277-019-03715-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
|
25
|
G-CSF-induced macrophage polarization and mobilization may prevent acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2019; 54:1419-1433. [PMID: 30683906 DOI: 10.1038/s41409-019-0449-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/24/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
Abstract
Macrophages (MΦs) are an important immune cell population that are essential for tissue homeostasis and disease pathogenesis. MΦs are now classified as either M1, which produce pro-inflammatory cytokines, or M2, which produce antiinflammatory cytokines. The impact of granulocyte colony-stimulating factor (G-CSF) on MΦs in humans is unclear. Moreover, little is known about the association between MΦ subsets in allografts and the occurrence of acute graft-versus-host disease (aGVHD) in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the current study, we found that the M1/M2 ratio was markedly decreased in both G-CSF-treated bone marrow (post-BM) and G-CSF-treated peripheral blood from healthy donors. Post-BM MΦs exhibited reduced migration and increased phagocytosis. Moreover, post-BM MΦs reduced the percentage of Th1 and Tc1 lineages and increased the percentage of Th2, Tc2, and Treg lineages. Patients who received BM grafts with a higher M1/M2 ratio exhibited a higher incidence of grade 2-4 aGVHD. In summary, our data indicate that G-CSF decreases the M1/M2 ratio in BM grafts from healthy donors, which may contribute to preventing the occurrence of grade 2-4 aGVHD in patients after allo-HSCT.
Collapse
|
26
|
Yan CH, Wang Y, Mo XD, Sun YQ, Wang FR, Fu HX, Chen Y, Han TT, Kong J, Cheng YF, Zhang XH, Xu LP, Liu KY, Huang XJ. Incidence, Risk Factors, Microbiology and Outcomes of Pre-engraftment Bloodstream Infection After Haploidentical Hematopoietic Stem Cell Transplantation and Comparison With HLA-identical Sibling Transplantation. Clin Infect Dis 2018; 67:S162-S173. [PMID: 30423054 DOI: 10.1093/cid/ciy658] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Chen-Hua Yan
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Yu Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Xiao-Dong Mo
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Yu-Qian Sun
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Feng-Rong Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Hai-Xia Fu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Yao Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Ting-Ting Han
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Jun Kong
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Yi-Fei Cheng
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Xiao-Hui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Lan-Ping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Kai-Yan Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| | - Xiao-Jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, China
| |
Collapse
|
27
|
Kong Y. Poor graft function after allogeneic hematopoietic stem cell transplantation-an old complication with new insights ☆. Semin Hematol 2018; 56:215-220. [PMID: 31202433 DOI: 10.1053/j.seminhematol.2018.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022]
Abstract
Poor graft function (PGF), characterized by pancytopenia, is a life-threatening complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). PGF has become a growing obstacle that contributes to high morbidity and mortality after allo-HSCT, especially with the increasing use of haploidentical allo-HSCT, and clinical management 81870139, is challenging. Emerging evidence demonstrates that the bone marrow (BM) microenvironment plays a crucial role in maintaining and regulating hematopoiesis. Recent prospective case-control studies demonstrated that impaired BM microenvironments are involved in the pathogenesis of PGF. Moreover, in vitro treatment with N-acetyl-L-cysteine, a reactive oxygen species scavenger, could enhance the defective hematopoietic stem cells by repairing the dysfunctional BM microenvironment of PGF patients. Consequently, a better understanding of the pathogenesis of PGF may guide effective therapy and eventually improve the prognosis of allo-HSCT. Here, based on new insights into the BM microenvironment in PGF patients, we provide an overview of the pathogenesis and promising treatment strategies for PGF patients.
Collapse
Affiliation(s)
- Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
28
|
Zhao HY, Lyu ZS, Duan CW, Song Y, Han TT, Mo XD, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. An unbalanced monocyte macrophage polarization in the bone marrow microenvironment of patients with poor graft function after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2018; 182:679-692. [PMID: 29974948 DOI: 10.1111/bjh.15452] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Hong-Yan Zhao
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Zhong-Shi Lyu
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing China
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute; Shanghai Children's Medical Center; Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology; Shanghai Jiao Tong University School of medicine; Shanghai China
| | - Yang Song
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing China
| | - Ting-Ting Han
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Xiao-Dong Mo
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Yu Wang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Lan-Ping Xu
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Xiao-Hui Zhang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Xiao-Jun Huang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing China
| | - Yuan Kong
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| |
Collapse
|
29
|
Song Y, Zhao HY, Lyu ZS, Cao XN, Shi MM, Wen Q, Tang FF, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. Dysfunctional Bone Marrow Mesenchymal Stem Cells in Patients with Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2018; 24:1981-1989. [PMID: 29933074 DOI: 10.1016/j.bbmt.2018.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Poor graft function (PGF) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is characterized by defective hematopoiesis. Mesenchymal stem cells (MSCs) have been shown to support hematopoiesis, but little is known about the role of MSCs in the pathogenesis of PGF. In the current prospective case-control study, we evaluated whether the number and function of bone marrow (BM) MSCs in PGF patients differed from those in good graft function (GGF) patients. We found that BM MSCs from PGF patients expanded more slowly and appeared flattened and larger, exhibiting more apoptosis and senescence than MSCs from GGF patients. Furthermore, increased intracellular reactive oxygen species, p-p53, and p21 (but not p38) levels were detected in MSCs from PGF patients. Moreover, the ability of MSCs to sustain hematopoiesis was significantly reduced in PGF patients, as evaluated by cell number, apoptosis, and the colony-forming unit-plating efficiency of CD34+ cells. In summary, the biologic characteristics of PGF MSCs are different from those of GGF MSCs, and the in vitro hematopoiesis-supporting ability of PGF MSCs is significantly lower. Although requiring further validation, our study indicates that reduced and dysfunctional BM MSCs may contribute to deficient hematopoiesis in PGF patients. Therefore, improvement of BM MSCs may represent a promising therapeutic approach for PGF patients after allo-HSCT.
Collapse
Affiliation(s)
- Yang Song
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Hong-Yan Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xie-Na Cao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Min-Min Shi
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qi- Wen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Fei-Fei Tang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
30
|
Abstract
CD4+CD25highFoxP3+ T regulatory cells (Tregs) are immunodominant suppressors in the immune system. Tregs use various mechanisms to control immune responses. Preclinical data from animal models have confirmed the huge therapeutic potential of Tregs in many immune-mediated diseases. Hence, these cells are now on the road to translation to cell therapy in the clinic as the first clinical trials are accomplished. To date, clinical research has involved mainly hematopoietic stem cell transplantations, solid organ transplantations, and autoimmunity. Despite difficulties with legislation and technical issues, treatment is constantly evolving and may soon represent a valid alternative for patients with diseases that are currently incurable. This review focuses on the basic and clinical experience with Tregs with adoptive transfer of these cells, primarily from clinical trials, as well as on perspectives on clinical use and technical problems with implementing the therapy.
Collapse
|
31
|
Sun YQ, Chang YJ, Huang XJ. Update on current research into haploidentical hematopoietic stem cell transplantation. Expert Rev Hematol 2018; 11:273-284. [PMID: 29493370 DOI: 10.1080/17474086.2018.1447379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Haploidentical stem cell transplantation (Haplo-SCT) is currently a suitable alternative worldwide for patients with hematological diseases, who lack human leukocyte antigen (HLA)-matched siblings or unrelated donors. Areas covered: This review summarizes the advancements in Haplo-SCT in recent years, primarily focusing on the global trends of haploidentical allograft, the comparison of outcomes between Haplo-SCT and other transplantation modalities, strategies for improving clinical outcomes, including donor selection, hematopoietic reconstitution promotion, and graft-versus-host disease, and relapse prevention/management, as well as the expanded indications of Haplo-SCT, such as severe aplastic anemia, myeloma and lymphoma. Expert commentary: Haploidentical allografts, including granulocyte colony-stimulating factor-based protocol and a post-transplant cyclophosphamide-based protocol, have been the mainstream strategy for Haplo-SCT. However, there are many unanswered questions in this field.
Collapse
Affiliation(s)
- Yu-Qian Sun
- a Peking University People's Hospital , Peking University Institute of Hematology , Beijing , China.,b Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases , Beijing , P.R. China
| | - Ying-Jun Chang
- a Peking University People's Hospital , Peking University Institute of Hematology , Beijing , China.,b Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases , Beijing , P.R. China
| | - Xiao-Jun Huang
- a Peking University People's Hospital , Peking University Institute of Hematology , Beijing , China.,b Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases , Beijing , P.R. China.,c Peking-Tsinghua Center for Life Sciences , Beijing , China
| |
Collapse
|