1
|
Long J, Chen X, He M, Ou S, Zhao Y, Yan Q, Ma M, Chen J, Qin X, Zhou X, Chu J, Han Y. HLA-class II restricted TCR targeting human papillomavirus type 18 E7 induces solid tumor remission in mice. Nat Commun 2024; 15:2271. [PMID: 38480731 PMCID: PMC10937927 DOI: 10.1038/s41467-024-46558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
T cell receptor (TCR)-engineered T cell therapy is a promising potential treatment for solid tumors, with preliminary efficacy demonstrated in clinical trials. However, obtaining clinically effective TCR molecules remains a major challenge. We have developed a strategy for cloning tumor-specific TCRs from long-term surviving patients who have responded to immunotherapy. Here, we report the identification of a TCR (10F04), which is human leukocyte antigen (HLA)-DRA/DRB1*09:01 restricted and human papillomavirus type 18 (HPV18) E784-98 specific, from a multiple antigens stimulating cellular therapy (MASCT) benefited metastatic cervical cancer patient. Upon transduction into human T cells, the 10F04 TCR demonstrated robust antitumor activity in both in vitro and in vivo models. Notably, the TCR effectively redirected both CD4+ and CD8+ T cells to specifically recognize tumor cells and induced multiple cytokine secretion along with durable antitumor activity and outstanding safety profiles. As a result, this TCR is currently being investigated in a phase I clinical trial for treating HPV18-positive cancers. This study provides an approach for developing safe and effective TCR-T therapies, while underscoring the potential of HLA class II-restricted TCR-T therapy as a cancer treatment.
Collapse
Affiliation(s)
- Jianting Long
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xihe Chen
- HRYZ Biotech Co., Guangzhou, PR China
| | - Mian He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shudan Ou
- HRYZ Biotech Co., Guangzhou, PR China
| | - Yunhe Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | | | - Minjun Ma
- HRYZ Biotech Co., Guangzhou, PR China
| | - Jingyu Chen
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xuping Qin
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | |
Collapse
|
2
|
Zhou Y, Li M, Zhang B, Yang C, Wang Y, Zheng S, Tang L, Zhou C, Qian G, Huang Y, Yu W, Li H, Wang Y, He A, Shen Z, Zhang J, Li X, Yang Q, Hu H, Yao Y. A pilot study of multi-antigen stimulated cell therapy-I plus camrelizumab and apatinib in patients with advanced bone and soft-tissue sarcomas. BMC Med 2023; 21:470. [PMID: 38031088 PMCID: PMC10687909 DOI: 10.1186/s12916-023-03132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Cell-based immunotherapy shows the therapeutic potential in sarcomas, in addition to angiogenesis-targeted tyrosine kinase inhibitor (TKI) and immune checkpoint inhibitor (ICI). Multi-antigen stimulated cell therapy-I (MASCT-I) technology is a sequential immune cell therapy for cancer, which composes of multiple antigen-loaded dendritic cell (DC) vaccines followed by the adoptive transfer of anti-tumor effector T-cells. METHODS In this phase 1 study, we assessed MASCT-I plus camrelizumab (an ICI against PD-1) and apatinib (a highly selective TKI targeting VEGFR2) in patients with unresectable recurrent or metastatic bone and soft-tissue sarcoma after at least one line of prior systemic therapy. One MASCT-I course consisted of 3 DC subcutaneous injections, followed by 3 active T cell infusions administered 18-27 days after each DC injection. In schedule-I group, 3 DC injections were administered with a 28-day interval in all courses; in schedule-II group, 3 DC injections were administered with a 7-day interval in the first course and with a 28-day interval thereafter. All patients received intravenous camrelizumab 200 mg every 3 weeks and oral apatinib 250 mg daily. RESULTS From October 30, 2019, to August 12, 2021, 19 patients were enrolled and randomly assigned to schedule-I group (n = 9) and schedule-II group (n = 10). Of the 19 patients, 11 (57.9%) experienced grade 3 or 4 treatment-related adverse events. No treatment-related deaths occurred. Patients in schedule-II group showed similar objective response rate (ORR) with those in schedule-I group (30.0% versus 33.3%) but had higher disease control rate (DCR; 90.0% versus 44.4%) and longer median progression-free survival (PFS; 7.7 versus 4.0 months). For the 13 patients with soft-tissue sarcomas, the ORR was 30.8%, DCR was 76.9%, and median PFS was 12.9 months; for the 6 patients with osteosarcomas, the ORR was 33.3%, the DCR was 50.0%, and median PFS was 5.7 months. CONCLUSIONS Overall, MASCT-I plus camrelizumab and apatinib was safe and showed encouraging efficacy in advanced bone and soft-tissue sarcoma, and schedule-II administration method was recommended. TRIAL REGISTRATION ClinicalTrials.gov, NCT04074564.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Mei Li
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhang
- Department of Orthopedic Oncology, the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Cheng Yang
- Department of Orthopedic Oncology, Changzheng Hospital of Naval Military Medical University, Shanghai, China
| | - Yaling Wang
- Department of Oncology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Shuier Zheng
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lina Tang
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chenliang Zhou
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Guowei Qian
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yujing Huang
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wenxi Yu
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hongtao Li
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yonggang Wang
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Aina He
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zan Shen
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jianjun Zhang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | - Qingcheng Yang
- Department of Orthopedic, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Haiyan Hu
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Yang Yao
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Neo SY, Xu S, Chong J, Lam KP, Wu J. Harnessing novel strategies and cell types to overcome immune tolerance during adoptive cell therapy in cancer. J Immunother Cancer 2023; 11:jitc-2022-006434. [PMID: 37100458 PMCID: PMC10151952 DOI: 10.1136/jitc-2022-006434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
Cell therapy encompasses an expanding spectrum of cell-based regimes for the treatment of human ailments, such as the use of immune cells, in particular T cells, for combating tumors and the modulation of inflammatory immune responses. In this review, we focus on cell therapy in the immuno-oncology space, which is largely driven by interests and demands from the clinics for better solutions to target various hard-to-treat cancers. We discuss recent advances in various types of cell therapies, including T cell receptor-T cells, chimeric antigen receptor (CAR)-T cells, tumor-infiltrating lymphocytes and natural killer cells. Particularly, the present review focuses on the strategies to improve therapeutic responses by either enhancing tumor recognition or the resilience of infused immune cells within tumor microenvironment. Finally, we discuss the potential of other innate or innate-like immune cell types currently being explored as promising CAR-cell alternatives that seek to address the limitations of conventional adoptive cell therapies.
Collapse
Affiliation(s)
- Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Joni Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jing Wu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| |
Collapse
|
4
|
Chen XM, Yao DN, Wang MJ, Wu XD, Deng JW, Deng H, Huang RY, Lu CJ. Deep Sequencing of Plasma Exosomal microRNA Level in Psoriasis Vulgaris Patients. Front Med (Lausanne) 2022; 9:895564. [PMID: 35665333 PMCID: PMC9160332 DOI: 10.3389/fmed.2022.895564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022] Open
Abstract
Psoriasis is a chronic skin disease affecting 1% to 3% of the world population. Psoriasis vulgaris (PV) is the most common form of psoriasis. PV patients suffer from inflamed, pruritic and painful lesions for years (even a lifetime). However, conventional drugs for PV are costly. Considering the need for long-term treatment of PV, it is urgent to discover novel biomarkers and therapeutic targets. Plasma exosomal miRNAs have been identified as the reliable biomarkers and therapy targets of human diseases. Here, we described the levels of serum exosomal miRNAs in PV patients and analyzed the functional features of differently expressed miRNAs and their potential target genes for the first time. We identified 1182 miRNAs including 336 novel miRNAs and 246 differently expressed miRNAs in serum exosomes of healthy people and PV patients. Furthermore, the functional analysis found differently expressed miRNA-regulated target genes enriched for specific GO terms including primary metabolic process, cellular metabolic process, metabolic process, organic substance metabolic process, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway containing cellular processes, human diseases, metabolic pathways, metabolism and organismal systems. In addition, we found that some predicted target genes of differentially expressed miRNAs, such as CREB1, RUNX2, EGFR, are both involved in inflammatory response and metabolism. In summary, our study identifies many candidate miRNAs involved in PV, which could provide potential biomarkers for diagnosis of PV and targets for clinical therapies against PV.
Collapse
Affiliation(s)
- Xiu-Min Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan-Ni Yao
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Mao-Jie Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Dong Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jing-Wen Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Hao Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Run-Yue Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan-Jian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Peng S, Chen S, Hu W, Mei J, Zeng X, Su T, Wang W, Chen Z, Xiao H, Zhou Q, Li B, Xie Y, Hu H, He M, Han Y, Tang L, Ma Y, Li X, Zhou X, Dai Z, Liu Z, Tan J, Xu L, Li SQ, Shen S, Li D, Lai J, Peng B, Peng Z, Kuang M. Combination neoantigen-based dendritic cell vaccination and adoptive T-cell transfer induces antitumor responses against recurrence of hepatocellular carcinoma. Cancer Immunol Res 2022; 10:728-744. [PMID: 35476700 DOI: 10.1158/2326-6066.cir-21-0931] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023]
Abstract
A high rate of recurrence after curative therapy is a major challenge for the management of hepatocellular carcinoma (HCC). Currently, no effective adjuvant therapy is available to prevent HCC recurrence. We designed a personalized neoantigen-loaded dendritic cell vaccine and neoantigen-activated T cell therapy, and used it as adjuvant therapy to treat ten HCC patients who had undergone curative resection or radiofrequency ablation in the first stage of a phase II trial (NCT03067493). The primary outcomes were safety and neoantigen-specific immune response. Disease-free survival (DFS) was also evaluated. The immunotherapy was successfully administered to all the patients without unexpected delay and demonstrated a reasonable safety profile with no grade {greater than or equal to}3 treatment-related side effects reported. 70% of patients generated de novo circulating multiclonal neoantigen-specific T-cell responses. Induced neoantigen-specific immunity was maintained over time, and epitope spreading was observed. Patients who generated immune responses to treatment exhibited prolonged DFS compared to nonresponders (p=0.012), with 71.4% experiencing no relapse for two years after curative treatment. High expression of an immune stimulatory signature, enhanced immune-cell infiltration (i.e., CD8+ T cells), and upregulated expression of T-cell inflammatory gene profiles were found in the primary tumors of the responders. In addition, neoantigen depletion (immunoediting) was present in the recurrent tumors compared to the primary tumors (7/9 vs. 1/17, p=0.014), suggesting that immune evasion occurred under the pressure of immunotherapy. Our study indicates that neoantigen-based combination immunotherapy is feasible, safe, and has the potential to reduce HCC recurrence after curative treatment.
Collapse
Affiliation(s)
- Sui Peng
- Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Shuling Chen
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Hu
- Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Jie Mei
- Sun Yat-sen University First Affiliated Hospital, China
| | - Xuezhen Zeng
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Tianhong Su
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Sun Yat-sen University, guangzhou, China
| | - Zebin Chen
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Han Xiao
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Zhou
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Li
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huanjing Hu
- Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minghui He
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | - Zihao Dai
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zelong Liu
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiehui Tan
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Sun Yat-sen University First Affiliated Hospital, China
| | - Shao-Qiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shunli Shen
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Dongming Li
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiaming Lai
- Sun Yat-sen University First Affiliated Hospital, China
| | - Baogang Peng
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenwei Peng
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Kuang
- First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Lu L, Jiang J, Zhan M, Zhang H, Wang QT, Sun SN, Guo XK, Yin H, Wei Y, Li SY, Liu JO, Li Y, He YW. Targeting Tumor-Associated Antigens in Hepatocellular Carcinoma for Immunotherapy: Past Pitfalls and Future Strategies. Hepatology 2021; 73:821-832. [PMID: 32767586 DOI: 10.1002/hep.31502] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/23/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ligong Lu
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - Jun Jiang
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Meixiao Zhan
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - Hui Zhang
- First Affiliated HospitalChina Medical UniversityShenyangChina
| | - Qian-Ting Wang
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Sheng-Nan Sun
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Xiao-Kai Guo
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Hua Yin
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - Yadong Wei
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD
| | - Shi-You Li
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Jun O Liu
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD
| | - Yong Li
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - You-Wen He
- Department of ImmunologyDuke University Medical University Medical CenterDurhamNC
| |
Collapse
|
7
|
Huang W, Fan Y, Cheng X, Liang H, Pan H, Xiao T, Chen M, Guan J. A preliminary Study on the Effect of Head and Neck Chemoradiotherapy on Systematic Immunity. Dose Response 2019; 17:1559325819884186. [PMID: 31695581 PMCID: PMC6820191 DOI: 10.1177/1559325819884186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Background This study was designed initially to explore the effect of chemoradiotherapy on patients diagnosed with head and neck cancer (HNC) with respect to the alteration of systematic immunity. Methods We did a retrospective study enrolling patients received concurrent chemoradiotherapy (CCRT), with or without induction chemotherapy (IC). Blood tests were performed before IC, before and after CCRT. Flow cytometric analysis and turbidimetric inhibition immunoassay were used for detection. Results A total number of 58 patients were included from April 1, 2018, to March 31, 2019. Levels of immunoglobulins (Ig), including IgA, IgG, and IgM, declined after 2 to 3 cycles of IC and CCRT, respectively. Serum level of total hemolytic complement (CH50) increased (P < .001) after IC, but kept stably post-CCRT. Natural killer (NK) cells decreased (P < .01) after IC and enhanced (P < .001) post-CCRT. The number of CD3+CD4+ T cells got increased (P < .01) after IC and decreased (P < .001) post-CCRT. Consistently, both IC and CCRT induced the increase in CD3+CD8+ T cells significantly (P < .001 vs P < .01). Conclusion Both radiotherapy (RT) and chemotherapy (CT) induced dual effect of immune response. Concurrent chemoradiotherapy created an active immune response based on the effect induced by IC, suggesting that RT exerted a potential function on mobilizing immune system.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Fan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoya Cheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huazhen Liang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Xiao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Chen
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Safety and efficacy of PD-1 blockade-activated multiple antigen-specific cellular therapy alone or in combination with apatinib in patients with advanced solid tumors: a pooled analysis of two prospective trials. Cancer Immunol Immunother 2019; 68:1467-1477. [PMID: 31451841 DOI: 10.1007/s00262-019-02375-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The lethal effects of multiple antigen-specific cellular therapy (MASCT) may be enhanced by blocking PD-1 in vitro and vascular endothelial growth factor receptor 2 inhibitor (apatinib). We analyzed the pooled data from our phase I/II trials to determine the toxicity and efficacy of PD-1 blockade (SHR-1210)-activated MASCT (aMASCT) alone or in combination with apatinib in advanced solid tumors. METHODS Patients with advanced solid tumors received aMASCT alone (n = 32) or aMASCT plus apatinib (500 mg q.d., n = 38) after standard treatment. The safety profile was the primary end point. The secondary end points were antitumor response, progression-free survival (PFS), and overall survival (OS). The circulating T cells were quantified before and after aMASCT infusion. RESULTS Treatment-related adverse events (AEs) occurred in 18/32 (56.3%) and 25/38 (65.8%) patients in the aMASCT and aMASCT plus apatinib groups, respectively. No serious AEs were reported, and apatinib did not increase immunotherapy-related toxicity. The objective response rate (34.2% and 18.8%) and PFS (median 6.0 and 4.5 months, P = 0.002) were improved in the aMASCT plus apatinib group compared with the aMASCT group; however, the OS was not improved (median 10.0 and 8.2 months, P = 0.098). Multivariate analyses indicated that two or more cycles of aMASCT treatment was an independent and favorable prognostic factor of PFS and OS. The circulating T cells increased and Tregs decreased in both groups after one cycle of aMASCT treatment. CONCLUSIONS Treatment with aMASCT plus apatinib was safe and effective for the management of advanced solid tumors.
Collapse
|
9
|
Chan AWH, Zhang Z, Chong CCN, Tin EKY, Chow C, Wong N. Genomic landscape of lymphoepithelioma-like hepatocellular carcinoma. J Pathol 2019; 249:166-172. [PMID: 31168847 DOI: 10.1002/path.5313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022]
Abstract
Lymphoepithelioma-like hepatocellular carcinoma (LEL-HCC) is a distinct variant of HCC that is characterized by dense tumor-infiltrating lymphocytes (TILs). Patients with LEL-HCC also show better clinical outcomes compared to conventional HCC (c-HCC), which is commonly presented with low TIL. Emerging evidence has begun to highlight tumor-intrinsic genetic abnormalities in the tumor-host immune interfaces. However, genome-wide characterization of LEL-HCC remains largely unexplored. Here, we defined the genomic landscape of 12 LEL-HCC using whole-exome sequencing, and further underpinned those genetic alterations related to an immune active microenvironment by comparing findings to 15 c-HCC that were sequenced in parallel. Overall, the mutational load between LEL-HCC and c-HCC was similar. Interestingly, SNV incidences of specific genes (CTNNB1, AXIN1, NOTCH1, and NOTCH2) were significantly higher in c-HCC than LEL-HCC, suggesting a plausible link between activated Wnt/β-catenin and Notch signaling pathways and immune avoidance. Marked focal amplification of chromosome 11q13.3 was prevalent in LEL-HCC. Using The Cancer Genome Atlas dataset, we further established oncogenes expressed from chromosome 11q13.3 (CCND1, FGF19, and FGF4) to be strongly associated with the immune checkpoint signature (CD274, PDCD1, BTLA, CTLA4, HAVCR2, IDO1, and LAG3). Our results have illustrated for the first time the somatic landscape of LEL-HCC, and highlighted molecular alterations that could be exploited in combinatory therapy with checkpoint inhibitors in targeting HCC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anthony W-H Chan
- Department of Anatomical and Cellular Pathology, Sir YK Pao Centre for Cancer, Hong Kong SAR, PR China
| | - Zhe Zhang
- Department of Anatomical and Cellular Pathology, Sir YK Pao Centre for Cancer, Hong Kong SAR, PR China
| | - Charing C-N Chong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Edith K-Y Tin
- Department of Anatomical and Cellular Pathology, Sir YK Pao Centre for Cancer, Hong Kong SAR, PR China
| | - Chit Chow
- Department of Anatomical and Cellular Pathology, Sir YK Pao Centre for Cancer, Hong Kong SAR, PR China
| | - Nathalie Wong
- Department of Anatomical and Cellular Pathology, Sir YK Pao Centre for Cancer, Hong Kong SAR, PR China.,State Key Laboratory in Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| |
Collapse
|
10
|
Li H, Wang Z, Zhang J, Yuan C, Zhang H, Hou X, Zhang D. Enhanced shRNA delivery by the combination of polyethylenimine, ultrasound, and nanobubbles in liver cancer. Technol Health Care 2019; 27:263-272. [PMID: 31045545 PMCID: PMC6597992 DOI: 10.3233/thc-199025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Traditional cancer treatments such as surgery, radiation, and chemotherapy destroy both cancer and normal cells, which limit their clinical application. It is difficult to achieve the best results for any liver cancer patients using any single treatment method. Gene therapy for HCC demands non-invasive, efficient, targeted and safe gene transfection strategies. OBJECTIVE In this study, a nonviral shRNA gene delivery system utilizing a combination of PEI, US, and NBs was developed for targeting survivin in liver Cancer. METHODS AND RESULTS The PEI-shRNA-NBs cumulated in the tumor tissue because of the EPR effect. By exposure to the US, micelles shRNA may be released from PEI-shRNA-NBs in tumor tissues and the shRNA then transmitted efficiently to cancer cells. Considerably enhanced therapeutic outcome was obtained with the gene silencing effect enhanced. CONCLUSIONS PEI-shRNA-NBs possess the potential to become promising tools intended for shRNA delivery.
Collapse
Affiliation(s)
- Hongbo Li
- Department of Ultrasonography, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Ziyu Wang
- Department of Ultrasonography, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Chenyan Yuan
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Xinxin Hou
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Dongsheng Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
11
|
El-Ashmawy NE, El-Zamarany EA, Khedr EG, El-Bahrawy HA, El-Feky OA. Immunotherapeutic strategies for treatment of hepatocellular carcinoma with antigen-loaded dendritic cells: in vivo study. Clin Exp Med 2018; 18:535-546. [PMID: 30062618 DOI: 10.1007/s10238-018-0521-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/25/2018] [Indexed: 11/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the major health problems in the world. DCs-based vaccines are a promising immunotherapeutic strategy that aims at the optimal for induction of a specific antitumor immune response and destruction of tumor cells. The present study was conducted to investigate the immunogenic characters of whole tumor lysate-pulsed DCs vaccine and its ability to induce a specific antitumor immune response in HCC mice model. We also evaluate the effectiveness of prophylactic and therapeutic immunization strategies against HCC in mice models. Mice-derived DCs were in vitro loaded with whole tumor lysate prepared from liver tissue of HCC mice and evaluated for expression of surface maturation markers CD83 and CD86. In vivo immunization of mice with whole tumor lysate-pulsed DCs was performed in two strategies; prophylactic (pre-exposure to HCC) and therapeutic (post-exposure to HCC). Effectiveness of both protocols was investigated in terms of histopathological examination of liver sections and measurement of serum levels of immune cytokines interferon-γ (IFN-γ) and interleukin-2 (IL-2). Loading of DCs with whole tumor cell lysate exhibited a significant increase in expression of CD83 and CD86. In vivo administration of prophylactic doses of whole tumor lysate-pulsed DCs in mice before induction of HCC evokes a strong antitumor immune response presented by absence of malignant cells in liver sections and the significant increase in IFN-γ and IL-2. Data herein indicated that prophylactic vaccination with whole tumor lysate-pulsed DCs exhibited an effective antitumor immune response against HCC more than therapeutic protocol.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbiya, 31111, Egypt
| | - Enas A El-Zamarany
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbiya, 31111, Egypt
| | - Hoda A El-Bahrawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbiya, 31111, Egypt
| | - Ola A El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbiya, 31111, Egypt.
| |
Collapse
|
12
|
He Y, Guo Y, Chen J, Hu X, Li X, Kong Y, Zhang X, Zhou X, Liu L, Hou J. Multiple Antigen Stimulating Cellular Therapy (MASCT) For Hepatocellular Carcinoma After Curative Treatment: A Retrospective Study. J Cancer 2018; 9:1385-1393. [PMID: 29721048 PMCID: PMC5929083 DOI: 10.7150/jca.23725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background & Aims: The prognosis of hepatocellular carcinoma (HCC) remains poor and available treatment options are limited. This retrospective study evaluated the efficacy of Multiple Antigen Stimulating Cell Therapy (MASCT) as an adjuvant therapy for the treatment of HCC after curative treatment. Methods: Patients who underwent HCC curative treatments were classified into two groups: the MASCT group, in which patients received MASCT treatment after curative treatment (n = 47), and the control group, in which patients did not receive any treatment after curative treatment (n = 99). Patients who received ≥ 5 courses of MASCT treatment before recurrence or death (n = 26) were further stratified into a subgroup (multiple-course MASCT group) for analysis. The primary endpoint was overall survival (OS). The secondary endpoints were disease-free survival (DFS) and safety. Results: Kaplan-Meier analysis showed no statistically significant difference in OS between the MASCT group and the control group (P = 0.132), nor in DFS (P = 0.310) (median: 36.17 vs. 24.27 months). However, when comparing the multiple-course MASCT treated group to the control group, Kaplan-Meier analysis showed a significant difference in OS (P = 0.011), but not in DFS (P = 0.104) (median: 47.10 vs. 24.27 months). The overall incidences of treatment-related adverse events in the MASCT group and control group were 14.89% (7/47) and 19.19% (19/99), respectively. No MASCT treatment-related serious adverse events were reported. Conclusions: Although the MASCT group was not associated with significantly longer OS or DFS, the multiple-course MASCT group showed significantly improved overall survival after curative treatment, and the treatment procedures were well-tolerated. Multiple-course MASCT may therefore provide another choice for patients with HCC after curative treatment.
Collapse
Affiliation(s)
- Yajing He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yabing Guo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinzhang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyun Hu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Li Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Yin H, Que R, Liu C, Ji W, Sun B, Lin X, Zhang Q, Zhao X, Peng Z, Zhang X, Qian H, Chen L, Yao Y, Su C. Survivin-targeted drug screening platform identifies a matrine derivative WM-127 as a potential therapeutics against hepatocellular carcinoma. Cancer Lett 2018; 425:54-64. [PMID: 29608986 DOI: 10.1016/j.canlet.2018.03.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer related death which needs novel drugs to improve patient outcome. Survivin overexpresses in HCC and contributes to HCC malignant progression. In this study, we established a Survivin-targeted drug screening platform, a cell model HepG2-Sur5P-EGFP-Sur3U stably transfected with lentivirus carrying an EGFP expression cassette, in which the EGFP expression was regulated by the upstream Survivin promoter and downstream Survivin 3'-UTR. By using this platform, we screened and easily identified one of matrine derivatives, WM-127, from hundreds of matrine derivatives. WM-127 was demonstrated to be a strong Survivin inhibitor that inhibited cell proliferation, induced cell cycle arrest and apoptosis of HCC cells, and suppressed the growth of HCC xenografted tumors in nude mice, suggesting that WM-127 might be a promising drug for HCC treatment. WM-127 exhibited less cytotoxicity in normal cells. Mechanistic studies showed that WM-127 suppressed the activity of Survivin/β-catenin pathway and the expression of Bax to induce cell cycle arrest and apoptosis. Taken together, we constructed an economical, practical, efficient and convenient cell platform for screening the Survivin-targeted drugs from the enormous diversity of chemicals or factors, which would be a potential tool for antitumor drug research and development.
Collapse
Affiliation(s)
- Haisen Yin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China; Department of Gastroenterology, Jingzhou Central Hospital & Clinical Medical College, Yangtze University, Jingzhou, 434023, Hubei Province, China
| | - Risheng Que
- Department of Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Chunying Liu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Xuejing Lin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Qin Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Xinying Zhao
- Department of Gastroenterology, Jingzhou Central Hospital & Clinical Medical College, Yangtze University, Jingzhou, 434023, Hubei Province, China
| | - Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Xiaofeng Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Haihua Qian
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Lei Chen
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Yonggang Yao
- Department of Gastroenterology, Jingzhou Central Hospital & Clinical Medical College, Yangtze University, Jingzhou, 434023, Hubei Province, China
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
14
|
Dantoft W, Martínez-Vicente P, Jafali J, Pérez-Martínez L, Martin K, Kotzamanis K, Craigon M, Auer M, Young NT, Walsh P, Marchant A, Angulo A, Forster T, Ghazal P. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses. Front Immunol 2017; 8:1146. [PMID: 28993767 PMCID: PMC5622154 DOI: 10.3389/fimmu.2017.01146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.
Collapse
Affiliation(s)
- Widad Dantoft
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pablo Martínez-Vicente
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - James Jafali
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lara Pérez-Martínez
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Kim Martin
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Synexa Life Sciences, Cape Town, South Africa
| | - Konstantinos Kotzamanis
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Craigon
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manfred Auer
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,SynthSys-Centre for Synthetic and Systems Biology, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil T Young
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul Walsh
- NSilico Life Science and Department of Computing, Institute of Technology, Cork, Ireland
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Thorsten Forster
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
B7-H4 overexpression is essential for early hepatocellular carcinoma progression and recurrence. Oncotarget 2017; 8:80878-80888. [PMID: 29113351 PMCID: PMC5655246 DOI: 10.18632/oncotarget.20718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
B7-H4, another member of costimulatory molecule, has been shown to be overexpressed in multiple types of tumors, including hepatocellular carcinoma (HCC). However, the specific biological role of B7-H4 in HCC still needs to be further explored. In this study, we observed that B7-H4 was highly overexpressed in HCC tissues and cells, and its overexpression strongly correlated with patient's TNM stage, overall survival and early recurrence. Downregulation of B7-H4 significantly suppressed cell growth, invasion, and stemness of HCC by inducing apoptosis in the in vitro experiment. In addition, depletion of B7-H4 could help restore CD8+ T anti-tumor immunity by elevating the expression and secretion levels of CD107a, granzyme A, granzyme B, perforin and IFN-γ. In a xenografted mouse model of HCC, stable depletion of B7-H4 resulted in significantly smaller mean tumor volume and less mean tumor weight after 30 days of growth, compared to the control group. Together, our results provide insights into the diverse functions of B7-H4 involved in the pathogenesis, recurrence and anti-tumor immunity of HCC, indicating B7-H4 as a novel and effective approach for future treatment strategies that benefits anticancer therapy.
Collapse
|