1
|
Chen Z, Liu Y, Huang W. Alveolar macrophage modulation via the gut-lung axis in lung diseases. Front Immunol 2023; 14:1279677. [PMID: 38077401 PMCID: PMC10702770 DOI: 10.3389/fimmu.2023.1279677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Several studies have demonstrated great potential implications for the gut-lung axis in lung disease etiology and treatment. The gut environment can be influenced by diet, metabolites, microbiotal composition, primary diseases, and medical interventions. These changes modulate the functions of alveolar macrophages (AMs) to shape the pulmonary immune response, which greatly impacts lung health. The immune modulation of AMs is implicated in the pathogenesis of various lung diseases. However, the mechanism of the gut-lung axis in lung diseases has not yet been determined. This mini-review aimed to shed light on the critical nature of communication between the gut and AMs during the development of pulmonary infection, injury, allergy, and malignancy. A better understanding of their crosstalk may provide new insights into future therapeutic strategies targeting the gut-AM interaction.
Collapse
Affiliation(s)
| | | | - Weizhe Huang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Li P, Gao M, Fu J, Zhao Y, Liu Y, Yan S, Lv Z, Guo Y. Construction of low intestinal bacteria model and its effect on laying performance and immune function of laying hens. Poult Sci 2022; 102:102327. [PMID: 36812879 PMCID: PMC9975688 DOI: 10.1016/j.psj.2022.102327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to establish a low-bacteria intestinal model in chickens, and then to investigate the characteristics involving in immune function and intestinal environment of this model. A total of 180 twenty-one-week-old Hy-line gray layers were randomly allocated into 2 treatment groups. Hens were fed with a basic diet (Control), or an antibiotic combination diet (ABS) for 5 weeks. Results showed that the total bacteria in the ileal chyme were significantly dropped after ABS treatment. Compared with the Control group, the genus-level bacteria such as Romboutsia, Enterococcus, and Aeriscardovia were reduced in the ileal chyme of the ABS group (P < 0.05). In addition, the relative abundance of Lactobacillus_delbrueckii, Lactobacillus_aviarius, Lactobacillus_gasseri, and Lactobacillus_agilis in the ileal chyme were also descended (P < 0.05). However, Lactobacillus_coleohominis, Lactobacillus_salivarius, and Lolium_perenne were elevated in the ABS group (P < 0.05). Beyond that, ABS treatment decreased the levels of interleukin-10 (IL-10) and β-defensin 1 in the serum, as well as the number of goblet cells in the ileal villi (P < 0.05). Additionally, the genes mRNA levels of the ileum such as Mucin2, Toll-like receptors 4 (TLR4), Myeloid differentiation factor 88 (MYD88), NF-κB, IL-1β, Interferon-gama (IFN-γ), IL-4 and the ratio of IFN-γ to IL-4 were also down-regulated in the ABS group (P < 0.05). In addition, there were no significant changes about egg production rate and egg quality in the ABS group. In conclusion, dietary supplemental antibiotic combination for 5 weeks could establish a low intestinal bacteria model of hens. The establishment of a low intestinal bacteria model did not affect the egg-laying performance, while caused immune suppression in laying hens.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China,Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Jiahuan Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yongfa Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Shaojia Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
A meta-analysis reveals the effectiveness of probiotics and prebiotics against respiratory viral infection. Biosci Rep 2021; 41:227885. [PMID: 33604601 PMCID: PMC7955103 DOI: 10.1042/bsr20203638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Experimental experience suggests that microbial agents including probiotics and prebiotics (representative microbial agents) play a critical role in defending against respiratory virus infection. We aim to systematically examine these agents' effect on respiratory viral infection and encourage research into clinical applications. An electronic literature search was conducted from published data with a combination of a microbial agents search component containing synonyms for microbial agents-related terms and a customized search component for respiratory virus infection. Hazard ratio (HR), risk ratio (RR) and standard deviation (SD) were employed as effect estimates. In 45 preclinical studies, the mortality rates decreased in the respiratory viral infection models that included prebiotics or prebiotics as interventions (HR: 0.70; 95% confidence interval (CI): 0.56-0.87; P=0.002). There was a significant decrease in viral load due to improved gut microbiota (SD: -1.22; 95% CI: -1.50 to -0.94; P<0.001). Concentrations of interferon (IFN)-α (SD: 1.05; 95% CI: 0.33-1.77; P=0.004), IFN-γ (SD: 0.83; 95% CI: 0.01-1.65; P=0.05) and interleukin (IL)-12 (SD: 2.42; 95% CI: 0.32-4.52; P=0.02), IL-1β (SD: 0.01; 95% CI: -0.37 to 0.40; P=0.94) increased, whereas those of TNF-α (SD: -0.58; 95% CI: -1.59 to 0.43; P=0.26) and IL-6 (SD: -0.59; 95% CI: -1.24 to 0.07; P=0.08) decreased. Six clinical studies had lower symptom scores (SD: -0.09; 95% CI: -0.44 to 0.26; P=0.61) and less incidence of infection (RR: 0.80; 95% CI: 0.64-1.01; P=0.06). Our research indicates that probiotics and prebiotics pose a defensive possibility on respiratory viral infection and may encourage the clinical application.
Collapse
|
4
|
Eliaz I. The Failure of Probiotics-and the Strategy of Microbiome Synergy. Integr Med (Encinitas) 2020; 19:8-10. [PMID: 33132772 PMCID: PMC7572142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Isaac Eliaz
- founder and medical director of Amitabha Medical Clinic and Healing Center in Santa Rosa, California
| |
Collapse
|
5
|
Tsay TB, Chen PH, Chen LW. Aryl hydrocarbon receptor ligands enhance lung immunity through intestinal IKKβ pathways. J Transl Med 2019; 17:304. [PMID: 31488203 PMCID: PMC6727541 DOI: 10.1186/s12967-019-2043-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/18/2019] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Infection by antibiotic-resistant microorganisms is common in intensive care units and has become a global problem. Here, we determined the effect of aryl hydrocarbon receptor (AhR) stimulation on antibiotics-induced systemic defense impairment and its mechanisms. METHODS C57BL/6 wild-type (WT) mice received combined antibiotics with or without Ahr ligands (tryptophan and indole), or dead Lactobacillus plantarum supplementation. The defense mechanisms against Pseudomonas aeruginosa infection in the lung were examined. RESULTS Antibiotic treatments decreased the phagocytic activity, physiological activity, and the peroxynitrite production of alveolar macrophage (AMs). It also enhanced P. aeruginosa pneumonia-induced bacterial counts in the lung. Tryptophan and dead L. plantarum supplementation reversed antibiotic-induced intracellular adhesion molecule (ICAM) as well as IL-6 expression, and increased P. aeruginosa pneumonia-induced bacterial counts in the lung and increased phagocytic activity and peroxynitrite production of AMs. Moreover, these treatments reversed the antibiotics-induced reduction of Ahr expression, antibacterial proteins, reactive oxygen species (ROS) production, and NF-κB DNA binding activity of the intestinal mucosa and plasma IL-6 levels. P. aeruginosa counts increased and phagocytic activity of AMs and myeloperoxidase (MPO) activity decreased in intestinal IKKβ depleted mice. Antibiotics, antibiotic with tryptophan feeding, or antibiotic with dead L. plantarum feeding treatments did not change the phagocytic activity and peroxynitrite production of AMs, plasma IL-6 levels, and the expression of Ahr of intestine in intestinal IKKβ depleted mice. CONCLUSION Antibiotic treatment impairs lung immune defenses by decreasing Ahr expression in the intestine and peroyxnitrite production of the AMs. Ahr ligands reverses antibiotic-induced lung defense against bacterial infection through intestinal ROS production and NF-κB activation. The gut is critical in maintaining lung defense mechanism through the intestinal IKKβ pathways.
Collapse
Affiliation(s)
- Tzyy-Bin Tsay
- Department of Surgery, Kaohsiung Armed Forces General Hospital Zuoying Branch, Kaohsiung, Taiwan
| | - Pei-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, No.386, Ta-chung 1st Road, Kaohsiung, 813, Taiwan
| | - Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, No.386, Ta-chung 1st Road, Kaohsiung, 813, Taiwan. .,Department of Biological Sciences, National Sun Yat-Sen University, No.70, Lien-Hai Road, Kaohsiung, 804, Taiwan. .,Institute of Emergency and Critical Care Medicine, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|