1
|
Bafaloukos D, Kouzis P, Gouveris P, Boukovinas I, Kalbakis K, Baka S, Kyriakakis G, Moschou D, Molfeta A, Demiri S, Mavroudis D, Spanoudi F, Dimitriadis I, Gogas H. Real-world management practices and characteristics of patients with advanced melanoma initiated on immuno-oncology or targeted therapy in the first-line setting during the period 2015-2018 in Greece. The 'SUMMER' study: a retrospective multicenter chart review project. Melanoma Res 2024; 34:152-165. [PMID: 38092014 PMCID: PMC10906211 DOI: 10.1097/cmr.0000000000000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/03/2023] [Indexed: 02/02/2024]
Abstract
This study primarily aimed to generate real-world evidence (RWE) on the profile and first-line treatment (1LT) patterns of patients with advanced (unresectable Stage III/metastatic) cutaneous melanoma initiated on immuno-oncology (IO)- or targeted therapy (TT)-based 1LT between 1 January 2015 and 1 January 2018 (index period), in routine settings of Greece. This was a multicenter, retrospective chart review study. Eligible consented (unless deceased, for whom consent was waived by the hospital) patients were consecutively included by six oncology clinics. The look-back period extended from informed consent or death to initial melanoma diagnosis. Between 9 Junuary 2021 and 9 February 2022, 225 eligible patients (all Caucasians; 60.4% male; 35.6% diagnosed with de novo advanced melanoma) were included. At 1LT initiation, median age was 62.6 years; 2.7/6.7/90.7% of the patients had Stage IIIB/IIIC/IV disease and 9.3% were unresected. Most frequent metastatic sites were the lung (46.7%), non-regional nodes (33.8%), and liver (20.9%). Among patients, 98.2% had single primary melanoma, 45.6% had disease localized on the trunk, and 63.6% were BRAF-mutant. Of the patients, 45.3% initiated 1LT with an IO-based, 53.3% with a TT-based regimen, and three patients (1.3%) received TT-based followed by IO-based or vice versa. Most common 1LT patterns (frequency ≥10%) were BRAFi/MEKi combination (31.6%), anti-PD-1 monotherapy (25.3%), BRAFi monotherapy (21.8%), and anti-CTLA-4 monotherapy (17.8%). Most frequent regimens were Dabrafenib+Trametinib in 25.3%, and monotherapies with Pembrolizumab/Ipilimumab/Vemurafenib/Dabrafenib in 23.6/17.8/11.1/10.7% of patients, respectively. SUMMER provides RWE on 1LT strategies and profile of patients initiated 1L IO- or TT-based therapy in Greece during the 3-year index period.
Collapse
Affiliation(s)
| | - Panagiotis Kouzis
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| | | | | | | | - Sofia Baka
- Oncology Department, Interbalkan European Medical Center, Thessaloniki
| | - Georgios Kyriakakis
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| | - Despoina Moschou
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| | | | - Stamatia Demiri
- Second Department of Medical Oncology, Agios Savvas Hospital, Athens
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion
| | - Filio Spanoudi
- MSD Pharmaceutical, Industrial and Commercial S.A., Medical Affairs, Athens, Greece
| | - Ioannis Dimitriadis
- MSD Pharmaceutical, Industrial and Commercial S.A., Medical Affairs, Athens, Greece
| | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| |
Collapse
|
2
|
Gingrich AA, Kirane AR. Novel Targets in Melanoma: Intralesional and Combination Therapy to Manipulate the Immune Response. Surg Oncol Clin N Am 2021; 29:467-483. [PMID: 32482321 DOI: 10.1016/j.soc.2020.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical outcomes for metastatic melanoma have been dramatically altered by recent developments in immunotherapy and targeted strategies, but response to these therapies is not uniform, the majority of patients do not respond, and clinical response can be self-limited. Current directions in melanoma treatment aim to leverage a combination of therapies for tumors refractory to monoimmunotherapy, to include tumor-directed strategies, such as intralesional therapy and inhibitors designed for novel targets, which may augment current systemic agents when used in combination. Here, we summarize new classes of agents and emerging multimodal combination strategies that demonstrate significant promise in future melanoma management.
Collapse
Affiliation(s)
- Alicia A Gingrich
- Department of Surgery, University of California Davis, 4501 X Street, Suite 3010, Sacramento, CA 95817, USA
| | - Amanda R Kirane
- Department of Surgery, University of California Davis, 4501 X Street, Suite 3010, Sacramento, CA 95817, USA.
| |
Collapse
|
3
|
Palmieri G, Puzanov I, Massi D, Ascierto PA. Editorial: Advancements in Molecular Diagnosis and Treatment of Melanoma. Front Oncol 2021; 11:728113. [PMID: 34307183 PMCID: PMC8299098 DOI: 10.3389/fonc.2021.728113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Giuseppe Palmieri
- University of Sassari & Unit of Cancer Genetics, National Research Council (CNR), Sassari, Italy
| | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, University of Buffalo, Buffalo, NY, United States
| | - Daniela Massi
- Section of Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
4
|
Chiu TY, Lin RW, Huang CJ, Yeh DW, Wang YC. DNA Damage Repair Gene Set as a Potential Biomarker for Stratifying Patients with High Tumor Mutational Burden. BIOLOGY 2021; 10:biology10060528. [PMID: 34198473 PMCID: PMC8231881 DOI: 10.3390/biology10060528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023]
Abstract
Simple Summary Immunotherapy has been a promising therapeutic approach for cancer treatment in recent years. Although cancer immunotherapy has achieved remarkable success, treatment response is only observed in a small number of patients. As nonresponders need to endure high treatment costs and toxicities with little benefit from treatment, identifying potential predictive biomarkers is critical to optimize the benefits of immunotherapy in patients. The total number of mutations in the tumor genome is a useful biomarker. Patients with a large number of mutations tend to respond better to cancer immunotherapy. However, assessment of the total number of mutations may not be easy. In this study, we identified gene sets with only a small number of genes whose mutations serve as an indicator of the total number of mutations. These cancer-specific gene sets can be used as a cost-effective approach to stratify patients with a large number of mutations in clinical practice. Abstract Tumor mutational burden (TMB) is a promising predictive biomarker for cancer immunotherapy. Patients with a high TMB have better responses to immune checkpoint inhibitors. Currently, the gold standard for determining TMB is whole-exome sequencing (WES). However, high cost, long turnaround time, infrastructure requirements, and bioinformatics demands have prevented WES from being implemented in routine clinical practice. Panel-sequencing-based estimates of TMB have gradually replaced WES TMB; however, panel design biases could lead to overestimation of TMB. To stratify TMB-high patients better without sequencing all genes and avoid overestimating TMB, we focused on DNA damage repair (DDR) genes, in which dysfunction may increase somatic mutation rates. We extensively explored the association between the mutation status of DDR genes and TMB in different cancer types. By analyzing the mutation data from The Cancer Genome Atlas, which includes information for 33 different cancer types, we observed no single DDR gene/pathway in which mutation status was significantly associated with high TMB across all 33 cancer types. Therefore, a computational algorithm was proposed to identify a cancer-specific gene set as a surrogate for stratifying patients with high TMB in each cancer. We applied our algorithm to skin cutaneous melanoma and lung adenocarcinoma, demonstrating that the mutation status of the identified cancer-specific DDR gene sets, which included only 9 and 14 genes, respectively, was significantly associated with TMB. The cancer-specific DDR gene set can be used as a cost-effective approach to stratify patients with high TMB in clinical practice.
Collapse
Affiliation(s)
- To-Yuan Chiu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.-Y.C.); (R.W.L.); (C.-J.H.); (D.-W.Y.)
| | - Ryan Weihsiang Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.-Y.C.); (R.W.L.); (C.-J.H.); (D.-W.Y.)
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chien-Jung Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.-Y.C.); (R.W.L.); (C.-J.H.); (D.-W.Y.)
| | - Da-Wei Yeh
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.-Y.C.); (R.W.L.); (C.-J.H.); (D.-W.Y.)
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.-Y.C.); (R.W.L.); (C.-J.H.); (D.-W.Y.)
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Scatena C, Murtas D, Tomei S. Cutaneous Melanoma Classification: The Importance of High-Throughput Genomic Technologies. Front Oncol 2021; 11:635488. [PMID: 34123788 PMCID: PMC8193952 DOI: 10.3389/fonc.2021.635488] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is an aggressive tumor responsible for 90% of mortality related to skin cancer. In the recent years, the discovery of driving mutations in melanoma has led to better treatment approaches. The last decade has seen a genomic revolution in the field of cancer. Such genomic revolution has led to the production of an unprecedented mole of data. High-throughput genomic technologies have facilitated the genomic, transcriptomic and epigenomic profiling of several cancers, including melanoma. Nevertheless, there are a number of newer genomic technologies that have not yet been employed in large studies. In this article we describe the current classification of cutaneous melanoma, we review the current knowledge of the main genetic alterations of cutaneous melanoma and their related impact on targeted therapies, and we describe the most recent high-throughput genomic technologies, highlighting their advantages and disadvantages. We hope that the current review will also help scientists to identify the most suitable technology to address melanoma-related relevant questions. The translation of this knowledge and all actual advancements into the clinical practice will be helpful in better defining the different molecular subsets of melanoma patients and provide new tools to address relevant questions on disease management. Genomic technologies might indeed allow to better predict the biological - and, subsequently, clinical - behavior for each subset of melanoma patients as well as to even identify all molecular changes in tumor cell populations during disease evolution toward a real achievement of a personalized medicine.
Collapse
Affiliation(s)
- Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
6
|
Pisano M, Dettori MA, Fabbri D, Delogu G, Palmieri G, Rozzo C. Anticancer Activity of Two Novel Hydroxylated Biphenyl Compounds toward Malignant Melanoma Cells. Int J Mol Sci 2021; 22:5636. [PMID: 34073232 PMCID: PMC8198844 DOI: 10.3390/ijms22115636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma, the deadliest form of skin cancer, is still one of the most difficult cancers to treat despite recent advances in targeted and immune therapies. About 50% of advanced melanoma do not benefit of such therapies, and novel treatments are requested. Curcumin and its analogs have shown good anticancer properties and are being considered for use in combination with or sequence to recent therapies to improve patient outcomes. Our group previously published the synthesis and anticancer activity characterization of a novel curcumin-related compound against melanoma and neuroblastoma cells (D6). Here, two hydroxylated biphenyl compounds-namely, compounds 11 and 12-were selected among a small collection of previously screened C2-symmetric hydroxylated biphenyls structurally related to D6 and curcumin, showing the best antitumor potentiality against melanoma cells (IC50 values of 1.7 ± 0.5 μM for 11 and 2.0 ± 0.7 μM for 12) and no toxicity of normal fibroblasts up to 32 µM. Their antiproliferative activity was deeply characterized on five melanoma cell lines by performing dose-response and clonal growth inhibition assays, which revealed long-lasting and irreversible effects for both compounds. Apoptosis induction was ascertained by the annexin V and TUNEL assays, whereas Western blotting showed caspase activation and PARP cleavage. A cell cycle analysis, following cell treatments with either compound 11 or 12, highlighted an arrest in the G2/M transition. Taking all this evidence together, 11 and 12 were shown to be good candidates as lead compounds to develop new anticancer drugs against malignant melanoma.
Collapse
Affiliation(s)
- Marina Pisano
- Institute for Genetic and Biomedical Research (IRGB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.P.); (G.P.)
| | - Maria Antonietta Dettori
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.A.D.); (D.F.); (G.D.)
| | - Davide Fabbri
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.A.D.); (D.F.); (G.D.)
| | - Giovanna Delogu
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.A.D.); (D.F.); (G.D.)
| | - Giuseppe Palmieri
- Institute for Genetic and Biomedical Research (IRGB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.P.); (G.P.)
| | - Carla Rozzo
- Institute for Genetic and Biomedical Research (IRGB), National Research Council of Italy (CNR), Traversa la Crucca 3, 07100 Sassari, Italy; (M.P.); (G.P.)
| |
Collapse
|
7
|
Kremenovic M, Schenk M, Lee DJ. Clinical and molecular insights into BCG immunotherapy for melanoma. J Intern Med 2020; 288:625-640. [PMID: 32128919 DOI: 10.1111/joim.13037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/23/2019] [Accepted: 01/24/2020] [Indexed: 01/25/2023]
Abstract
The incidence of cutaneous melanoma and the mortality rate of advanced melanoma patients continue to rise globally. Despite the recent success of immunotherapy including ipilimumab and pembrolizumab checkpoint inhibitors, a large proportion of patients are refractory to such treatment modalities. The application of mycobacteria such as Bacillus Calmette-Guérin (BCG) in the treatment of various malignancies, including cutaneous melanoma, has been clearly demonstrated after almost a century of observations and experimentation. Intralesional BCG (IL-BCG) immunotherapy is a highly efficient and cost-effective treatment option for inoperable stage III in-transit melanoma, as recommended in the National Comprehensive Cancer Network Guidelines. IL-BCG has shown great efficacy in the regression of directly injected metastatic melanoma lesions, as well as distal noninjected nodules in immunocompetent patients. Clinical and preclinical studies have shown that BCG serves as a strong immune modulator, inducing the recruitment of various immune cells that contribute to antitumour immunity. However, the specific mechanism of BCG-mediated tumour immunity remains poorly understood. Comparative genome analyses have revealed that different BCG strains exhibit distinct immunological activity and virulence, which might impact the therapeutic response and clinical outcome of patients. In this review, we discuss the immunostimulatory potential of different BCG substrains and highlight clinical studies utilizing BCG immunotherapy for the treatment of cutaneous melanoma. Furthermore, the review focuses on the cellular and molecular mechanisms of the BCG-induced immune responses of both the innate and adaptive arms of the immune system. Furthermore, the review discussed the administration of BCG as a monotherapy or in combination with other immunotherapeutic or chemotherapeutic agents.
Collapse
Affiliation(s)
- M Kremenovic
- From the, Institute of Pathology, Experimental Pathology, Universitat Bern, Bern, Switzerland
| | - M Schenk
- From the, Institute of Pathology, Experimental Pathology, Universitat Bern, Bern, Switzerland
| | - D J Lee
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
8
|
Colombino M, Rozzo C, Paliogiannis P, Casula M, Manca A, Doneddu V, Fedeli MA, Sini MC, Palomba G, Pisano M, Ascierto PA, Caracò C, Lissia A, Cossu A, Palmieri G. Comparison of BRAF Mutation Screening Strategies in a Large Real-Life Series of Advanced Melanoma Patients. J Clin Med 2020; 9:E2430. [PMID: 32751423 PMCID: PMC7464760 DOI: 10.3390/jcm9082430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
Malignant melanoma (MM) is one of the deadliest skin cancers. BRAF mutation status plays a predominant role in the management of MM patients. The aim of this study was to compare BRAF mutational testing performed by conventional nucleotide sequencing approaches with either real-time polymerase chain reaction (rtPCR) or next-generation sequencing (NGS) assays in a real-life, hospital-based series of advanced MM patients. Consecutive patients with AJCC (American Joint Committee on Cancer) stage IIIC and IV MM from Sardinia, Italy, who were referred for molecular testing, were enrolled into the study. Initial screening was performed to assess the mutational status of the BRAF and NRAS genes, using the conventional methodologies recognized by the nationwide guidelines, at the time of the molecular classification, required by clinicians: at the beginning, Sanger-based sequencing (SS) and, after, pyrosequencing. The present study was then focused on BRAF mutation detecting approaches only. BRAF wild-type cases with available tissue and adequate DNA were further tested with rtPCR (Idylla™) and NGS assays. Globally, 319 patients were included in the study; pathogenic BRAF mutations were found in 144 (45.1%) cases examined with initial screening. The rtPCR detected 11 (16.2%) and 3 (4.8%) additional BRAF mutations after SS and pyrosequencing, respectively. NGS detected one additional BRAF-mutated case (2.1%) among 48 wild-type cases previously tested with pyrosequencing and rtPCR. Our study evidenced that rtPCR and NGS were able to detect additional BRAF mutant cases in comparison with conventional sequencing methods; therefore, we argue for the preferential utilization of the aforementioned assays (NGS and rtPCR) in clinical practice, to eradicate false-negative cases and improve the accuracy of BRAF detection.
Collapse
Affiliation(s)
- Maria Colombino
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry (ICB), 07100 Sassari, Italy; (M.C.); (M.C.); (M.C.S.); (G.P.)
| | - Carla Rozzo
- Unit of Cancer Genetics, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Traversa La Crucca 3, 07100 Sassari, Italy; (C.R.); (A.M.); (M.P.)
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (P.P.); (V.D.); (M.A.F.); (A.L.); (A.C.)
| | - Milena Casula
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry (ICB), 07100 Sassari, Italy; (M.C.); (M.C.); (M.C.S.); (G.P.)
| | - Antonella Manca
- Unit of Cancer Genetics, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Traversa La Crucca 3, 07100 Sassari, Italy; (C.R.); (A.M.); (M.P.)
| | - Valentina Doneddu
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (P.P.); (V.D.); (M.A.F.); (A.L.); (A.C.)
| | - Maria Antonietta Fedeli
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (P.P.); (V.D.); (M.A.F.); (A.L.); (A.C.)
| | - Maria Cristina Sini
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry (ICB), 07100 Sassari, Italy; (M.C.); (M.C.); (M.C.S.); (G.P.)
| | - Grazia Palomba
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry (ICB), 07100 Sassari, Italy; (M.C.); (M.C.); (M.C.S.); (G.P.)
| | - Marina Pisano
- Unit of Cancer Genetics, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Traversa La Crucca 3, 07100 Sassari, Italy; (C.R.); (A.M.); (M.P.)
| | - Paolo A. Ascierto
- Unità Melanoma, Istituto Nazionale Tumori “Fondazione Pascale”, Via Mariano Semmola 53, 80131 Naples; Italy; (P.A.A.); (C.C.)
| | - Corrado Caracò
- Unità Melanoma, Istituto Nazionale Tumori “Fondazione Pascale”, Via Mariano Semmola 53, 80131 Naples; Italy; (P.A.A.); (C.C.)
| | - Amelia Lissia
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (P.P.); (V.D.); (M.A.F.); (A.L.); (A.C.)
| | - Antonio Cossu
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (P.P.); (V.D.); (M.A.F.); (A.L.); (A.C.)
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Traversa La Crucca 3, 07100 Sassari, Italy; (C.R.); (A.M.); (M.P.)
| |
Collapse
|
9
|
Navani V, Graves MC, Bowden NA, Van Der Westhuizen A. Immune checkpoint blockade in solid organ tumours: Choice, dose and predictors of response. Br J Clin Pharmacol 2020; 86:1736-1752. [PMID: 32384184 DOI: 10.1111/bcp.14352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/02/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint blockade has transformed outcomes across solid organ tumours. Monoclonal antibodies targeting the negative inhibitory cytotoxic T lymphocyte-associated protein 4 and programmed-death 1/programmed death-ligand 1 axis can lead to deep and durable responses across several tumour streams in the advanced setting. This immunotherapy approach is increasingly used earlier in the treatment paradigm. A rapidly evolving regulatory, reimbursement and drug development landscape has accompanied this novel class of immunotherapy. Unfortunately, only a small proportion of patients respond meaningfully to these agents. Here we review how the underlying tumoural genomic, histological and immunological characteristics interact within various patient phenotypes, leading to variations in response to checkpoint blockade. Concurrently, we outline the clinical trial and real-world evidence that allows for appropriate selection of agent, dose and schedule in solid organ malignancies. An exploration of current trends in basic and translational research in immune checkpoint blockade accompanies a commentary on future clinical directions for checkpoint blockade in oncology.
Collapse
Affiliation(s)
| | - Moira C Graves
- University of Newcastle and Centre for Human Drug Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nikola A Bowden
- University of Newcastle and Centre for Human Drug Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Andre Van Der Westhuizen
- University of Newcastle and Centre for Human Drug Research, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Calvary Mater Hospital, Newcastle, NSW, Australia
| |
Collapse
|