1
|
Han Y, Zhou Q, Liu L, Li J, Zhou Y. DNI-MDCAP: improvement of causal MiRNA-disease association prediction based on deep network imputation. BMC Bioinformatics 2024; 25:22. [PMID: 38216907 PMCID: PMC10785389 DOI: 10.1186/s12859-024-05644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND MiRNAs are involved in the occurrence and development of many diseases. Extensive literature studies have demonstrated that miRNA-disease associations are stratified and encompass ~ 20% causal associations. Computational models that predict causal miRNA-disease associations provide effective guidance in identifying novel interpretations of disease mechanisms and potential therapeutic targets. Although several predictive models for miRNA-disease associations exist, it is still challenging to discriminate causal miRNA-disease associations from non-causal ones. Hence, there is a pressing need to develop an efficient prediction model for causal miRNA-disease association prediction. RESULTS We developed DNI-MDCAP, an improved computational model that incorporated additional miRNA similarity metrics, deep graph embedding learning-based network imputation and semi-supervised learning framework. Through extensive predictive performance evaluation, including tenfold cross-validation and independent test, DNI-MDCAP showed excellent performance in identifying causal miRNA-disease associations, achieving an area under the receiver operating characteristic curve (AUROC) of 0.896 and 0.889, respectively. Regarding the challenge of discriminating causal miRNA-disease associations from non-causal ones, DNI-MDCAP exhibited superior predictive performance compared to existing models MDCAP and LE-MDCAP, reaching an AUROC of 0.870. Wilcoxon test also indicated significantly higher prediction scores for causal associations than for non-causal ones. Finally, the potential causal miRNA-disease associations predicted by DNI-MDCAP, exemplified by diabetic nephropathies and hsa-miR-193a, have been validated by recently published literature, further supporting the reliability of the prediction model. CONCLUSIONS DNI-MDCAP is a dedicated tool to specifically distinguish causal miRNA-disease associations with substantially improved accuracy. DNI-MDCAP is freely accessible at http://www.rnanut.net/DNIMDCAP/ .
Collapse
Affiliation(s)
- Yu Han
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiong Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Leibo Liu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
2
|
Luo Y, Peng L, Shan W, Sun M, Luo L, Liang W. Machine learning in the development of targeting microRNAs in human disease. Front Genet 2023; 13:1088189. [PMID: 36685965 PMCID: PMC9845262 DOI: 10.3389/fgene.2022.1088189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
A microRNA is a small, single-stranded, non-coding ribonucleic acid that plays a crucial role in RNA silencing and can regulate gene expression. With the in-depth study of miRNA in development and disease, miRNA has become an attractive target for novel therapeutic strategies. Exploring miRNA targeting therapy only through experiments is expensive and laborious, so it is essential to develop novel and efficient computational methods to narrow down the search. Recent advances in machine learning applied in biomedical informatics provide opportunities to explore miRNA-targeting drugs, thus promoting miRNA therapeutics. This review provides an overview of recent advancements in miRNA targeting therapeutic using machine learning. First, we mainly describe the basics of predicting miRNA targeting drugs, including pharmacogenomic data resources and data preprocessing. Then we present primary machine learning algorithms and elaborate their application in discovering relationships among miRNAs, drugs, and diseases. Along with the progress of miRNA targeting therapeutics, we finally analyze and discuss the current challenges and opportunities that machine learning confronts.
Collapse
Affiliation(s)
- Yuxun Luo
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China
| | - Li Peng
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China
| | - Wenyu Shan
- School of Computer Science, University of South China, Hengyang, China
| | - Mengyue Sun
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, United States
| | - Lingyun Luo
- School of Computer Science, University of South China, Hengyang, China
| | - Wei Liang
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China,*Correspondence: Wei Liang,
| |
Collapse
|
3
|
Yu L, Zheng Y, Ju B, Ao C, Gao L. Research progress of miRNA-disease association prediction and comparison of related algorithms. Brief Bioinform 2022; 23:6542222. [PMID: 35246678 DOI: 10.1093/bib/bbac066] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
With an in-depth understanding of noncoding ribonucleic acid (RNA), many studies have shown that microRNA (miRNA) plays an important role in human diseases. Because traditional biological experiments are time-consuming and laborious, new calculation methods have recently been developed to predict associations between miRNA and diseases. In this review, we collected various miRNA-disease association prediction models proposed in recent years and used two common data sets to evaluate the performance of the prediction models. First, we systematically summarized the commonly used databases and similarity data for predicting miRNA-disease associations, and then divided the various calculation models into four categories for summary and detailed introduction. In this study, two independent datasets (D5430 and D6088) were compiled to systematically evaluate 11 publicly available prediction tools for miRNA-disease associations. The experimental results indicate that the methods based on information dissemination and the method based on scoring function require shorter running time. The method based on matrix transformation often requires a longer running time, but the overall prediction result is better than the previous two methods. We hope that the summary of work related to miRNA and disease will provide comprehensive knowledge for predicting the relationship between miRNA and disease and contribute to advanced computation tools in the future.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yujia Zheng
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Bingyi Ju
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Chunyan Ao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
4
|
Luo J, Liu Y, Liu P, Lai Z, Wu H. Data Integration Using Tensor Decomposition for The Prediction of miRNA-Disease Associations. IEEE J Biomed Health Inform 2021; 26:2370-2378. [PMID: 34748505 DOI: 10.1109/jbhi.2021.3125573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dysfunction of miRNAs has an important relationship with diseases by impacting their target genes. Identifying disease-related miRNAs is of great significance to prevent and treat diseases. Integrating information of genes related miRNAs and/or diseases in calculational methods for miRNA-disease association studies is meaningful because of the complexity of biological mechanisms. Therefore, in this study, we propose a novel method based on tensor decomposition, termed TDMDA, to integrate multi-type data for identifying pathogenic miRNAs. First, we construct a three-order association tensor to express the associations of miRNA-disease pairs, the associations of miRNA-gene pairs, and the associations of gene-disease pairs simultaneously. Then, a tensor decomposition-based method with auxiliary information is applied to reconstruct the association tensor for predicting miRNA-disease associations, and the auxiliary information includes biological similarity information and adjacency information. The performance of TDMDA is compared with other advanced methods under 5-fold cross-validations. The experimental results indicate the TDMDA is a competitive method.
Collapse
|
5
|
Ding P, Ouyang W, Luo J, Kwoh CK. Heterogeneous information network and its application to human health and disease. Brief Bioinform 2021; 21:1327-1346. [PMID: 31566212 DOI: 10.1093/bib/bbz091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 12/11/2022] Open
Abstract
The molecular components with the functional interdependencies in human cell form complicated biological network. Diseases are mostly caused by the perturbations of the composite of the interaction multi-biomolecules, rather than an abnormality of a single biomolecule. Furthermore, new biological functions and processes could be revealed by discovering novel biological entity relationships. Hence, more and more biologists focus on studying the complex biological system instead of the individual biological components. The emergence of heterogeneous information network (HIN) offers a promising way to systematically explore complicated and heterogeneous relationships between various molecules for apparently distinct phenotypes. In this review, we first present the basic definition of HIN and the biological system considered as a complex HIN. Then, we discuss the topological properties of HIN and how these can be applied to detect network motif and functional module. Afterwards, methodologies of discovering relationships between disease and biomolecule are presented. Useful insights on how HIN aids in drug development and explores human interactome are provided. Finally, we analyze the challenges and opportunities for uncovering combinatorial patterns among pharmacogenomics and cell-type detection based on single-cell genomic data.
Collapse
Affiliation(s)
- Pingjian Ding
- School of Computer Science, University of South China, Hengyang, China
| | - Wenjue Ouyang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Chee-Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Ding P, Liang C, Ouyang W, Li G, Xiao Q, Luo J. Inferring Synergistic Drug Combinations Based on Symmetric Meta-Path in a Novel Heterogeneous Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1562-1571. [PMID: 31714232 DOI: 10.1109/tcbb.2019.2951557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combinatorial drug therapy is a promising way for treating cancers, which can reduce drug side effects and improve drug efficacy. However, due to the large-scale combinatorial space, it is difficult to quickly and effectively identify novel synergistic drug combinations for further implementing combinatorial drug therapy. The computational method of fusing multi-source knowledge is a time- and cost-efficient strategy to infer synergistic drug combinations for testing. However, for the existing computational methods of inferring synergistic drug combinations, it still remains a challenging to effectively combine multi-source information to achieve the desired results. Hence, in this study, we developed a novel Inference method of Synergistic Drug Combinations based on Symmetric Meta-Path (ISDCSMP), which can systematically and accurately prioritize synergistic drug combinations in a novel drug-target heterogeneous network integrating multi-source information. In the experiment, ISDCSMP outperformed the state-of-the-art methods in terms of AUC and precision on the benchmark dataset in five-fold cross validation. Moreover, we further illustrated performances of different ways for obtaining the combination coefficients, and analyzed the influences of the maximum meta-path length. The performances of various single meta-paths were described in five-fold cross validation. Finally, we confirmed the practical usefulness of ISDCSMP with the predicted novel synergistic drug combinations. The source code of ISDCSMP is available at https://github.com/KDDing/ISDCSMP.
Collapse
|
7
|
Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, Wei X, Qiu J, Salahub DR, Xiong Y, Wei DQ. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 2021; 22:6261915. [PMID: 34009265 DOI: 10.1093/bib/bbab165] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of the miRNA-disease associations (MDAs) helps to understand the etiology and mechanisms of various diseases. However, the experimental methods are costly and time-consuming. Thus, it is urgent to develop computational methods towards the prediction of MDAs. Based on the graph theory, the MDA prediction is regarded as a node classification task in the present study. To solve this task, we propose a novel method MDA-GCNFTG, which predicts MDAs based on Graph Convolutional Networks (GCNs) via graph sampling through the Feature and Topology Graph to improve the training efficiency and accuracy. This method models both the potential connections of feature space and the structural relationships of MDA data. The nodes of the graphs are represented by the disease semantic similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity. Moreover, we considered six tasks simultaneously on the MDA prediction problem at the first time, which ensure that under both balanced and unbalanced sample distribution, MDA-GCNFTG can predict not only new MDAs but also new diseases without known related miRNAs and new miRNAs without known related diseases. The results of 5-fold cross-validation show that the MDA-GCNFTG method has achieved satisfactory performance on all six tasks and is significantly superior to the classic machine learning methods and the state-of-the-art MDA prediction methods. Moreover, the effectiveness of GCNs via the graph sampling strategy and the feature and topology graph in MDA-GCNFTG has also been demonstrated. More importantly, case studies for two diseases and three miRNAs are conducted and achieved satisfactory performance.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Xuhong Wang
- School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, China
| | - Qiuying Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, China
| | | | | | - Dennis Russell Salahub
- Department of Chemistry, University of Calgary, Fellow Royal Society of Canada and Fellow of the American Association for the Advancement of Science, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
8
|
Huang Z, Liu L, Gao Y, Shi J, Cui Q, Li J, Zhou Y. Benchmark of computational methods for predicting microRNA-disease associations. Genome Biol 2019; 20:202. [PMID: 31594544 PMCID: PMC6781296 DOI: 10.1186/s13059-019-1811-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A series of miRNA-disease association prediction methods have been proposed to prioritize potential disease-associated miRNAs. Independent benchmarking of these methods is warranted to assess their effectiveness and robustness. RESULTS Based on more than 8000 novel miRNA-disease associations from the latest HMDD v3.1 database, we perform systematic comparison among 36 readily available prediction methods. Their overall performances are evaluated with rigorous precision-recall curve analysis, where 13 methods show acceptable accuracy (AUPRC > 0.200) while the top two methods achieve a promising AUPRC over 0.300, and most of these methods are also highly ranked when considering only the causal miRNA-disease associations as the positive samples. The potential of performance improvement is demonstrated by combining different predictors or adopting a more updated miRNA similarity matrix, which would result in up to 16% and 46% of AUPRC augmentations compared to the best single predictor and the predictors using the previous similarity matrix, respectively. Our analysis suggests a common issue of the available methods, which is that the prediction results are severely biased toward well-annotated diseases with many associated miRNAs known and cannot further stratify the positive samples by discriminating the causal miRNA-disease associations from the general miRNA-disease associations. CONCLUSION Our benchmarking results not only provide a reference for biomedical researchers to choose appropriate miRNA-disease association predictors for their purpose, but also suggest the future directions for the development of more robust miRNA-disease association predictors.
Collapse
Affiliation(s)
- Zhou Huang
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Leibo Liu
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, 300401, China
| | - Yuanxu Gao
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Jiangcheng Shi
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
- Center of Bioinformatics, Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, 300401, China.
| | - Yuan Zhou
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China.
| |
Collapse
|
9
|
Pan Z, Zhang H, Liang C, Li G, Xiao Q, Ding P, Luo J. Self-Weighted Multi-Kernel Multi-Label Learning for Potential miRNA-Disease Association Prediction. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:414-423. [PMID: 31319245 PMCID: PMC6637211 DOI: 10.1016/j.omtn.2019.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 11/23/2022]
Abstract
Researchers have realized that microRNAs (miRNAs) play significant roles in the pathogenesis of various diseases. Although many computational models have been proposed to predict the associations between miRNAs and diseases, prediction performance could still be improved. In this paper, we propose a novel self-weighted, multi-kernel, multi-label learning (SwMKML) method to predict disease-related miRNAs. SwMKML adaptively learns two optimal kernel matrices for both miRNAs and diseases from multiple kernels constructed from known miRNA-disease associations. Moreover, the miRNA-disease associations predicted from both spaces are updated simultaneously based on a multi-label framework. Compared with four state-of-the-art computational models, SwMKML achieved best results of 95.5%, 93.1%, and 84.1% in global leave-one-out cross-validation, 5-fold cross-validation, and overall prediction accuracy, respectively. A case study conducted on head and neck neoplasms further identified two potential prognostic biomarkers, hsa-mir-125b-1 and hsa-mir-125b-2, for the disease. SwMKML is freely available at Github, and we anticipate that it may become an effective tool for potential miRNA-disease association prediction.
Collapse
Affiliation(s)
- Zhenxia Pan
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China
| | - Huaxiang Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China.
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China.
| | - Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Qiu Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha 410006, China
| | - Pingjian Ding
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|