1
|
Zheng S, Zhao N, Lin X, Qiu L. Impacts and potential mechanisms of fine particulate matter (PM 2.5) on male testosterone biosynthesis disruption. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:777-789. [PMID: 37651650 DOI: 10.1515/reveh-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Exposure to PM2.5 is the most significant air pollutant for health risk. The testosterone level in male is vulnerable to environmental toxicants. In the past, researchers focused more attention on the impacts of PM2.5 on respiratory system, cardiovascular system, and nervous system, and few researchers focused attention on the reproductive system. Recent studies have reported that PM2.5 involved in male testosterone biosynthesis disruption, which is closely associated with male reproductive health. However, the underlying mechanisms by which PM2.5 causes testosterone biosynthesis disruption are still not clear. To better understand its potential mechanisms, we based on the existing scientific publications to critically and comprehensively reviewed the role and potential mechanisms of PM2.5 that are participated in testosterone biosynthesis in male. In this review, we summarized the potential mechanisms of PM2.5 triggering the change of testosterone level in male, which involve in oxidative stress, inflammatory response, ferroptosis, pyroptosis, autophagy and mitophagy, microRNAs (miRNAs), endoplasmic reticulum (ER) stress, and N6-methyladenosine (m6A) modification. It will provide new suggestions and ideas for prevention and treatment of testosterone biosynthesis disruption caused by PM2.5 for future research.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Nannan Zhao
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Xiaojun Lin
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P.R. China
| |
Collapse
|
2
|
Liu AB, Liu J, Wang S, Ma L, Zhang JF. Biological role and expression of translationally controlled tumor protein (TCTP) in tumorigenesis and development and its potential for targeted tumor therapy. Cancer Cell Int 2024; 24:198. [PMID: 38835077 DOI: 10.1186/s12935-024-03355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Translationally controlled tumor protein (TCTP), also known as histamine-releasing factor (HRF) or fortilin, is a highly conserved protein found in various species. To date, multiple studies have demonstrated the crucial role of TCTP in a wide range of cellular pathophysiological processes, including cell proliferation and survival, cell cycle regulation, cell death, as well as cell migration and movement, all of which are major pathogenic mechanisms of tumorigenesis and development. This review aims to provide an in-depth analysis of the functional role of TCTP in tumor initiation and progression, with a particular focus on cell proliferation, cell death, and cell migration. It will highlight the expression and pathological implications of TCTP in various tumor types, summarizing the current prevailing therapeutic strategies that target TCTP.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Sheng Wang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| |
Collapse
|
3
|
Zhang R, Li X, Li X, Zhang Q, Tang J, Liu Z, Song G, Jiang L, Yang F, Zhou J, Che H, Han Y, Qi X, Chen Y, Zhang S. Characterization of risks and pathogenesis of respiratory diseases caused by rural atmospheric PM 2.5. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169878. [PMID: 38190917 DOI: 10.1016/j.scitotenv.2024.169878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/17/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
Forty-six percent of the world's population resides in rural areas, the majority of whom belong to vulnerable groups. They mainly use cheap solid fuels for cooking and heating, which release a large amount of PM2.5 and cause adverse effects to human health. PM2.5 exhibits urban-rural differences in its health risk to the respiratory system. However, the majority of research on this issue has focused on respiratory diseases induced by atmospheric PM2.5 in urban areas, while rural areas have been ignored for a long time, especially the pathogenesis of respiratory diseases. This is not helpful for promoting environmental equity to aid vulnerable groups under PM2.5 pollution. Thus, this study focuses on rural atmospheric PM2.5 in terms of its chemical components, toxicological effects, respiratory disease types, and pathogenesis, represented by PM2.5 from rural areas in the Sichuan Basin, China (Rural SC-PM2.5). In this study, organic carbon is the most significant component of Rural SC-PM2.5. Rural SC-PM2.5 significantly induces cytotoxicity, oxidative stress, and inflammatory response. Based on multiomics, bioinformatics, and molecular biology, Rural SC-PM2.5 inhibits ribonucleotide reductase regulatory subunit M2 (RRM2) to disrupt the cell cycle, impede DNA replication, and ultimately inhibit lung cell proliferation. Furthermore, this study supplements and supports the epidemic investigation. Through an analysis of the transcriptome and human disease database, it is found that Rural SC-PM2.5 may mainly involve pulmonary hypertension, sarcoidosis, and interstitial lung diseases; in particular, congenital diseases may be ignored by epidemiological surveys in rural areas, including tracheoesophageal fistula, submucous cleft of the hard palate, and congenital hypoplasia of the lung. This study contributes to a greater scientific understanding of the health risks posed by rural PM2.5, elucidates the pathogenesis of respiratory diseases, clarifies the types of respiratory diseases, and promotes environmental equity.
Collapse
Affiliation(s)
- Ronghua Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaomeng Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xuan Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Qin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Jiancai Tang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Guiqin Song
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Li Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jiawei Zhou
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hanxiong Che
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xin Qi
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Shumin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China.
| |
Collapse
|
4
|
Jo S, Jang EH, Kim HY, Lee K, Kim MS, Shin DH. A tryptophan-based assay method to search regulatory compounds for transcriptionally controlled tumor protein. Biochem Biophys Res Commun 2024; 692:149363. [PMID: 38071892 DOI: 10.1016/j.bbrc.2023.149363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Transcriptionally controlled tumor protein (TCTP) is a highly conserved protein performing a large number of cellular functions by binding with various partner proteins. The importance of its roles in many diseases requires an assay method to find regulatory compounds. However, the molecular characteristics of TCTP made it difficult to search for chemicals interacting with it. In this study, a tryptophan-based assay method was designed and Y151W mutant TCTP was constructed to search binding chemicals. Since there is no tryptophan in the native sequence of TCTP, the incorporation of tryptophan in the Y151W mutant was very effective to establish the method. A flavonoid library was employed to the assay with the method. With the native and Y151W mutant TCTPs, three flavonoids such as morin, myricetin and isobavachalcone have been found to interact with TCTP. Combined with native gel electrophoresis, the binding region of isobavachalcone was suggested to be the flexible loop of TCTP. This approach can be easily applicable to find binding compounds of proteins with similar molecular characteristics of TCTP.
Collapse
Affiliation(s)
- Seri Jo
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, 03760, Republic of Korea
| | - Eun-Hwa Jang
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, 03760, Republic of Korea
| | - Hwa Young Kim
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, 03760, Republic of Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, 03760, Republic of Korea
| | - Mi-Sun Kim
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, 03760, Republic of Korea.
| | - Dong Hae Shin
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
5
|
Liu LZ, Wang B, Zhang R, Wu Z, Huang Y, Zhang X, Zhou J, Yi J, Shen J, Li MY, Dong M. The activated CD36-Src axis promotes lung adenocarcinoma cell proliferation and actin remodeling-involved metastasis in high-fat environment. Cell Death Dis 2023; 14:548. [PMID: 37612265 PMCID: PMC10447533 DOI: 10.1038/s41419-023-06078-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Obesity/overweight and lipid metabolism disorders have become increased risk factors for lung cancer. Fatty acid translocase CD36 promotes cellular uptake of fatty acids. Whether and how CD36 facilitates lung adenocarcinoma (LUAD) growth in high-fat environment is unknown. Here, we demonstrated that palmitic acid (PA) or high-fat diet (HFD) promoted LUAD cell proliferation and metastasis in a CD36-dependent manner. Mechanistically, CD36 translocated from cytoplasm to cell membrane and interacted with Src kinase upon PA stimulation in human LUAD cells. Akt and ERK, downstream of Src, were then activated to mediate LUAD cell proliferation and metastasis. Furthermore, PA treatment promoted CD36 sarcolemmal translocation, where it activated Rac1 and upregulated MMP-9 through Src-Akt/ERK pathway, resulting in redistribution of cortactin, N-WASP and Arp2/3, and finally led to occurrence of finger-like protrusions of actin on cell surface to enhance cell metastasis. Compared with normal-chew diet (NCD) mice, the HFD group exhibited higher level of blood free fatty acid (FFA) and cholesterol (TC), developed larger xenograft LUAD tumors and enhanced tumor cell metastatic potential, which were accompanied by obvious sarcolemmal actin remodeling and were blocked by simultaneous CD36 knockdown in LUAD cells. Consistently, xenografted and tail vein-injected scramble-RNA-A549 cells but not CD36-shRNA-A549 in HFD mice formed metastatic LUAD tumors on the lung. CD36 inhibitor SSO significantly inhibited LUAD cell metastasis to the lung. Collectively, CD36 initiates Src signaling to promote LUAD cell proliferation and actin remodeling-involved metastasis under high-fat environment. Our study provides the new insights that CD36 is a valid target for LUAD therapy.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Bowen Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Guangdong Medical Academic Exchange Center, Yuexiu District, Guangzhou, Guangdong, China
| | - Rui Zhang
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
| | - Zangshu Wu
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
| | - Yuxi Huang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xiaoyang Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jiaying Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Junbo Yi
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jian Shen
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
| | - Ming-Yue Li
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming Dong
- GuangZhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
6
|
Li MY, Wang M, Dong M, Wu Z, Zhang R, Wang B, Huang Y, Zhang X, Zhou J, Yi J, Chen GG, Liu LZ. Targeting CD36 determines nicotine derivative NNK-induced lung adenocarcinoma carcinogenesis. iScience 2023; 26:107477. [PMID: 37599821 PMCID: PMC10432206 DOI: 10.1016/j.isci.2023.107477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Smoking carcinogen nicotine-derived nitrosamine ketone (NNK) is the most potent contributor to lung adenocarcinoma (LUAD) development, but the mechanism has not been fully elucidated. Here, we reported that fatty acid translocase CD36 was significantly overexpressed in both human LUAD tissues and NNK-induced A/J mice LUAD tumors. The overexpressed CD36 was positively correlated with Src kinase activation, smoking status, metastasis, and worse overall survival of patients with smoking history. Upon NNK binding with α7 nicotinic acetylcholine receptor (α7nAChR), sarcolemmal CD36 was increased and it interacted with surface α7nAChR and cytosol Src simultaneously, which in turn activated Src and downstream pro-carcinogenic kinase ERK1/2 and Akt, and finally caused LUAD cells to form subcutaneous and pulmonary metastatic tumors. This process could be blocked by CD36 knockdown and CD36 irreversible inhibitor SSO. Furthermore, the effect of NNK was inhibited obviously in CD36-/- A/J mice. Thus, targeting CD36 may provide a breakthrough therapy of LUAD.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Menghuan Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ming Dong
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Zangshu Wu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Rui Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Bowen Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Yuxi Huang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Xiaoyang Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Jiaying Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Junbo Yi
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - George Gong Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Zhong Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| |
Collapse
|
7
|
Santamaria G, Cioce M, Rizzuto A, Fazio VM, Viglietto G, Lucibello M. Harnessing the value of TCTP in breast cancer treatment resistance: an opportunity for personalized therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:447-467. [PMID: 37842235 PMCID: PMC10571059 DOI: 10.20517/cdr.2023.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 10/17/2023]
Abstract
Early identification of breast cancer (BC) patients at a high risk of progression may aid in therapeutic and prognostic aims. This is especially true for metastatic disease, which is responsible for most cancer-related deaths. Growing evidence indicates that the translationally controlled tumor protein (TCTP) may be a clinically relevant marker for identifying poorly differentiated aggressive BC tumors. TCTP is an intriguing protein with pleiotropic functions, which is involved in multiple signaling pathways. TCTP may also be involved in stress response, cell growth and proliferation-related processes, underlying its potential role in the initiation of metastatic growth. Thus, TCTP marks specific cancer cell sub-populations with pronounced stress adaptation, stem-like and immune-evasive properties. Therefore, we have shown that in vivo phospho-TCTP levels correlate with the response of BC cells to anti-HER2 agents. In this review, we discuss the clinical relevance of TCTP for personalized therapy, specific TCTP-targeting strategies, and currently available therapeutic agents. We propose TCTP as an actionable clinically relevant target that could potentially improve patient outcomes.
Collapse
Affiliation(s)
- Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
- These authors contributed equally
| | - Mario Cioce
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome 00128, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome 00133, Italy
- These authors contributed equally
| | - Antonia Rizzuto
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | - Vito Michele Fazio
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome 00128, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome 00133, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | - Maria Lucibello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
- Department of Biomedical Sciences, Institute for Biomedical Research and Innovation, National Research Council of Italy (CNR), Catanzaro 88100, Italy
| |
Collapse
|
8
|
Aghaei-Zarch SM, Alipourfard I, Rasoulzadeh H, Najafi S, Aghaei-Zarch F, Partov S, Movafagh A, Jahanara A, Toolabi A, Sheikhmohammadi A, Pour NN, Neghad SK, Ashrafi-Asgarabad A. Non-coding RNAs: An emerging player in particulate matter 2.5-mediated toxicity. Int J Biol Macromol 2023; 235:123790. [PMID: 36822288 DOI: 10.1016/j.ijbiomac.2023.123790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Exposure to air pollution has been connected to around seven million early deaths annually and also contributing to higher than 3 % of disability-adjusted lost life years. Particulate matters (PM) are among the key pollutants that directly discharged or formed due to atmospheric chemical interactions. Among these matters, due of its large surface area, PM2.5 may absorb a different harmful and toxic substances. One of the outcomes of such environmental disturbance is oxidative stress which affects cellular processes including apoptosis, inflammation, and epithelial mesenchymal transition. Non-coding RNAs (ncRNA) such as, miRNAs, lncRNAs, and circRNAs are classified as non-protein coding RNA's. Over the past few years these small molecules have been gaining so much attention since they participate in variety of physiological and pathological processes and their expression change during disease periods. Regarding epigenetic properties, ncRNAs play an important function in organism's response to environmental stimulus. In this manner, it was revealed that exposure to PM2.5 may cause epigenetic reprogramming, such as, ncRNAs signature's alteration, which can be effective concerning pathophysiology state. In this review, we describe PM2.5 impact on ncRNAs and excavate its roles in toxicity caused by PM2.5.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saber Partov
- Department of Clinical and Biological Sciences, Faculty of Medicine and Surgery, University of Turin, Turin, Italy
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Jahanara
- Neonatology, Bam University of Medical Sciences, Bam, Iran
| | - Ali Toolabi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Amir Sheikhmohammadi
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | | | | | - Ahad Ashrafi-Asgarabad
- Department of Epidemiology, School of Health, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
9
|
Xue F, Yang C, Yun K, Jiang C, Cai R, Liang M, Wang Q, Bian W, Zhou H, Liu Z, Zhu L. RETRACTED ARTICLE: Reduced LINC00467 elevates microRNA-125a-3p to suppress cisplatin resistance in non-small cell lung cancer through inhibiting sirtuin 6 and inactivating the ERK1/2 signaling pathway. Cell Biol Toxicol 2023; 39:365. [PMID: 34458953 DOI: 10.1007/s10565-021-09637-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Feng Xue
- Department of Oncology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Chuan Yang
- Center of Endoscopy, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, 150036, Heilongjiang, China
| | - Keli Yun
- Department of Pharmacology, Pharmacy School of Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Cailing Jiang
- Department of Oncology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Rui Cai
- Department of Radiotherapy, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Ming Liang
- Emergency Center of Nangang Branch, Heilongjiang Provincial Hospital, Harbin Institute of Technonlogy, Harbin, 150036, Heilongjiang, China
| | - Quan Wang
- Department of Medical Imaging, Heilongjiang Provincial Hospital, Harbin Institute of Technonlogy, Harbin, 150036, Heilongjiang, China
| | - Weixin Bian
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin Institute of Technonlogy, Harbin, 150036, Heilongjiang, China
| | - Hang Zhou
- Department of Medical Imaging, Heilongjiang Provincial Hospital, Harbin Institute of Technonlogy, Harbin, 150036, Heilongjiang, China
| | - Zhipeng Liu
- Department of Medical Imaging, Heilongjiang Provincial Hospital, Harbin Institute of Technonlogy, Harbin, 150036, Heilongjiang, China
| | - Lin Zhu
- Department of Radiotherapy, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Guilin, 541001, Guangxi, China.
| |
Collapse
|
10
|
Gao J, Ma Y, Yang G, Li G. Translationally controlled tumor protein: the mediator promoting cancer invasion and migration and its potential clinical prospects. J Zhejiang Univ Sci B 2022; 23:642-654. [PMID: 35953758 DOI: 10.1631/jzus.b2100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved multifunctional protein localized in the cytoplasm and nucleus of eukaryotic cells. It is secreted through exosomes and its degradation is associated with the ubiquitin-proteasome system (UPS), heat shock protein 27 (Hsp27), and chaperone-mediated autophagy (CMA). Its structure contains three α-helices and eleven β-strands, and features a helical hairpin as its hallmark. TCTP shows a remarkable similarity to the methionine-R-sulfoxide reductase B (MsrB) and mammalian suppressor of Sec4 (Mss4/Dss4) protein families, which exerts guanine nucleotide exchange factor (GEF) activity on small guanosine triphosphatase (GTPase) proteins, suggesting that some functions of TCTP may at least depend on its GEF action. Indeed, TCTP exerts GEF activity on Ras homolog enriched in brain (Rheb) to boost the growth and proliferation of Drosophila cells. TCTP also enhances the expression of cell division control protein 42 homolog (Cdc42) to promote cancer cell invasion and migration. Moreover, TCTP regulates cytoskeleton organization by interacting with actin microfilament (MF) and microtubule (MT) proteins and inducing the epithelial-mesenchymal transition (EMT) process. In essence, TCTP promotes cancer cell movement. It is usually highly expressed in cancerous tissues and thus reduces patient survival; meanwhile, drugs can target TCTP to reduce this effect. In this review, we summarize the mechanisms of TCTP in promoting cancer invasion and migration, and describe the current inhibitory strategy to target TCTP in cancerous diseases.
Collapse
Affiliation(s)
- Junying Gao
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yan Ma
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan 250014, China. ,
| |
Collapse
|
11
|
Zhou X, Dai H, Jiang H, Rui H, Liu W, Dong Z, Zhang N, Zhao Q, Feng Z, Hu Y, Hou F, Zheng Y, Liu B. MicroRNAs: Potential mediators between particulate matter 2.5 and Th17/Treg immune disorder in primary membranous nephropathy. Front Pharmacol 2022; 13:968256. [PMID: 36210816 PMCID: PMC9532747 DOI: 10.3389/fphar.2022.968256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Primary membranous nephropathy (PMN), is an autoimmune glomerular disease and the main reason of nephrotic syndrome in adults. Studies have confirmed that the incidence of PMN increases yearly and is related to fine air pollutants particulate matter 2.5 (PM2.5) exposure. These imply that PM2.5 may be associated with exposure to PMN-specific autoantigens, such as the M-type receptor for secretory phospholipase A2 (PLA2R1). Emerging evidence indicates that Th17/Treg turns to imbalance under PM2.5 exposure, but the molecular mechanism of this process in PMN has not been elucidated. As an important indicator of immune activity in multiple diseases, Th17/Treg immune balance is sensitive to antigens and cellular microenvironment changes. These immune pathways play an essential role in the disease progression of PMN. Also, microRNAs (miRNAs) are susceptible to external environmental stimulation and play link role between the environment and immunity. The contribution of PM2.5 to PMN may induce Th17/Treg imbalance through miRNAs and then produce epigenetic affection. We summarize the pathways by which PM2.5 interferes with Th17/Treg immune balance and attempt to explore the intermediary roles of miRNAs, with a particular focus on the changes in PMN. Meanwhile, the mechanism of PM2.5 promoting PLA2R1 exposure is discussed. This review aims to clarify the potential mechanism of PM2.5 on the pathogenesis and progression of PMN and provide new insights for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Chinese Medicine, Beijing, China
| | - Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaocheng Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Na Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhendong Feng
- Pinggu Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fanyu Hou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Feng X, Ding W, Ma J, Liu B, Yuan H. Targeted Therapies in Lung Cancers: Current Landscape and Future Prospects. Recent Pat Anticancer Drug Discov 2021; 16:540-551. [PMID: 34132185 DOI: 10.2174/1574892816666210615161501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is the most common and malignant cancer worldwide. Targeted therapies have emerged as a promising treatment strategy for lung cancers. OBJECTIVE The objective of this study is to evaluate the current landscape of targets and finding promising targets for future new drug discovery for lung cancers by identifying the science-technology-clinical development pattern and mapping the interaction network of targets. METHODS Targets for cancers were classified into 3 groups based on a paper published in Nature. We search for scientific literature, patent documents and clinical trials of targets in Group 1 and Group 2 for lung cancers. Then, a target-target interaction network of Group 1 was constructed, and the science-technology-clinical(S-T-C) development patterns of targets in Group 1 were identified. Finally, based on the cluster distribution and the development pattern of targets in Group 1, interactions between the targets were employed to predict potential targets in Group 2 on drug development. RESULTS The target-target interaction(TTI)network of group 1 resulted in 3 clusters with different developmental stages. The potential targets in Group 2 are divided into 3 ranks. Level-1 is the first priority and level-3 is the last. Level-1 includes 16 targets, such as STAT3, CRKL, and PTPN11, that are mostly involved in signaling transduction pathways. Level-2 and level-3 contain 8 and 6 targets related to various biological functions. CONCLUSION This study will provide references for drug development in lung cancers, emphasizing that priorities should be given to targets in Level-1, whose mechanisms are worth further exploration.
Collapse
Affiliation(s)
- Xin Feng
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenqing Ding
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Junhong Ma
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Baijun Liu
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongmei Yuan
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
13
|
Dysregulation of TCTP in Biological Processes and Diseases. Cells 2020; 9:cells9071632. [PMID: 32645936 PMCID: PMC7407922 DOI: 10.3390/cells9071632] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF) or fortilin, is a multifunctional protein present in almost all eukaryotic organisms. TCTP is involved in a range of basic cell biological processes, such as promotion of growth and development, or cellular defense in response to biological stresses. Cellular TCTP levels are highly regulated in response to a variety of physiological signals, and regulatory mechanism at various levels have been elucidated. Given the importance of TCTP in maintaining cellular homeostasis, it is not surprising that dysregulation of this protein is associated with a range of disease processes. Here, we review recent progress that has been made in the characterisation of the basic biological functions of TCTP, in the description of mechanisms involved in regulating its cellular levels and in the understanding of dysregulation of TCTP, as it occurs in disease processes such as cancer.
Collapse
|