1
|
Zhen X, Zhang M, Hao S, Sun J. Glucose-6-phosphate dehydrogenase and transketolase: Key factors in breast cancer progression and therapy. Biomed Pharmacother 2024; 176:116935. [PMID: 38876050 DOI: 10.1016/j.biopha.2024.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is one of the most common malignant tumors in women and is a serious threat to women's health. The pentose phosphate pathway (PPP) is a mode of oxidative breakdown of glucose that can be divided into oxidative (oxPPP) and non-oxidative (non-oxPPP) stages and is necessary for cell and body survival. However, abnormal activation of PPP often leads to proliferation, migration, invasion, and chemotherapy resistance in breast cancer. Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in PPP oxidation. Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) produced by G6PD is the raw material for cholesterol and lipid synthesis and can resist the production of oxygen species (ROS) and reduce oxidative stress damage to tumor cells. Transketolase (TKT) is a key enzyme in non-oxPPP. Ribose 5-phosphate (R5P), produced by TKT, is a raw material for DNA and RNA synthesis, and is essential for tumor cell proliferation and DNA damage repair. In this review, we describe the role and specific mechanism of the PPP and the two most important enzymes of the PPP, G6PD and TKT, in the malignant progression of breast cancer, providing strategies for future clinical treatment of breast cancer and a theoretical basis for breast cancer research.
Collapse
Affiliation(s)
- Xin Zhen
- Department of Physical examination center, China-Japan Union Hospital of Jilin University, 126 Xiantai Blvd, Changchun 130033, People's Republic of China
| | - Mingyu Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Blvd, Changchun 130033, People's Republic of China
| | - Shiming Hao
- Department of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, People's Republic of China.
| | - Jing Sun
- Department of Physical examination center, China-Japan Union Hospital of Jilin University, 126 Xiantai Blvd, Changchun 130033, People's Republic of China.
| |
Collapse
|
2
|
Silva-Pavez E, Mendoza E, Morgado-Cáceres P, Ahumada-Castro U, Bustos G, Kangme-Encalada M, de Arbina AL, Puebla-Huerta A, Muñoz F, Cereceda L, Varas-Godoy M, Hidalgo Y, Cardenas JC. Mitochondrial division inhibitor (mdivi-1) induces extracellular matrix (ECM)-detachment of viable breast cancer cells by a DRP1-independent mechanism. Sci Rep 2024; 14:14178. [PMID: 38898058 PMCID: PMC11187114 DOI: 10.1038/s41598-024-64228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Increasing evidence supports the hypothesis that cancer progression is under mitochondrial control. Mitochondrial fission plays a pivotal role in the maintenance of cancer cell homeostasis. The inhibition of DRP1, the main regulator of mitochondrial fission, with the mitochondrial division inhibitor (mdivi-1) had been associated with cancer cell sensitivity to chemotherapeutics and decrease proliferation. Here, using breast cancer cells we find that mdivi-1 induces the detachment of the cells, leading to a bulk of floating cells that conserved their viability. Despite a decrease in their proliferative and clonogenic capabilities, these floating cells maintain the capacity to re-adhere upon re-seeding and retain their migratory and invasive potential. Interestingly, the cell detachment induced by mdivi-1 is independent of DRP1 but relies on inhibition of mitochondrial complex I. Furthermore, mdivi-1 induces cell detachment rely on glucose and the pentose phosphate pathway. Our data evidence a novel DRP1-independent effect of mdivi-1 in the attachment of cancer cells. The generation of floating viable cells restricts the use of mdivi-1 as a therapeutic agent and demonstrates that mdivi-1 effect on cancer cells are more complex than anticipated.
Collapse
Affiliation(s)
- Eduardo Silva-Pavez
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Bellavista 7, Recoleta, Santiago, Chile.
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile.
| | - Elizabeth Mendoza
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Pablo Morgado-Cáceres
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Galdo Bustos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Matías Kangme-Encalada
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | | | - Andrea Puebla-Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe Muñoz
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Lucas Cereceda
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Biomedical Research and Innovation Center (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Manuel Varas-Godoy
- Cancer Cell Biology Lab., Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte 725, Huechuraba, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Yessia Hidalgo
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Biomedical Research and Innovation Center (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - J Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
- Buck Institute for Research on Aging, Novato, USA.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA.
| |
Collapse
|
3
|
Huangfu Y, Guo J, Zhao Y, Cao X, Han L. Linking EMT Status of Circulating Tumor Cells to Clinical Outcomes in Lung Cancer. Cancer Manag Res 2024; 16:325-336. [PMID: 38654718 PMCID: PMC11036334 DOI: 10.2147/cmar.s449777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
Background Lung cancer (LC) remains a leading cause of cancer-related mortality worldwide, with its prognosis influenced by complex biological factors. Objective This study delves into the clinical relevance of circulating tumor cells (CTCs) and their Epithelial-Mesenchymal Transition (EMT) status in LC patients. Methods We enrolled 30 newly diagnosed LC patients and utilized the CanPatrol technique for the separation and categorization of CTCs from peripheral blood samples. Immunofluorescent staining identified epithelial (CK8/18/19, EpCAM), mesenchymal (Vimentin, Twist), and leukocyte (CD45) markers in these cells. Fluorescence microscopy analyzed the slides, and RECIST 1.1 criteria assessed treatment response. Spearman's method was used to correlate CTCs' EMT states with their count and clinical characteristics. Results Our findings reveal three distinct CTC groups: epithelial (E-CTCs), hybrid epithelial/mesenchymal (E/M-CTCs), and mesenchymal (M-CTCs). Significant statistical differences were observed in stages III-IV vs I-II, tumor sizes T3-T4 vs T1-T2, and in the presence or absence of distant metastasis and lymph node involvement. Notably, the count of E/M-CTCs was positively correlated with TNM staging, tumor size, lymph node, and distant metastasis. Changes in M-CTC count pre- and post-treatment closely mirrored disease progression and control, showing considerable consistency with RECIST criteria. Conclusion In conclusion, the EMT status of CTCs, especially E/M-CTCs, holds predictive value for LC staging, tumor size, and metastasis. Dynamic monitoring of M-CTCs can accurately reflect disease progression.
Collapse
Affiliation(s)
- Yun Huangfu
- Henan Medical College, Zhengzhou, Henan Province, People’s Republic of China
| | - Jianxin Guo
- Henan Medical College, Zhengzhou, Henan Province, People’s Republic of China
| | - Yang Zhao
- Henan Medical College, Zhengzhou, Henan Province, People’s Republic of China
| | - Xuexia Cao
- Henan Medical College, Zhengzhou, Henan Province, People’s Republic of China
| | - Lei Han
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| |
Collapse
|
4
|
Liu Y, Zhao R, Xie Z, Pang Z, Chen S, Xu Q, Zhang Z. Significance of circulating tumor cells detection in tumor diagnosis and monitoring. BMC Cancer 2023; 23:1195. [PMID: 38057833 DOI: 10.1186/s12885-023-11696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
To detect circulating tumor cells (CTCs) in the peripheral blood of patients with tumor, and to analyze the significance of CTC detection in tumor diagnosis and monitoring. In the present study, peripheral blood was collected from 125 patients with tumor, and CTCs were isolated and identified. Differences in CTC number and subtype detection were analyzed for different tumor diseases and stages. CTCs were detected in 122 of the 125 patients with tumor, with a positive rate of 97.6%. The number of CTCs increases in patients with vascular metastasis. The number of mesenchymal CTCs increases in patients with lymph node or vascular metastasis. The average ratio of epithelial CTCs in each positive sample decreases in the later stages of cancer compared with the earlier stages, while the average ratio of mesenchymal CTCs increases in the later stages of cancer compared with the earlier stages. The results showed that CTCs with mesenchymal phenotypes are closely related to lymph node or vascular metastasis. CTC detection can help with early diagnosis of tumor diseases. Continuous monitoring of changes in CTCs number and subtypes can assist clinical judgment of tumor disease development status and prognosis.
Collapse
Affiliation(s)
- Yuanrui Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Rong Zhao
- Clinical Laboratory, Guangzhou 8th People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Zaichun Xie
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Zhiyu Pang
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Shengjie Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Qian Xu
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Zhanfeng Zhang
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| |
Collapse
|
5
|
Hirose Y, Taniguchi K. Intratumoral metabolic heterogeneity of colorectal cancer. Am J Physiol Cell Physiol 2023; 325:C1073-C1084. [PMID: 37661922 DOI: 10.1152/ajpcell.00139.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Although the metabolic phenotype within tumors is known to differ significantly from that of the surrounding normal tissue, the importance of this heterogeneity is just becoming widely recognized. Colorectal cancer (CRC) is often classified as the Warburg phenotype, a metabolic type in which the glycolytic system is predominant over oxidative phosphorylation (OXPHOS) in mitochondria for energy production. However, this dichotomy (glycolysis vs. OXPHOS) may be too simplistic and not accurately represent the metabolic characteristics of CRC. Therefore, in this review, we decompose metabolic phenomena into factors based on their source/origin and reclassify them into two categories: extrinsic and intrinsic. In the CRC context, extrinsic factors include those based on the environment, such as hypoxia, nutrient deprivation, and the tumor microenvironment, whereas intrinsic factors include those based on subpopulations, such as pathological subtypes and cancer stem cells. These factors form multiple layers inside and outside the tumor, affecting them additively, dominantly, or mutually exclusively. Consequently, the metabolic phenotype is a heterogeneous and fluid phenomenon reflecting the spatial distribution and temporal continuity of these factors. This allowed us to redefine the characteristics of specific metabolism-related factors in CRC and summarize and update our accumulated knowledge of their heterogeneity. Furthermore, we positioned tumor budding in CRC as an intrinsic factor and a novel form of metabolic heterogeneity, and predicted its metabolic dynamics, noting its similarity to circulating tumor cells and epithelial-mesenchymal transition. Finally, the possibilities and limitations of using human tumor tissue as research material to investigate and assess metabolic heterogeneity are discussed.
Collapse
Affiliation(s)
- Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kohei Taniguchi
- Division of Translational Research, Center for Medical Research & Development, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
6
|
Kamal M, Wang YJ, Plummer S, Dickerson A, Yu M. An Image-Based Identification of Aggressive Breast Cancer Circulating Tumor Cell Subtypes. Cancers (Basel) 2023; 15:2669. [PMID: 37345005 DOI: 10.3390/cancers15102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Using previously established CTC lines from breast cancer patients, we identified different morphometric subgroups of CTCs with one of them having the highest tumorigenic potential in vivo despite the slowest cell proliferation in vitro. This subgroup represents 32% of all cells and contains cells with small cell volume, large nucleus to cell, dense nuclear areas to the nucleus, mitochondria to cell volume ratios and rough texture of cell membrane and termed "Small cell, Large mitochondria, Rough membrane" (SLR). RNA-seq analyses showed that the SLR group is enriched in pathways and cellular processes related to DNA replication, DNA repair and metabolism. SLR upregulated genes are associated with poor survival in patients with ER+ breast cancer based on the KM Plotter database. The high tumorigenic potential, slow proliferation, and enriched DNA replication/repair pathways suggest that the SLR subtype is associated with stemness properties. Our new findings provide a simple image-based identification of CTC subpopulations with elevated aggressiveness, which is expected to provide a more accurate prediction of patient survival and therapy response than total CTC numbers. The detection of morphometric and transcriptomic profiles related to the SLR subgroup of CTCs also opens opportunities for potential targeted cancer treatment.
Collapse
Affiliation(s)
- Mohamed Kamal
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Zoology, Faculty of Science, University of Benha, Benha 13518, Egypt
| | - Yiru Jess Wang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sarai Plummer
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amber Dickerson
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Zhang W, Xu F, Yao J, Mao C, Zhu M, Qian M, Hu J, Zhong H, Zhou J, Shi X, Chen Y. Single-cell metabolic fingerprints discover a cluster of circulating tumor cells with distinct metastatic potential. Nat Commun 2023; 14:2485. [PMID: 37120634 PMCID: PMC10148826 DOI: 10.1038/s41467-023-38009-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/11/2023] [Indexed: 05/01/2023] Open
Abstract
Circulating tumor cells (CTCs) are recognized as direct seeds of metastasis. However, CTC count may not be the "best" indicator of metastatic risk because their heterogeneity is generally neglected. In this study, we develop a molecular typing system to predict colorectal cancer metastasis potential based on the metabolic fingerprints of single CTCs. After identification of the metabolites potentially related to metastasis using mass spectrometry-based untargeted metabolomics, setup of a home-built single-cell quantitative mass spectrometric platform for target metabolite analysis in individual CTCs and use of a machine learning method composed of non-negative matrix factorization and logistic regression, CTCs are divided into two subgroups, C1 and C2, based on a 4-metabolite fingerprint. Both in vitro and in vivo experiments demonstrate that CTC count in C2 subgroup is closely associated with metastasis incidence. This is an interesting report on the presence of a specific population of CTCs with distinct metastatic potential at the single-cell metabolite level.
Collapse
Affiliation(s)
- Wenjun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiang Yao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Changfei Mao
- Department of General Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), Nanjing, 210009, China
| | - Mingchen Zhu
- Department of Clinical Laboratory, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), Nanjing, 210009, China
| | - Moting Qian
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Huilin Zhong
- School of Computer Science and Technology, Nanjing Normal University, Nanjing, 210046, China
| | - Junsheng Zhou
- School of Computer Science and Technology, Nanjing Normal University, Nanjing, 210046, China
| | - Xiaoyu Shi
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- State Key Laboratory of Reproductive Medicine, Nanjing, 211166, China.
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing, 211166, China.
| |
Collapse
|
8
|
Mazzitelli C, Santini D, Corradini AG, Zamagni C, Trerè D, Montanaro L, Taffurelli M. Liquid Biopsy in the Management of Breast Cancer Patients: Where Are We Now and Where Are We Going. Diagnostics (Basel) 2023; 13:diagnostics13071241. [PMID: 37046459 PMCID: PMC10092978 DOI: 10.3390/diagnostics13071241] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Liquid biopsy (LB) is an emerging diagnostic tool that analyzes biomarkers in the blood (and possibly in other body fluids) to provide information about tumor genetics and response to therapy. This review article provides an overview of LB applications in human cancer with a focus on breast cancer patients. LB methods include circulating tumor cells and cell-free tumor products, such as circulating tumor DNA. LB has shown potential in detecting cancer at an early stage, monitoring tumor progression and recurrence, and predicting patient response to therapy. Several studies have demonstrated its clinical utility in breast cancer patients. However, there are limitations to LB, including the lack of standardized assays and the need for further validation. Future potential applications of LB include identifying the minimal residual disease, early detection of recurrence, and monitoring treatment response in various cancer types. LB represents a promising non-invasive diagnostic tool with potential applications in breast cancer diagnosis, treatment, and management. Further research is necessary to fully understand its clinical utility and overcome its current limitations.
Collapse
|
9
|
Liang J, Liu Q, Xia L, Lin J, Oyang L, Tan S, Peng Q, Jiang X, Xu X, Wu N, Tang Y, Su M, Luo X, Yang Y, Liao Q, Zhou Y. Rac1 promotes the reprogramming of glucose metabolism and the growth of colon cancer cells through upregulating SOX9. Cancer Sci 2023; 114:822-836. [PMID: 36369902 PMCID: PMC9986058 DOI: 10.1111/cas.15652] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic reprogramming is the survival rule of tumor cells, and tumor cells can meet their high metabolic requirements by changing the energy metabolism mode. Metabolic reprogramming of tumor cells is an important biochemical basis of tumor malignant phenotypes. Ras-related C3 botulinum toxin substrate 1 (Rac1) is abnormally expressed in a variety of tumors and plays an important role in the proliferation, invasion, and migration of tumor cells. However, the role of Rac1 in tumor metabolic reprogramming is still unclear. Herein, we revealed that Rac1 was highly expressed in colon cancer tissues and cell lines. Rac1 promotes the proliferation, migration, and invasion of colon cancer cells by upregulating SOX9, which as a transcription factor can directly bind to the promoters of HK2 and G6PD genes and regulate their transcriptional activity. Rac1 upregulates the expression of SOX9 through the PI3K/AKT signaling pathway. Moreover, Rac1 can promote glycolysis and the activation of the pentose phosphate pathway in colon cancer cells by mediating the axis of SOX9/HK2/G6PD. These findings reveal novel regulatory axes involving Rac1/SOX9/HK2/G6PD in the development and progression of colon cancer, providing novel promising therapeutic targets.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| |
Collapse
|
10
|
Dai S, Shao X, Wei Q, Du S, Hou C, Li H, Jin D. Association of circulating tumor cells and IMP3 expression with metastasis of osteosarcoma. Front Oncol 2023; 13:819357. [PMID: 36937398 PMCID: PMC10021108 DOI: 10.3389/fonc.2023.819357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Background Circulating tumor cells (CTCs) have been identified as a prognostic biomarker of tumors such as breast cancer and nasopharyngeal carcinoma, because they are obtained through a simple and noninvasive blood draw or liquid biopsy, but its clinical significance in osteosarcoma is still unclear. In this study, we analyzed the relationship between CTCs and clinicopathological features and discussed whether CTCs could be used as a biomarker for metastasis in osteosarcoma. Methods We enrolled 50 osteosarcoma patients with Enneking Stage IIB and Stage III and detected CTCs in 5 ml of peripheral blood samples collected from patients using the Canpatrol® CTC detection platform. Subsequently, multiplex RNA in situ hybridization (RNA-ISH) based on various molecular markers was performed to identify and classify CTCs. The relationships between clinical pathological features and CTC counts, subtypes (epithelial type, E type; hybrid epithelial/mesenchymal type, H type; mesenchymal type, M type), and insulin-like growth factor mRNA-binding protein 3 (IMP3) expression in CTCs were analyzed. Results CTCs were detected in 86% (43/50) of the osteosarcoma patients. The CTC counts, especially the total CTCs and H-type CTCs, signifcantly differed between Enneking Stage IIB and Stage III patients (P < 0.05). No significant differences were observed between the CTC count or type and other clinicopathological features (P > 0.05). There were significant differences in the expression of IMP3 in different types of CTCs, and the IMP3 positive rates in E/H/M type CTCs were 38.4, 65.6, and 62.0%, respectively (P < 0.001). Receiver operating characteristic (ROC) curve analysis showed that IMP3-positive CTC count had the best performance for diagnostic metastasis, with the largest area under the curve of 0.873 and cutoff value of four cells/5ml blood (sensitivity = 87.5%; specificity = 82.4%). Serial CTC monitoring in one patient suggested that total CTCs and H-type CTCs were associated with disease progression. Conclusion This study demonstrates that the CTCs, especially the IMP3-positive CTCs and H/M-type CTCs, are related to the metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Shuangwu Dai
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinxin Shao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingzhu Wei
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shaohua Du
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Changhe Hou
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Haomiao Li
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Dadi Jin, ; Haomiao Li,
| | - Dadi Jin
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Dadi Jin, ; Haomiao Li,
| |
Collapse
|
11
|
Li M, Wu S, Zhuang C, Shi C, Gu L, Wang P, Guo F, Wang Y, Liu Z. Metabolomic analysis of circulating tumor cells derived liver metastasis of colorectal cancer. Heliyon 2022; 9:e12515. [PMID: 36691542 PMCID: PMC9860459 DOI: 10.1016/j.heliyon.2022.e12515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is one of the essential features of tumor that may dramatically contribute to metastasis and collapse. The metabolic profiling is investigated on the patient derived tissue and cancer cell line derived mouse metastasis xenograft. As well-recognized "seeds" for remote metastasis of tumor, role of circulating tumor cells (CTCs) in the study of metabolic reprogramming feature of tumor is yet to be elucidated. More specifically, whether there is difference of metabolic features of liver metastasis in colorectal cancer (CRC) derived from either CTCs or cancer cell line is still unknown. In this study, comprehensive untargeted metabolomics was performed using high performance liquid chromatography-mass spectrometry (HPLC-MS) in liver metastasis tissues from CT26 cells and CTCs derived mouse models. We identified 288 differential metabolites associated with the pathways such as one carbon pool by folate, folate biosynthesis and histidine metabolism through bioinformation analysis. Multiple gene expression was upregulated in the CTCs derived liver metastasis, specifically some specific enzymes. These results indicated that the metabolite phenotype and corresponding gene expression in the CTCs derived liver metastasis tissues was different from the parental CT26 cells, displaying a specific up-regulation of mRNAs involved in the above metabolism-related pathways. The metabolic profile of CTCs was characterized on the liver metastatic process in colorectal cancer. The invasion ability and chemo drug tolerance of the CTCs derived tumor and metastasis was found to be overwhelming higher than cell line derived counterpart. Identification of the differential metabolites will lead to a better understanding of the hallmarks of the cancer progression and metastasis, which may suggest potential attractive target for treating metastatic CRC.
Collapse
Affiliation(s)
- Meng Li
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Shengming Wu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Chengle Zhuang
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Chenzhang Shi
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Lei Gu
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Peng Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Fangfang Guo
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China
| | - Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, PR China,Corresponding author.
| | - Zhongchen Liu
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200092, PR China,Corresponding author.
| |
Collapse
|
12
|
Nascentes Melo LM, Lesner NP, Sabatier M, Ubellacker JM, Tasdogan A. Emerging metabolomic tools to study cancer metastasis. Trends Cancer 2022; 8:988-1001. [PMID: 35909026 DOI: 10.1016/j.trecan.2022.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
Metastasis is responsible for 90% of deaths in patients with cancer. Understanding the role of metabolism during metastasis has been limited by the development of robust and sensitive technologies that capture metabolic processes in metastasizing cancer cells. We discuss the current technologies available to study (i) metabolism in primary and metastatic cancer cells and (ii) metabolic interactions between cancer cells and the tumor microenvironment (TME) at different stages of the metastatic cascade. We identify advantages and disadvantages of each method and discuss how these tools and technologies will further improve our understanding of metastasis. Studies investigating the complex metabolic rewiring of different cells using state-of-the-art metabolomic technologies have the potential to reveal novel biological processes and therapeutic interventions for human cancers.
Collapse
Affiliation(s)
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Sabatier
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site, Essen, Germany.
| |
Collapse
|
13
|
Zhao Q, Li B, Gao Q, Luo Y, Ming L. Prognostic value of epithelial–mesenchymal transition circulating tumor cells in female breast cancer: A meta-analysis. Front Oncol 2022; 12:1024783. [DOI: 10.3389/fonc.2022.1024783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
BackgroundEpithelial–mesenchymal transition (EMT) conferred metastatic properties on circulating tumor cells (CTCs) and was considered to be correlated with bad survival outcomes in patients with breast cancer. However, different studies have reported controversial results regarding the relationship between CTCs that have undergone EMT (EMT-CTCs) and prognosis of breast cancer. Therefore, this meta-analysis aimed to investigate the prognostic role of EMT-CTCs in patients with breast cancer.MethodsIn total, 842 patients from nine studies that were screened from Web of Science, Embase, and PubMed were included. The hazard ratio (HR) and 95% confidence interval (CI) for progression-free survival (PFS) and overall survival (OS) were extracted or estimated by the Kaplan–Meier survival curve for the meta-analysis. Sensitivity analysis was performed to characterize heterogeneity among the trials. Meanwhile, subgroup analysis was performed to present the effects of cancer stage, identification method, sampling volume, and region on the prognostic value of EMT-CTCs.ResultsThe pooled HRs for PFS were 1.97 (univariate: 95% CI, 1.19–3.24; p = 0.008) and 2.23 (multivariate: 95% CI, 1.29–3.86; p = 0.004). The pooled HRs for OS were 2.03 (univariate: 95% CI, 1.07–3.84; p = 0.029) and 1.70 (multivariate: 95% CI, 1.14–2.52; p = 0.009). Subgroup analysis showed that EMT-CTCs were associated with PFS in the primary breast cancer group (pooled HR = 2.58, 95% CI, 1.66–4.00, p < 0.001), the polymerase chain reaction (PCR) group (pooled HR = 2.69, 95% CI, 1.66–4.35, p < 0.001), the sampling volume of the >7.5-ml group (pooled HR = 1.93, 95% CI, 1.36–2.73, p < 0.001), and the Asia group (pooled HR = 1.92, 95% CI, 1.13–3.29, p = 0.017) and with OS in the primary breast cancer group (pooled HR = 3.59, 95% CI, 1.62–7.95; p = 0.002).ConclusionThe meta-analysis showed that EMT-CTCs were associated with poorer survival outcomes in patients with breast cancer. More accurate methods and designed clinical trials with unified standards are essential to establish the real role of EMT-CTCs in disease progression in women with breast cancer.
Collapse
|
14
|
Zhu C, Xu J, Sun J, Cui S, Sun Y, Yu T, Wang C, Wang T, Wu Y, Ju F, Yao J, Liu K, Zhang W, Guan X. Circulating Tumor Cells and Breast Cancer Metastasis: From Enumeration to Somatic Mutational Profile. J Clin Med 2022; 11:jcm11206067. [PMID: 36294386 PMCID: PMC9604974 DOI: 10.3390/jcm11206067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Aims: This study investigates the association between circulating tumor cells (CTCs) and breast cancer metastasis. Methods: A retrospective study was conducted using patients with histologically confirmed breast cancer recruited from the First Affiliated Hospital of Nanjing Medical University during the period of August 2017−October 2020. We used adjusted logistic regression, the random forest algorithm, and sensitivity analysis to study the association between CTC enumeration and tumor metastasis. Further, we performed next-generation sequencing (NGS) on the CTCs obtained from two patients with breast cancer brain metastasis. Results: A total of 41 out of 116 enrolled patients were identified with tumor metastasis. CTC enumeration was significantly higher in patients with liver metastasis than in those without liver metastasis. Patients with CTCs ≥ 5 exhibited a higher risk of tumor metastasis than those with CTCs < 5 in the adjusted model (odds ratios (OR) = 6.25, 95% confidence interval (CI) = 2.63−15.58). The random forest model identified CTC enumeration as a significant metastasis-related variable with the highest mean decrease accuracy and mean decrease Gini score. No significant association was found between CTCs and visceral metastasis with an OR of 1.29 (95% CI = 0.98−2.05, p = 0.232). Upon further investigating organ-specific metastasis, we found that patients with high CTC levels were more likely to develop liver metastasis (OR = 4.87, 95% CI = 1.34−20.17, p = 0.021). The NGS study of CTCs identified a total of 120 indel mutations (e.g., CNGB1, NTSR1, ZG16). The enriched biological processes were mechanoreceptor differentiation and macrophage activation involved in the immune response. The enriched KEGG pathways included focal adhesion, the PI3K-Akt signaling pathway, and microRNAs involved in cancer. Conclusions: Our study revealed that CTCs ≥ 5 are a risk factor for tumor metastasis in breast cancer patients. In addition, we reported that CTCs ≥ 5 might be associated with a higher risk of liver metastasis in patients with metastatic breast cancer. We have provided the mutational profiles of CTCs based on next-generation sequencing.
Collapse
Affiliation(s)
- Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jinyu Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Shiyun Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Yue Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Cenzhu Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Tianyao Wang
- Stomatological College, Nanjing Medical University, Nanjing 210029, China
| | - Yufeng Wu
- Stomatological College, Nanjing Medical University, Nanjing 210029, China
| | - Feng Ju
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiafeng Yao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kai Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
- Correspondence: (W.Z.); (X.G.)
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
- Correspondence: (W.Z.); (X.G.)
| |
Collapse
|
15
|
Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer. Int J Mol Sci 2022; 23:ijms23179952. [PMID: 36077348 PMCID: PMC9456236 DOI: 10.3390/ijms23179952] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is a highly heterogeneous disease. The treatment of BC is complicated owing to intratumoral complexity. Tissue biopsy and immunohistochemistry are the current gold standard techniques to guide breast cancer therapy; however, these techniques do not assess tumoral molecular heterogeneity. Personalized medicine aims to overcome these biological and clinical complexities. Advances in techniques and computational analyses have enabled increasingly sensitive, specific, and accurate application of liquid biopsy. Such progress has ushered in a new era in precision medicine, where the objective is personalized treatment of breast cancer, early screening, accurate diagnosis and prognosis, relapse detection, longitudinal monitoring, and drug selection. Liquid biopsy can be defined as the sampling of components of tumor cells that are released from a tumor and/or metastatic deposits into the blood, urine, feces, saliva, and other biological substances. Such components include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or circulating tumor RNA (ctRNA), platelets, and exosomes. This review aims to highlight the role of liquid biopsy in breast cancer and precision medicine.
Collapse
|
16
|
Deng Z, Wu S, Wang Y, Shi D. Circulating tumor cell isolation for cancer diagnosis and prognosis. EBioMedicine 2022; 83:104237. [PMID: 36041264 PMCID: PMC9440384 DOI: 10.1016/j.ebiom.2022.104237] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that shed from the primary tumor and intravasate into the peripheral blood circulation system responsible for metastasis. Sensitive detection of CTCs from clinical samples can serve as an effective tool in cancer diagnosis and prognosis through liquid biopsy. Current CTC detection technologies mainly reply on the biomarker-mediated platforms including magnetic beads, microfluidic chips or size-sensitive microfiltration which can compromise detection sensitivity due to tumor heterogeneity. A more sensitive, biomarker independent CTCs isolation technique has been recently developed with the surface-charged superparamagnetic nanoprobe capable of different EMT subpopulation CTC capture from 1 mL clinical blood. In this review, this new strategy is compared with the conventional techniques on biomarker specificity, impact of protein corona, effect of glycolysis on cell surface charge, and accurate CTC identification. Correlations between CTC enumeration and molecular profiling in clinical blood and cancer prognosis are provided for clinical cancer management.
Collapse
Affiliation(s)
- Zicheng Deng
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shengming Wu
- The Institute for Translational Nanomedicine Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, School of Medicine Tongji University, Shanghai 200092, PR China
| | - Yilong Wang
- The Institute for Translational Nanomedicine Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, School of Medicine Tongji University, Shanghai 200092, PR China.
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
17
|
Rahmanian M, Sartipzadeh Hematabad O, Askari E, Shokati F, Bakhshi A, Moghadam S, Olfatbakhsh A, Al Sadat Hashemi E, Khorsand Ahmadi M, Morteza Naghib S, Sinha N, Tel J, Eslami Amirabadi H, den Toonder JMJ, Majidzadeh-A K. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry? J Adv Res 2022; 47:105-121. [PMID: 35964874 PMCID: PMC10173300 DOI: 10.1016/j.jare.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION The information derived from the number and characteristics of circulating tumor cells (CTCs), is crucial to ensure appropriate cancer treatment monitoring. Currently, diverse microfluidic platforms have been developed for isolating CTCs from blood, but it remains a challenge to develop a low-cost, practical, and efficient strategy. OBJECTIVES This study aimed to isolate CTCs from the blood of cancer patients via introducing a new and efficient micropillar array-based microfluidic chip (MPA-Chip), as well as providing prognostic information and monitoring the treatment efficacy in cancer patients. METHODS We fabricated a microfluidic chip (MPA-Chip) containing arrays of micropillars with different geometries (lozenge, rectangle, circle, and triangle). We conducted numerical simulations to compare velocity and pressure profiles inside the micropillar arrays. Also, we experimentally evaluated the capture efficiency and purity of the geometries using breast and prostate cancer cell lines as well as a blood sample. Moreover, the device's performance was validated on 12 patients with breast cancer (BC) in different states. RESULTS The lozenge geometry was selected as the most effective and optimized micropillar design for CTCs isolation, providing high capture efficiency (>85 %), purity (>90 %), and viability (97 %). Furthermore, the lozenge MPA-chip was successfully validated by the detection of CTCs from 12 breast cancer (BC) patients, with non-metastatic (median number of 6 CTCs) and metastatic (median number of 25 CTCs) diseases, showing different prognoses. Also, increasing the chemotherapy period resulted in a decrease in the number of captured CTCs from 23 to 7 for the metastatic patient. The MPA-Chip size was only 0.25 cm2 and the throughput of a single chip was 0.5 ml/h, which can be increased by multiple MPA-Chips in parallel. CONCLUSION The lozenge MPA-Chip presented a novel micropillar geometry for on-chip CTC isolation, detection, and staining, and in the future, the possibilities can be extended to the culture of the CTCs.
Collapse
Affiliation(s)
- Mehdi Rahmanian
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Omid Sartipzadeh Hematabad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Esfandyar Askari
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Farhad Shokati
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Atin Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Moghadam
- Breast Diseases Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Asiie Olfatbakhsh
- Breast Diseases Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Esmat Al Sadat Hashemi
- Breast Diseases Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Khorsand Ahmadi
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Hossein Eslami Amirabadi
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; AZAR Innovations, Utrecht, the Netherlands
| | - Jaap M J den Toonder
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
18
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
19
|
Adhikari S, Guha D, Mohan C, Mukherjee S, Tyler JK, Das C. Reprogramming Carbohydrate Metabolism in Cancer and Its Role in Regulating the Tumor Microenvironment. Subcell Biochem 2022; 100:3-65. [PMID: 36301490 PMCID: PMC10760510 DOI: 10.1007/978-3-031-07634-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Altered metabolism has become an emerging feature of cancer cells impacting their proliferation and metastatic potential in myriad ways. Proliferating heterogeneous tumor cells are surrounded by other resident or infiltrating cells, along with extracellular matrix proteins, and other secretory factors constituting the tumor microenvironment. The diverse cell types of the tumor microenvironment exhibit different molecular signatures that are regulated at their genetic and epigenetic levels. The cancer cells elicit intricate crosstalks with these supporting cells, exchanging essential metabolites which support their anabolic processes and can promote their survival, proliferation, EMT, angiogenesis, metastasis and even therapeutic resistance. In this context, carbohydrate metabolism ensures constant energy supply being a central axis from which other metabolic and biosynthetic pathways including amino acid and lipid metabolism and pentose phosphate pathway are diverged. In contrast to normal cells, increased glycolytic flux is a distinguishing feature of the highly proliferative cancer cells, which supports them to adapt to a hypoxic environment and also protects them from oxidative stress. Such rewired metabolic properties are often a result of epigenetic alterations in the cancer cells, which are mediated by several factors including, DNA, histone and non-histone protein modifications and non-coding RNAs. Conversely, epigenetic landscapes of the cancer cells are also dictated by their diverse metabolomes. Altogether, this metabolic and epigenetic interplay has immense potential for the development of efficient anti-cancer therapeutic strategies. In this book chapter we emphasize upon the significance of reprogrammed carbohydrate metabolism in regulating the tumor microenvironment and cancer progression, with an aim to explore the different metabolic and epigenetic targets for better cancer treatment.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Deblina Guha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chitra Mohan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
20
|
Payne KK. Cellular stress responses and metabolic reprogramming in cancer progression and dormancy. Semin Cancer Biol 2022; 78:45-48. [PMID: 34098105 PMCID: PMC8642459 DOI: 10.1016/j.semcancer.2021.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023]
Abstract
Recurrent disease after prolonged cancer dormancy is a major cause of cancer associated mortality, yet many of the mechanisms that are engaged to initiate dormancy as well as later recurrence remain incompletely understood. It is known that cancer cells initiate adaptation mechanisms to adapt tightly regulated cellular processes to non-optimal growth environments; Recent investigations have begun to elucidate the contribution of these mechanisms to malignant progression, with intriguing studies now defining cellular stress as a key contributor to the development and maintenance of cancer dormancy. This review will focus on our current understanding of stress responses facilitating malignant cell adaptation and metabolic reprogramming to establish cancer dormancy.
Collapse
|
21
|
OUP accepted manuscript. Carcinogenesis 2022; 43:705-715. [DOI: 10.1093/carcin/bgac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022] Open
|
22
|
Abstract
Metastases represent a major cause of cancer-associated deaths. Despite extensive research, targeting metastasis remains the main obstacle in cancer therapy. Therefore, it is of tremendous importance to elucidate the mechanisms that impinge on the different steps of the metastatic cascade. Metabolic plasticity is a cornerstone of the tumorigenic process that not only enables cancer cells to rapidly proliferate but also thrive and retain vitality. Plasticity of the metabolic networks that wire cancer cells is of utmost importance during the metastatic cascade when cancer cells are at their most vulnerable and have to survive in a panoply of inhospitable environments as they make their journey to form metastatic lesions. Here, we highlight which metabolic processes are known to power metastasis formation and lay the foundation for additional work aimed at discovering regulatory nodes of metabolic plasticity that can be used to target metastatic disease.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
23
|
Zhang Y, Su H, Wang H, Xu C, Zhou S, Zhao J, Shen S, Xu G, Wang L, Zou X, Zhang S, Lv Y. Endoscopic Ultrasound-Guided Acquisition of Portal Venous Circulating Tumor Cells as a Potential Diagnostic and Prognostic Tool for Pancreatic Cancer. Cancer Manag Res 2021; 13:7649-7661. [PMID: 34675662 PMCID: PMC8502022 DOI: 10.2147/cmar.s330473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background Circulating tumor cells (CTCs) were a promising liquid biopsy for pancreatic cancer (PC) but circulate in low counts in peripheral blood. We evaluated the diagnostic and prognostic values of portal vein (PoV) CTCs in PC patients. Methods PoV was aspirated under EUS guidance from 40 patients with suspected pancreaticobiliary cancers. Epithelial–mesenchymal-transition-related subtypes of CTCs were identified via immunofluorescence using EpCAM and Twist antibodies. The diagnostic and prognostic performance of PoV CTCs was investigated by receiver-operating characteristic (AUC) curve and Kaplan–Meier survival analysis. Results In total, 40 patients including 31 with PC, 4 with non-pancreatic periampullary cancer and 5 with benign pancreatic diseases (BPD) were enrolled. CTCs were detected more in PoV compared with peripheral blood. PoV CTC numbers in BPD patients were lower than in PC patients. The number of PoV CTCs, especially mesenchymal-CTCs (M-CTCs), was positively correlated with the tumor burden, instead of epithelial-CTCs (E-CTCs). The combination of PoV CTC numbers and CA19-9 demonstrated better diagnostic efficiency (AUC value 0.987) than either alone in differentiating PC with BPD. Moreover, the diagnostic efficacy of PoV CTCs and M-CTCs were obviously better than that of E-CTCs and CA19-9 in distinguishing early and late stage PC. Lastly, high PoV CTC and M-CTC numbers were both associated with shorter overall survival. Conclusion Acquisition of the PoV samples in PC patients via EUS-guided procedures has been proved safe and feasible. PoV CTCs, especially M-CTCs, have great potentials in diagnosing and predicting the prognosis of PC, especially in combination with CA19-9.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Haochen Su
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Haibo Wang
- Cyttelbio Corporation, Beijing, People's Republic of China
| | - Chenghu Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated of Jiangsu University, Nanjing, People's Republic of China
| | - Jing Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
24
|
Xi ZH, Ma XX, Chen HY, Yu YH, Li L, Huang T. A Metabolic-associated Nomogram Predicts Recurrence Survival of Thyroid Cancer. Curr Med Sci 2021; 41:1004-1011. [PMID: 34510328 DOI: 10.1007/s11596-021-2399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Various studies have suggested that metabolic genes play a significant role in papillary thyroid cancer (PTC). The current study aimed to identify a metabolic signature related biomarker to predict the prognosis of patients with PTC. METHODS We conducted a comprehensive analysis on the data obtained from the Cancer Genome Atlas (TCGA) database. The correlation between survival result and metabolic genes was evaluated based on the univariate Cox analyses, least absolute shrinkage and selection operator (LASSO) and multivariate Cox analyses. The performance of a 7-gene signature was assessed according to Kaplan-Meier and receiver operating characteristic (ROC) analysis. Multivariate Cox regression analysis was adopted to unearth clinical factors related to the recurrence free survival (RFS) of patients with PTC. Finally, a prognostic nomogram was developed based on risk score, cancer status and cancer width to improve the prediction for RFS of PTC patients. RESULTS Seven metabolic genes were used to establish the prognostic model. The ROC curve and C-index exhibited high value in training, testing and the whole TCGA datasets. The established nomogram, incorporating the 7-metabolic gene signature and clinical factors, was able to predict the RFS with high effectiveness. The 7-metabolic gene signature-based nomogram had a good performance to predict the RFS of patients with PTC. CONCLUSION Our study identified a 7-metabolic gene signature and established a prognostic nomogram, which were useful in predicting the RFS of PTC.
Collapse
Affiliation(s)
- Zi-Han Xi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xian-Xiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng-Yu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, 300134, China
| | - Yuan-Hang Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Curtin J, Choi SW, Thomson PJ, Lam AKY. Characterization and clinicopathological significance of circulating tumour cells in patients with oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2021; 51:289-299. [PMID: 34154876 DOI: 10.1016/j.ijom.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Circulating tumour cells (CTCs) are cancer cells released by cancer into the peripheral circulation. Haematogenous tumour spread is a hallmark of metastatic malignancy and a key factor in cancer recurrence and prognosis. CTCs have diagnostic and prognostic significance for a number of adenocarcinomas and melanoma. A review of the published peer-reviewed literature was performed to determine the clinical relevance of CTCs as a biomarker in the management of oral squamous cell carcinoma (OSCC). Fourteen studies met the eligibility criteria. With regard to patients with OSCC, this review found the following: (1) CTCs have been detected using multiple techniques; (2) the presence of CTCs does not appear to be related to tumour differentiation or size; (3) CTCs may be detected without lymph node involvement; (4) the detection of CTCs may be prognostic for both disease-free survival and overall survival; (5) quantification of CTCs may reflect the efficacy of therapy; (6) CTCs may be of value for ongoing patient monitoring. Preliminary evidence suggests that CTCs have diagnostic and prognostic potential as a biomarker for oral cancer management and warrant further investigation to determine their appropriate place in the management of OSCC patients.
Collapse
Affiliation(s)
- J Curtin
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia.
| | - S-W Choi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong
| | - P J Thomson
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong
| | - A K-Y Lam
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
26
|
Metabolic Constrains Rule Metastasis Progression. Cells 2020; 9:cells9092081. [PMID: 32932943 PMCID: PMC7563739 DOI: 10.3390/cells9092081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation accounts for the majority of tumor-associated deaths and consists of different steps, each of them being characterized by a distinctive adaptive phenotype of the cancer cells. Metabolic reprogramming represents one of the main adaptive phenotypes exploited by cancer cells during all the main steps of tumor and metastatic progression. In particular, the metabolism of cancer cells evolves profoundly through all the main phases of metastasis formation, namely the metastatic dissemination, the metastatic colonization of distant organs, the metastatic dormancy, and ultimately the outgrowth into macroscopic lesions. However, the metabolic reprogramming of metastasizing cancer cells has only recently become the subject of intense study. From a clinical point of view, the latter steps of the metastatic process are very important, because patients often undergo surgical removal of the primary tumor when cancer cells have already left the primary tumor site, even though distant metastases are not clinically detectable yet. In this scenario, to precisely elucidate if and how metabolic reprogramming drives acquisition of cancer-specific adaptive phenotypes might pave the way to new therapeutic strategies by combining chemotherapy with metabolic drugs for better cancer eradication. In this review we discuss the latest evidence that claim the importance of metabolic adaptation for cancer progression.
Collapse
|
27
|
Zhang X, Xu J, Lan Y, Guo F, Xiao Y, Li Y, Li X. Transcriptome analysis reveals a reprogramming energy metabolism-related signature to improve prognosis in colon cancer. PeerJ 2020; 8:e9458. [PMID: 32704448 PMCID: PMC7350917 DOI: 10.7717/peerj.9458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
Abstract
Although much progress has been made to improve treatment, colon cancer remains a leading cause of cancer death worldwide. Metabolic reprogramming is a significant ability of cancer cells to ensure the necessary energy supply in uncontrolled proliferation. Since reprogramming energy metabolism has emerged as a new hallmark of cancer cells, accumulating evidences have suggested that metabolism-related genes may serve as key regulators of tumorigenesis and potential biomarkers. In this study, we analyzed a set of reprogramming energy metabolism-related genes by transcriptome analysis in colon cancer and revealed a five-gene signature that could significantly predict the overall survival. The reprogramming energy metabolism-related signature could distinguish patients into high-risk and low-risk groups with significantly different survival times (P = 0.0011; HR = 1.92; 95% CI [1.29–2.87]). Its prognostic value was confirmed in another two independent colon cancer cohorts (P = 5.2e–04; HR = 2.09, 95%; CI [1.37–3.2] for GSE17538 and P = 3.8e−04; HR = 2.08, 95% CI [1.37–3.16] for GSE41258). By multivariable analysis, we found that the signature was independent of clinicopathological features. Its power in promoting risk stratification of the current clinical stage was then evaluated by stratified analysis. Moreover, the signature could improve the power of the TNM stage for the prediction of overall survival and could be used in patients who received adjuvant chemotherapy. Overall, our results demonstrated the important role of the reprogramming energy metabolism-related signature in promoting stratification of high-risk patients, which could be diagnostic of adjuvant therapy benefit.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Fenghua Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
| | - Yixue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
| |
Collapse
|