1
|
Xu S, Wang J, Mao K, Jiao D, Li Z, Zhao H, Sun Y, Feng J, Lai Y, Peng R, Fu Y, Gan R, Chen S, Zhao HY, Wei HJ, Cheng Y. Generation and transcriptomic characterization of MIR137 knockout miniature pig model for neurodevelopmental disorders. Cell Biosci 2024; 14:86. [PMID: 38937838 PMCID: PMC11212353 DOI: 10.1186/s13578-024-01268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDD), such as autism spectrum disorders (ASD) and intellectual disorders (ID), are highly debilitating childhood psychiatric conditions. Genetic factors are recognized as playing a major role in NDD, with a multitude of genes and genomic regions implicated. While the functional validation of NDD-associated genes has predominantly been carried out using mouse models, the significant differences in brain structure and gene function between mice and humans have limited the effectiveness of mouse models in exploring the underlying mechanisms of NDD. Therefore, it is important to establish alternative animal models that are more evolutionarily aligned with humans. RESULTS In this study, we employed CRISPR/Cas9 and somatic cell nuclear transplantation technologies to successfully generate a knockout miniature pig model of the MIR137 gene, which encodes the neuropsychiatric disorder-associated microRNA miR-137. The homozygous knockout of MIR137 (MIR137-/-) effectively suppressed the expression of mature miR-137 and led to the birth of stillborn or short-lived piglets. Transcriptomic analysis revealed significant changes in genes associated with neurodevelopment and synaptic signaling in the brains of MIR137-/- miniature pig, mirroring findings from human ASD transcriptomic data. In comparison to miR-137-deficient mouse and human induced pluripotent stem cell (hiPSC)-derived neuron models, the miniature pig model exhibited more consistent changes in critical neuronal genes relevant to humans following the loss of miR-137. Furthermore, a comparative analysis identified differentially expressed genes associated with ASD and ID risk genes in both miniature pig and hiPSC-derived neurons. Notably, human-specific miR-137 targets, such as CAMK2A, known to be linked to cognitive impairments and NDD, exhibited dysregulation in MIR137-/- miniature pigs. These findings suggest that the loss of miR-137 in miniature pigs affects genes crucial for neurodevelopment, potentially contributing to the development of NDD. CONCLUSIONS Our study highlights the impact of miR-137 loss on critical genes involved in neurodevelopment and related disorders in MIR137-/- miniature pigs. It establishes the miniature pig model as a valuable tool for investigating neurodevelopmental disorders, providing valuable insights for potential applications in human research.
Collapse
Affiliation(s)
- Shengyun Xu
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Jiaoxiang Wang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Kexin Mao
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Deling Jiao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhu Li
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Heng Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Yifei Sun
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Jin Feng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Yuanhao Lai
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Ruiqi Peng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Yu Fu
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Ruoyi Gan
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Shuhan Chen
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Ye Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong-Jiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Ying Cheng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
2
|
Nguyen TD, Li H, Zhuang Y, Chen B, Kinoshita K, Jamal MA, Xu K, Guo J, Jiao D, Tanabe K, Wei Y, Li Z, Cheng W, Qing Y, Zhao HY, Wei HJ. In vitro and in vivo development of interspecies Asian elephant embryos reconstructed with pig enucleated oocytes. Anim Biotechnol 2023; 34:1909-1918. [PMID: 35404767 DOI: 10.1080/10495398.2022.2058005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) has an immense potential to rescue endangered animals and extinct species like mammoths. In this study, we successfully established an Asian elephant's fibroblast cell lines from ear tissues, performed iSCNT with porcine oocytes and evaluated the in vitro and in vivo development of reconstructed embryos. A total of 7780 elephant-pig iSCNT embryos were successfully reconstructed and showed in vitro development with cleavage rate, 4-cell, 8-cell and blastocyst rate of 73.01, 30.48, 5.64, and 4.73%, respectively. The total number of elephant-pig blastocyte cells and diameter of hatched blastocyte was 38.67 and 252.75 μm, respectively. Next, we designed species-specific markers targeting EDNRB, AGRP and TYR genes to verify the genome of reconstructed embryos with donor nucleus/species. The results indicated that 53.2, 60.8, and 60.8% of reconstructed embryos (n = 235) contained elephant genome at 1-cell, 2-cell and 4-cell stages, respectively. However, the percentages decreased to 32.3 and 32.7% at 8-cell and blastocyst stages, respectively. Furthermore, we also evaluated the in vivo development of elephant-pig iSCNT cloned embryos and transferred 2260 reconstructed embryos into two surrogate gilts that successfully became pregnant and a total of 11 (1 and 10) fetuses were surgically recovered after 17 and 19 days of gestation, respectively. The crown-rump length and width of elephant-pig cloned fetuses were smaller than the control group. Unfortunately, none of these fetuses contained elephant genomes, which suggested that elephant embryos failed to develop in vivo. In conclusion, we successfully obtained elephant-pig reconstructed embryos for the first time and these embryos are able to develop to blastocyst, but the in vivo developmental failure needs further investigated.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yiquan Zhuang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bowei Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Keiji Kinoshita
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kumiko Tanabe
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
| | - Yunfang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhuo Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenming Cheng
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Zou K, Wang F, Zhang Z, Zhou Y, Li P, Wang D, Zhu M, Jia C, Wei Z. Optimized CRISPR/Cas9 system for gene knockout in chicken DF1 cells. Poult Sci 2023; 102:102970. [PMID: 37562129 PMCID: PMC10432839 DOI: 10.1016/j.psj.2023.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
The editing efficiency primarily hinders the utility of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology in poultry. For a better understanding of the factors that influence the efficiency of gene knockout mediated by CRISPR/Cas9 in chicken DF1 cells, the single or dual single guide RNA (sgRNA) targeted exon regions of genes (taking anti-Müllerian hormone, TGF-beta receptor type-2 and Peroxisome proliferator-activated receptor gamma as examples) were designed. The sgRNA-CRISPR/Cas9 vectors with corresponding reporter vectors were transfected into DF1 cells. T7 endonuclease 1 (T7E1) and amplicon sequencing assay were compared for evaluating genome editing efficiency and the indel profiles were analyzed based on the data of amplicon sequencing. Meanwhile, to evaluate the precision of Cas9 cleavage, we also analyzed the homology of small insertion with the nucleotides of upstream and downstream of cleave sties. The surrogate reporter systems showed strong enrichment function, and the indel percentages were increased after puromycin selection. The indel ratios of T7E1 assay were lower than amplicon sequencing assay, which indicated T7E1 isn't fit to be used as the sole evaluation criterion for the targeting efficiency of CRISPR/Cas9. Based on the amplicon sequencing analysis, the editing efficiency showed noticeable differences among cells treated with different sgRNAs. However, the variety of indel efficiencies was not related to the GC content of sgRNA or chromosome types of targeted genes. The results showed that the dual sgRNA might not raise the indel ratios compared with individual sgRNA, but they could increase the ratios of the fragment deletions. The present study suggested that the surrogate reporter was an effective method to promote the editing efficiencies of CRISPR/Cas9 in chicken cells. The dual sgRNA could increase the fragment deletions, and the sensitivity of amplicon sequencing to detect cleavage was higher than the T7 endonuclease 1 assay. These results are essential to improve the application of CRISPR/Cas9 technology in chicken cells.
Collapse
Affiliation(s)
- Kexin Zou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zechun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengcheng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengqi Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cunling Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zehui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Himaki T, Hano K. Effects of alpha lipoic acid treatment during in vitro maturation on the development of porcine somatic cell nuclear transfer embryos. Anim Sci J 2023; 94:e13889. [PMID: 38031165 DOI: 10.1111/asj.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Oxidative stress influences the embryo production efficiency in vitro. We investigated the effects of alpha lipoic acid (ALA) treatment during the in vitro maturation (IVM) period on the porcine somatic cell nuclear transfer (SCNT) embryo production. After IVM, maturation rates of the 12.5- and 25-μM ALA-treated groups were not significantly different from those of the 0-μM ALA-treated group. Compared to those in the 0-μM ALA-treated group, the reactive oxygen species and glutathione levels were significantly decreased and increased, respectively, in the cytoplasm of matured oocytes in the 12.5-50-μM ALA-treated groups. Apoptosis rate in cumulus cells after IVM was significantly lower in the 12.5-50-μM ALA-treated groups than in the 0-μM ALA-treated group. Blastocyst formation rate was significantly higher in parthenogenetic oocytes treated with 12.5-μM ALA than in the 0-, 25-, and 50-μM ALA-treated groups. Similarly, in SCNT embryos, the 12.5-μM ALA-treated group showed a significantly higher blastocyst formation rate than the 0-μM ALA-treated group. Apoptosis rate in SCNT blastocysts was significantly decreased by 12.5-μM ALA treatment. The results showed that treatment with 12.5-μM ALA during IVM improves porcine SCNT embryo development and partial quality.
Collapse
Affiliation(s)
- Takehiro Himaki
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kazuki Hano
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
5
|
Gao M, Zhu X, Peng W, He Y, Li Y, Wu Q, Zhou Y, Liao G, Yang G, Bao J, Bu H. Kidney ECM Pregel Nanoarchitectonics for Microarrays to Accelerate Harvesting Gene-Edited Porcine Primary Monoclonal Spheres. ACS OMEGA 2022; 7:23156-23169. [PMID: 35847249 PMCID: PMC9280780 DOI: 10.1021/acsomega.2c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
One of the key steps
of using CRISPR/Cas9 to obtain gene-edited
cells used in generating gene-edited animals combined with somatic
cell nuclear transplantation (SCNT) is to harvest monoclonal cells
with genetic modifications. However, primary cells used as nuclear
donors always grow slowly and fragile after a series of gene-editing
operations. The extracellular matrix (ECM) formulated directly from
different organs comprises complex proteins and growth factors that
can improve and regulate the cellular functions of primary cells.
Herein, sodium lauryl ether sulfate (SLES) detergent was first used
to perfuse porcine kidney ECM, and the biological properties of the
kidney ECM were optimized. Then, we used a porcine kidney ECM pregel
to pattern the microarray and developed a novel strategy to shorten
the time of obtaining gene-edited monoclonal cell spheroids with low
damage in batches. Our results showed that the SLES-perfused porcine
kidney ECM pregel displayed superior biological activities in releasing
growth factors and promoting cell proliferation. Finally, combined
with microarray technology, we quickly obtained monoclonal cells in
good condition, and the cells used as nuclear donors to construct
recombinant embryos showed a significantly higher success rate than
those of the traditional method. We further successfully produced
genetically edited pigs.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Wanliu Peng
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Yuting He
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Yi Li
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiong Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Yanyan Zhou
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| |
Collapse
|
6
|
Xu K, Yu H, Chen S, Zhang Y, Guo J, Yang C, Jiao D, Nguyen TD, Zhao H, Wang J, Wei T, Li H, Jia B, Jamal MA, Zhao HY, Huang X, Wei HJ. Production of Triple-Gene (GGTA1, B2M and CIITA)-Modified Donor Pigs for Xenotransplantation. Front Vet Sci 2022; 9:848833. [PMID: 35573408 PMCID: PMC9097228 DOI: 10.3389/fvets.2022.848833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of human immune T-cells by swine leukocyte antigens class I (SLA-I) and class II (SLA-II) leads to xenograft destruction. Here, we generated the GGTA1, B2M, and CIITA (GBC) triple-gene-modified Diannan miniature pigs, analyzed the transcriptome of GBC-modified peripheral blood mononuclear cells (PBMCs) in the pig's spleen, and investigated their effectiveness in anti-immunological rejection. A total of six cloned piglets were successfully generated using somatic cell nuclear transfer, one of them carrying the heterozygous mutations in triple genes and the other five piglets carrying the homozygous mutations in GGTA1 and CIITA genes, but have the heterozygous mutation in the B2M gene. The autopsy of GBC-modified pigs revealed that a lot of spot bleeding in the kidney, severe suppuration and necrosis in the lungs, enlarged peripulmonary lymph nodes, and adhesion between the lungs and chest wall were found. Phenotyping data showed that the mRNA expressions of triple genes and protein expressions of B2M and CIITA genes were still detectable and comparable with wild-type (WT) pigs in multiple tissues, but α1,3-galactosyltransferase was eliminated, SLA-I was significantly decreased, and four subtypes of SLA-II were absent in GBC-modified pigs. In addition, even in swine umbilical vein endothelial cells (SUVEC) induced by recombinant porcine interferon gamma (IFN-γ), the expression of SLA-I in GBC-modified pig was lower than that in WT pigs. Similarly, the expression of SLA-II DR and DQ also cannot be induced by recombinant porcine IFN-γ. Through RNA sequencing (RNA-seq), 150 differentially expressed genes were identified in the PBMCs of the pig's spleen, and most of them were involved in immune- and infection-relevant pathways that include antigen processing and presentation and viral myocarditis, resulting in the pigs with GBC modification being susceptible to pathogenic microorganism. Furthermore, the numbers of human IgM binding to the fibroblast cells of GBC-modified pigs were obviously reduced. The GBC-modified porcine PBMCs triggered the weaker proliferation of human PBMCs than WT PBMCs. These findings indicated that the absence of the expression of α1,3-galactosyltransferase and SLA-II and the downregulation of SLA-I enhanced the ability of immunological tolerance in pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Honghao Yu
- College of Biotechnology, Guilin Medical University, Guilin, China
| | - Shuhan Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yaxuan Zhang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jiaoxiang Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Baoyu Jia
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Adenine base-editing-mediated exon skipping induces gene knockout in cultured pig cells. Biotechnol Lett 2022; 44:59-76. [PMID: 34997407 DOI: 10.1007/s10529-021-03214-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/28/2021] [Indexed: 12/26/2022]
Abstract
Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9, Adenine base editor (ABE) convert single A·T pairs to G·C pairs in the genome without generating DNA double-strand breaks, and this method has higher accuracy and biosafety in pig genetic modification. However, the application of ABE in pig gene knockout is limited by protospacer-adjacent motif sequences and the base-editing window. Alternative mRNA splicing is an important mechanism underlying the formation of proteins with diverse functions in eukaryotes. Spliceosome recognizes the conservative sequences of splice donors and acceptors in a precursor mRNA. Mutations in these conservative sequences induce exon skipping, leading to proteins with novel functions or to gene inactivation due to frameshift mutations. In this study, adenine base-editing-mediated exon skipping was used to expand the application of ABE in the generation of gene knockout pigs. We first constructed a modified "all-in-one" ABE vector suitable for porcine somatic cell transfection that contained an ABE for single-base editing and an sgRNA expression cassette. The "all-in-one" ABE vector induced efficient sgRNA-dependent A-to-G conversions in porcine cells during single base-editing of multiple endogenous gene loci. Subsequently, an ABE system was designed for single adenine editing of the conservative splice acceptor site (AG sequence at the 3' end of the intron 5) and splice donor site (GT sequence at the 5' end of the intron 6) in the porcine gene GHR; this method achieved highly efficient A-to-G conversion at the cellular level. Then, porcine single-cell colonies carrying a biallelic A-to-G conversion in the splice acceptor site in the intron 5 of GHR were generated. RT-PCR indicated exon 6 skipped at the mRNA level. Western blotting revealed GHR protein loss, and gene sequencing showed no sgRNA-dependent off-target effects. These results demonstrate accurate adenine base-editing-mediated exon skipping and gene knockout in porcine cells. This is the first proof-of-concept study of adenine base-editing-mediated exon skipping for gene regulation in pigs, and this work provides a new strategy for accurate and safe genetic modification of pigs for agricultural and medical applications.
Collapse
|
8
|
Li H, Cheng W, Chen B, Pu S, Fan N, Zhang X, Jiao D, Shi D, Guo J, Li Z, Qing Y, Jia B, Zhao HY, Wei HJ. Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided Base Editing. Life (Basel) 2021; 11:life11121417. [PMID: 34947951 PMCID: PMC8706133 DOI: 10.3390/life11121417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
The base editing 3 (BE3) system, a single-base gene editing technology developed using CRISPR/Cas9n, has a broad range of applications for human disease model construction and gene therapy, as it is highly efficient, accurate, and non-destructive. P53 mutations are present in more than 50% of human malignancies. Due to the similarities between humans and pigs at the molecular level, pig models carrying P53 mutations can be used to research the mechanism of tumorigenesis and improve tumor diagnosis and treatment. According to pathogenic mutations of the human P53 gene at W146* and Q100*, sgRNAs were designed to target exon 4 and exon 5 of the porcine P53 gene. The target editing efficiencies of the two sgRNAs were 61.9% and 50.0%, respectively. The editing efficiency of the BE3 system was highest (about 60%) when C (or G) was at the 5th base. Puromycin screening revealed that 75.0% (21/28) and 68.7% (22/32) of cell colonies contained a P53 mutation at sgRNA-Exon5 and sgRNA-Exon4, respectively. The reconstructed embryos from sgRNA-Exon5-5# were transferred into six recipient gilts, all of which aborted. The reconstructed embryos from sgRNA-Exon4-7# were transferred into 6 recipient gilts, 3 of which became pregnant, resulting in 14 live and 3 dead piglets. Sequencing analyses of the target site confirmed 1 P53 monoallelic mutation and 16 biallelic mutations. The qPCR analysis showed that the P53 mRNA expression level was significantly decreased in different tissues of the P53 mutant piglets (p < 0.05). Additionally, confocal microscopy and western blot analysis revealed an absence of P53 expression in the P53 mutant fibroblasts, livers, and lung tissues. In conclusion, a porcine cancer model with a P53 point mutation can be obtained via the BE3 system and somatic cell nuclear transfer (SCNT).
Collapse
Affiliation(s)
- Honghui Li
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Wenmin Cheng
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bowei Chen
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shaoxia Pu
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Ninglin Fan
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaolin Zhang
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Deling Jiao
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dejia Shi
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jianxiong Guo
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
| | - Zhuo Li
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yubo Qing
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Baoyu Jia
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Ye Zhao
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (H.-Y.Z.); (H.-J.W.)
| | - Hong-Jiang Wei
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (H.-Y.Z.); (H.-J.W.)
| |
Collapse
|
9
|
Gao M, Zhu X, Yang G, Bao J, Bu H. CRISPR/Cas9-Mediated Gene Editing in Porcine Models for Medical Research. DNA Cell Biol 2021; 40:1462-1475. [PMID: 34847741 DOI: 10.1089/dna.2020.6474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pigs have been extensively used as the research models for human disease pathogenesis and gene therapy. They are also the optimal source of cells, tissues, and organs for xenotransplantation due to anatomical and physiological similarities to humans. Several breakthroughs in gene-editing technologies, including the advent of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9), have greatly improved the efficiency of genetic manipulation and significantly broadened the application of gene-edited large animal models. In this review, we have not only outlined the important applications of the CRISPR/Cas9 system in pigs as a means to study human diseases but also discussed the potential challenges of the use of CRISPR/Cas9 in large animals.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xinglong Zhu
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
10
|
Abstract
Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
11
|
高 孟, 朱 星, 王 诗, 张 炳, 张 芸, 何 宇, 周 燕, 李 顺, 杨 光, 廖 光, 包 骥, 步 宏. [Rapid screening of single guide RNA targeting pig genome and the harvesting of monoclonal cells by microarray seal]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:111-121. [PMID: 33899435 PMCID: PMC10307559 DOI: 10.7507/1001-5515.202006032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Indexed: 02/05/2023]
Abstract
The emergence of regular short repetitive palindromic sequence clusters (CRISPR) and CRISPR- associated proteins 9 (Cas9) gene editing technology has greatly promoted the wide application of genetically modified pigs. Efficient single guide RNA (sgRNA) is the key to the success of gene editing using CRISPR/Cas9 technology. For large animals with a long reproductive cycle, such as pigs, it is necessary to screen out efficient sgRNA in vitro to avoid wasting time and resource costs before animal experiments. In addition, how to efficiently obtain positive gene editing monoclonal cells is a difficult problem to be solved. In this study, a rapid sgRNA screening method targeting the pig genome was established and we rapidly obtained Fah gene edited cells, laying a foundation for the subsequent production of Fah knockout pigs as human hepatocyte bioreactor. At the same time, the method of obtaining monoclonal cells using pattern microarray culture technology was explored.
Collapse
Affiliation(s)
- 孟雨 高
- 四川大学华西医院 病理科(成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 星龙 朱
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 诗盛 王
- 四川大学华西医院 华西华盛顿线粒体与代谢研究中心(成都 610041)West China - Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 炳琪 张
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 芸琳 张
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 宇婷 何
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 燕燕 周
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 顺 李
- 电子科技大学 生命科学技术学院 生物物理研究室(成都 611731)Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R.China
| | - 光 杨
- 四川大学华西医院 实验动物中心(成都 611731)Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 光能 廖
- 四川大学华西医院 实验动物中心(成都 611731)Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 骥 包
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 宏 步
- 四川大学华西医院 病理科(成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| |
Collapse
|
12
|
Yang G, Zhang L, Liu W, Qiao Z, Shen S, Zhu Q, Gao R, Wang M, Wang M, Li C, Liu M, Sun J, Wang L, Liu W, Cui X, Zhao K, Zang R, Chen M, Liang Z, Wang L, Kou X, Zhao Y, Wang H, Wang Y, Gao S, Chen J, Jiang C. Dux-Mediated Corrections of Aberrant H3K9ac during 2-Cell Genome Activation Optimize Efficiency of Somatic Cell Nuclear Transfer. Cell Stem Cell 2020; 28:150-163.e5. [PMID: 33049217 DOI: 10.1016/j.stem.2020.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Differentiated somatic cells can be reprogrammed to totipotent embryos through somatic cell nuclear transfer (SCNT) with low efficiency. The histone deacetylase inhibitor trichostatin A (TSA) has been found to improve SCNT efficiency, but the underlying mechanism remains undetermined. Here, we examined genome-wide H3K9ac during SCNT embryo development and found that aberrant H3K9ac regions resulted in reduced 2-cell genome activation. TSA treatment largely corrects aberrant acetylation in SCNT embryos with an efficiency that is dictated by the native epigenetic environment. We further identified that the overexpression of Dux greatly improves SCNT efficiency by correcting the aberrant H3K9ac signal at its target sites, ensuring appropriate 2-cell genome activation. Intriguingly, the improvement in development mediated by TSA and Kdm4b is impeded by Dux knockout in SCNT embryos. Together, our study reveals that reprogramming of H3K9ac is important for optimal SCNT efficiency and identifies Dux as a crucial transcription factor in this process.
Collapse
Affiliation(s)
- Guang Yang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Linfeng Zhang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Wenqiang Liu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zhibin Qiao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China
| | - Shijun Shen
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Qianshu Zhu
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Rui Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mengting Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Chong Li
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Meng Liu
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Jin Sun
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Liping Wang
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Wenju Liu
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Xinyu Cui
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Kun Zhao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Ruge Zang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mo Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zehang Liang
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Lu Wang
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Xiaochen Kou
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China.
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Cizhong Jiang
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China.
| |
Collapse
|
13
|
Hirata M, Wittayarat M, Tanihara F, Sato Y, Namula Z, Le QA, Lin Q, Takebayashi K, Otoi T. One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs. In Vitro Cell Dev Biol Anim 2020; 56:614-621. [PMID: 32978715 DOI: 10.1007/s11626-020-00507-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated whether electroporation could be used for one-step multiplex CRISPR/Cas9-based genome editing, targeting IL2RG and GHR in porcine embryos. First, we evaluated and selected guide RNAs (gRNAs) by analyzing blastocyst formation rates and genome editing efficiency. This was performed in embryos electroporated with one of three different gRNAs targeting IL2RG or one of two gRNAs targeting GHR. No significant differences in embryo development rates were found between control embryos and those subjected to electroporation, irrespective of the target gene. Two gRNAs targeting IL2RG (nos. 2 and 3) contributed to an increased biallelic mutation rate in porcine blastocysts compared with gRNA no. 1. There were no significant differences in the mutation rates between the two gRNAs targeting GHR. In our next experiment, the mutation efficiency and the development of embryos simultaneously electroporated with gRNAs targeting IL2RG and GHR were investigated. Similar embryo development rates were observed between embryos electroporated with two gRNAs and control embryos. When IL2RG-targeting gRNA no. 2 was used with GHR-targeting gRNAs no. 1 or no. 2, a significantly higher double biallelic mutation rate was observed than with IL2RG-targeting gRNA no. 3. In conclusion, we demonstrate the feasibility of using electroporation to transfer multiple gRNAs and Cas9 into porcine zygotes, enabling the double biallelic mutation of multiple genes with favorable embryo survival.
Collapse
Affiliation(s)
- Maki Hirata
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Fuminori Tanihara
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| | - Yoko Sato
- School of Biological Science, Tokai University, Sapporo, Japan
| | - Zhao Namula
- College of Agricultural Science, Guangdong Ocean University, Guangdong, China
| | - Quynh Anh Le
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Qingyi Lin
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Koki Takebayashi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Takeshige Otoi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
14
|
Wang R, Zhang JY, Lu KH, Lu SS, Zhu XX. Efficient generation of GHR knockout Bama minipig fibroblast cells using CRISPR/Cas9-mediated gene editing. In Vitro Cell Dev Biol Anim 2019; 55:784-792. [PMID: 31456163 DOI: 10.1007/s11626-019-00397-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
Abstract
Dwarfism, also known as growth hormone deficiency (GHD), is a disease caused by genetic mutations that result in either a lack of growth hormone or insufficient secretion of growth hormone, resulting in a person's inability to grow normally. In the past, many studies focusing on GHD have made use of models of other diseases such as metabolic or infectious diseases. A viable GHD specific model system has not been used previously, thus limiting the interpretation of GHD results. The Bama minipig is unique to Guangxi province and has strong adaptability and disease resistance, and an incredibly short stature, which is especially important for the study of GHD. In addition, studies of GHR knockout Bama minipigs and GHR knockout Bama minipig fibroblast cells generated using CRISPR/Cas9 have not been previously reported. Therefore, the Bama minipig was selected as an animal model and as a tool for the study of GHD in this work. In this study, a Cas9 plasmid with sgRNA targeting the first exon of the GHR gene was transfected into Bama minipig kidney fibroblast cells to generate 22 GHR knockout Bama minipig kidney fibroblast cell lines (12 male monoclonal cells and 10 female monoclonal cells). After culture and identification, 11 of the 12 male clone cell lines showed double allele mutations, and the rate of positive alteration of GHR was 91.67%. Diallelic mutation of the target sequence occurred in 10 female clonal cell lines, with an effective positive mutation rate of 100%. Our experimental results not only showed that CRISPR/Cas9 could efficiently be used for gene editing in Bama minipig cells but also identified a highly efficient target site for the generation of a GHR knockout in other porcine models. Thus, the generation of GHR knockout male and female Bama fibroblast cells could lay a foundation for the birth of a future dwarfism model pig. We anticipate that the "mini" Bama minipig will be of improved use for biomedical and agricultural scientific research and for furthering our understanding of the genetic underpinnings of GHD.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Jian-Ying Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China.
| | - Xiang-Xing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China. .,Guangdong Center of Gene Editing Engineering, Foshan University, Foshan, 528000, China.
| |
Collapse
|
15
|
Establishment of CRISPR/Cas9-Mediated Knock-in System for Porcine Cells with High Efficiency. Appl Biochem Biotechnol 2019; 189:26-36. [PMID: 30859452 DOI: 10.1007/s12010-019-02984-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/01/2019] [Indexed: 11/27/2022]
Abstract
Since the birth of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, the new genome engineering technology has become a hot topic in the scientific community. However, for swine, the system of pig cells' homology directed repair (HDR) is generally unstable and costly. Here, we aim to make knock-in of porcine cells more realizable. The Rosa26 locus was chosen for gene editing. Through the optimization of strategy, an efficient sgRNA was selected by TIDE analysis. Correspondingly, a vector system was constructed for gene insertion in pRosa26 locus by homologous recombination. A large percentage of cells whose gene is edited easily result in apoptosis. To improve the positive rate, culturing systems have been optimized. Sequence alignment and nuclear transfer confirmed that we got two knock-in cell lines and transgene primary porcine fetal fibroblasts (PFFs) successfully. Results showed that the gene editing platform we used can obtain genetically modified pig cells stably and efficiently. This system can contribute to pig gene research and production of transgenic pigs.
Collapse
|