1
|
Weigel B, Eaton-Fitch N, Thapaliya K, Marshall-Gradisnik S. Illness presentation and quality of life in myalgic encephalomyelitis/chronic fatigue syndrome and post COVID-19 condition: a pilot Australian cross-sectional study. Qual Life Res 2024; 33:2489-2507. [PMID: 38961009 PMCID: PMC11390810 DOI: 10.1007/s11136-024-03710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE Post COVID-19 Condition (PCC), being persistent COVID-19 symptoms, is reminiscent of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)-a chronic multi-systemic illness characterised by neurocognitive, autonomic, endocrinological and immunological disturbances. This novel cross-sectional investigation aims to: (1) compare symptoms among people with ME/CFS (pwME/CFS) and people with PCC (pwPCC) to inform developing PCC diagnostic criteria; and (2) compare health outcomes between patients and people without acute or chronic illness (controls) to highlight the illness burdens of ME/CFS and PCC. METHODS Sociodemographic and health outcome data were collected from n = 61 pwME/CFS, n = 31 pwPCC and n = 54 controls via validated, self-administered questionnaires, including the 36-Item Short-Form Health Survey version 2 (SF-36v2) and World Health Organization Disability Assessment Schedule version 2.0 (WHODAS 2.0). PwME/CFS and pwPCC also provided self-reported severity and frequency of symptoms derived from the Canadian and International Consensus Criteria for ME/CFS and the World Health Organization case definition for PCC. RESULTS Both illness cohorts similarly experienced key ME/CFS symptoms. Few differences in symptoms were observed, with memory disturbances, muscle weakness, lymphadenopathy and nausea more prevalent, light-headedness more severe, unrefreshed sleep more frequent, and heart palpitations less frequent among pwME/CFS (all p < 0.05). The ME/CFS and PCC participants' SF-36v2 or WHODAS 2.0 scores were comparable (all p > 0.05); however, both cohorts returned significantly lower scores in all SF-36v2 and WHODAS 2.0 domains when compared with controls (all p < 0.001). CONCLUSION This Australian-first investigation demonstrates the congruent and debilitating nature of ME/CFS and PCC, thereby emphasising the need for multidisciplinary care to maximise patient health outcomes.
Collapse
Affiliation(s)
- Breanna Weigel
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, 4222, Australia.
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, QLD, 4222, Australia.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, 4222, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, 4222, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, 4222, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, QLD, 4222, Australia
| |
Collapse
|
2
|
Löhn M, Wirth KJ. Potential pathophysiological role of the ion channel TRPM3 in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the therapeutic effect of low-dose naltrexone. J Transl Med 2024; 22:630. [PMID: 38970055 PMCID: PMC11227206 DOI: 10.1186/s12967-024-05412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease with a broad overlap of symptomatology with Post-COVID Syndrome (PCS). Despite the severity of symptoms and various neurological, cardiovascular, microvascular, and skeletal muscular findings, no biomarkers have been identified. The Transient receptor potential melastatin 3 (TRPM3) channel, involved in pain transduction, thermosensation, transmitter and neuropeptide release, mechanoregulation, vasorelaxation, and immune defense, shows altered function in ME/CFS. Dysfunction of TRPM3 in natural killer (NK) cells, characterized by reduced calcium flux, has been observed in ME/CFS and PCS patients, suggesting a role in ineffective pathogen clearance and potential virus persistence and autoimmunity development. TRPM3 dysfunction in NK cells can be improved by naltrexone in vitro and ex vivo, which may explain the moderate clinical efficacy of low-dose naltrexone (LDN) treatment. We propose that TRPM3 dysfunction may have a broader involvement in ME/CFS pathophysiology, affecting other organs. This paper discusses TRPM3's expression in various organs and its potential impact on ME/CFS symptoms, with a focus on small nerve fibers and the brain, where TRPM3 is involved in presynaptic GABA release.
Collapse
Affiliation(s)
- Matthias Löhn
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany.
| | - Klaus Josef Wirth
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany.
- Mitodicure GmbH, D-65830, Kriftel, Germany.
| |
Collapse
|
3
|
Marshall-Gradisnik S, Martini Sasso E, Eaton-Fitch N, Smith P, Baraniuk JN, Muraki K. Novel characterization of endogenous transient receptor potential melastatin 3 ion channels from Gulf War Illness participants. PLoS One 2024; 19:e0305704. [PMID: 38917121 PMCID: PMC11198784 DOI: 10.1371/journal.pone.0305704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic condition characterized by multisystem symptoms that still affect up to one-third of veterans who engaged in combat in the Gulf War three decades ago. The aetiology of GWI is mainly explained by exposure to multiple toxic agents, vaccines, and medications. As there is a significant overlap in symptoms between GWI and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), the objective of this study was to investigate a biomarker widely reported in Natural Killer (NK) cells from ME/CFS patients, the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel. NK cells from 6 healthy controls (HC) and 6 GWI participants were isolated, and TRPM3 function was assessed through whole-cell patch-clamp. As demonstrated by prior studies, NK cells from HC expressed typical TRPM3 function after pharmacomodulation. In contrast, this pilot investigation demonstrates a dysfunctional TRPM3 in NK cells from GWI participants through application of a TRPM3 agonist and confirmed by a TRPM3 antagonist. There was a significant reduction in TRPM3 function from GWI than results measured in HC. This study provides an unprecedented research field to investigate the involvement of TRP ion channels in the pathomechanism and potential medical interventions to improve GWI quality of life.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - James N. Baraniuk
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Department of Medicine, Georgetown University, Washington, DC, United States of America
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| |
Collapse
|
4
|
Li Y, Sun L, Zhou Q, Lee AJ, Wang L, Zhang R, Wang S. Effects of opioid drugs on immune function in cancer patients. Biomed Pharmacother 2024; 175:116665. [PMID: 38701564 DOI: 10.1016/j.biopha.2024.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
Opioid receptor agonists are often used when cancer patients undergo surgery or analgesic treatment. As analgesics in clinical care, opioids can provide intraoperative or to chronic cancer pain relief. Immune function plays an important role in anti-cancer therapy, with cellular immunity, comprised principally of T-lymphocytes and natural killer cells, representing the primary anti-cancer immune response. However, it remains unclear whether immune function is further affected with the use of opioids in already immunocompromised cancer patients. This article provides a review of the effects of commonly used clinical opioids, including morphine, oxycodone, fentanyl and tramadol, on immune function in cancer patients. It provides a summary of current evidence regarding the immunomodulatory effects of opioids in the cancer setting and mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Yunqi Li
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China.
| | - Qinglian Zhou
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - An Jie Lee
- Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Lingyan Wang
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Rui Zhang
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China.
| | - Shoushi Wang
- Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China.
| |
Collapse
|
5
|
Sasso EM, Muraki K, Eaton-Fitch N, Smith P, Jeremijenko A, Griffin P, Marshall-Gradisnik S. Investigation into the restoration of TRPM3 ion channel activity in post-COVID-19 condition: a potential pharmacotherapeutic target. Front Immunol 2024; 15:1264702. [PMID: 38765011 PMCID: PMC11099221 DOI: 10.3389/fimmu.2024.1264702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/09/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Recently, we reported that post COVID-19 condition patients also have Transient Receptor Potential Melastatin 3 (TRPM3) ion channel dysfunction, a potential biomarker reported in natural killer (NK) cells from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients. As there is no universal treatment for post COVID-19 condition, knowledge of ME/CFS may provide advances to investigate therapeutic targets. Naltrexone hydrochloride (NTX) has been demonstrated to be beneficial as a pharmacological intervention for ME/CFS patients and experimental investigations have shown NTX restored TRPM3 function in NK cells. This research aimed to: i) validate impaired TRPM3 ion channel function in post COVID-19 condition patients compared with ME/CFS; and ii) investigate NTX effects on TRPM3 ion channel activity in post COVID-19 condition patients. Methods Whole-cell patch-clamp was performed to characterize TRPM3 ion channel activity in freshly isolated NK cells of post COVID-19 condition (N = 9; 40.56 ± 11.26 years), ME/CFS (N = 9; 39.33 ± 9.80 years) and healthy controls (HC) (N = 9; 45.22 ± 9.67 years). NTX effects were assessed on post COVID-19 condition (N = 9; 40.56 ± 11.26 years) and HC (N = 7; 45.43 ± 10.50 years) where NK cells were incubated for 24 hours in two protocols: treated with 200 µM NTX, or non-treated; TRPM3 channel function was assessed with patch-clamp protocol. Results This investigation confirmed impaired TRPM3 ion channel function in NK cells from post COVID-19 condition and ME/CFS patients. Importantly, PregS-induced TRPM3 currents were significantly restored in NTX-treated NK cells from post COVID-19 condition compared with HC. Furthermore, the sensitivity of NK cells to ononetin was not significantly different between post COVID-19 condition and HC after treatment with NTX. Discussion Our findings provide further evidence identifying similarities of TRPM3 ion channel dysfunction between ME/CFS and post COVID-19 condition patients. This study also reports, for the first time, TRPM3 ion channel activity was restored in NK cells isolated from post COVID-19 condition patients after in vitro treatment with NTX. The TRPM3 restoration consequently may re-establish TRPM3-dependent calcium (Ca2+) influx. This investigation proposes NTX as a potential therapeutic intervention and TRPM3 as a treatment biomarker for post COVID-19 condition.
Collapse
Affiliation(s)
- Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Andrew Jeremijenko
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Paul Griffin
- Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
7
|
Anderson G. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:962-993. [PMID: 37970210 PMCID: PMC10645470 DOI: 10.37349/etat.2023.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
A dysregulated circadian rhythm is significantly associated with cancer risk, as is aging. Both aging and circadian dysregulation show suppressed pineal melatonin, which is indicated in many studies to be linked to cancer risk and progression. Another independently investigated aspect of the circadian rhythm is the cortisol awakening response (CAR), which is linked to stress-associated hypothalamus-pituitary-adrenal (HPA) axis activation. CAR and HPA axis activity are primarily mediated via activation of the glucocorticoid receptor (GR), which drives patterned gene expression via binding to the promotors of glucocorticoid response element (GRE)-expressing genes. Recent data shows that the GR can be prevented from nuclear translocation by the B cell lymphoma-2 (Bcl-2)-associated athanogene 1 (BAG-1), which translocates the GR to mitochondria, where it can have diverse effects. Melatonin also suppresses GR nuclear translocation by maintaining the GR in a complex with heat shock protein 90 (Hsp90). Melatonin, directly and/or epigenetically, can upregulate BAG-1, suggesting that the dramatic 10-fold decrease in pineal melatonin from adolescence to the ninth decade of life will attenuate the capacity of night-time melatonin to modulate the effects of the early morning CAR. The interactions of pineal melatonin/BAG-1/Hsp90 with the CAR are proposed to underpin how aging and circadian dysregulation are associated with cancer risk. This may be mediated via differential effects of melatonin/BAG-1/Hsp90/GR in different cells of microenvironments across the body, from which tumors emerge. This provides a model of cancer pathogenesis that better integrates previously disparate bodies of data, including how immune cells are regulated by cancer cells in the tumor microenvironment, at least partly via the cancer cell regulation of the tryptophan-melatonin pathway. This has a number of future research and treatment implications.
Collapse
|
8
|
Du Preez S, Eaton-Fitch N, Smith PK, Marshall-Gradisnik S. Altered TRPM7-Dependent Calcium Influx in Natural Killer Cells of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Biomolecules 2023; 13:1039. [PMID: 37509075 PMCID: PMC10377690 DOI: 10.3390/biom13071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling multisystemic condition. The pathomechanism of ME/CFS remains unestablished; however, impaired natural killer (NK) cell cytotoxicity is a consistent feature of this condition. Calcium (Ca2+) is crucial for NK cell effector functions. Growing research recognises Ca2+ signalling dysregulation in ME/CFS patients and implicates transient receptor potential ion channel dysfunction. TRPM7 (melastatin) was recently considered in the pathoaetiology of ME/CFS as it participates in several Ca2+-dependent processes that are central to NK cell cytotoxicity which may be compromised in ME/CFS. TRPM7-dependent Ca2+ influx was assessed in NK cells isolated from n = 9 ME/CFS patients and n = 9 age- and sex-matched healthy controls (HCs) using live cell fluorescent imaging techniques. Slope (p < 0.05) was significantly reduced in ME/CFS patients compared with HCs following TRPM7 activation. Half-time of maximal response (p < 0.05) and amplitude (p < 0.001) were significantly reduced in the HCs compared with the ME/CFS patients following TRPM7 desensitisation. Findings from this investigation suggest that TRPM7-dependent Ca2+ influx is reduced with agonism and increased with antagonism in ME/CFS patients relative to the age- and sex-matched HCs. The outcomes reported here potentially reflect TRPM3 dysfunction identified in this condition suggesting that ME/CFS is a TRP ion channelopathy.
Collapse
Affiliation(s)
- Stanley Du Preez
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia
| | - Peter K Smith
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
- Queensland Allergy Services, Gold Coast 4215, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia
| |
Collapse
|
9
|
Maksoud R, Magawa C, Eaton-Fitch N, Thapaliya K, Marshall-Gradisnik S. Biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a systematic review. BMC Med 2023; 21:189. [PMID: 37226227 DOI: 10.1186/s12916-023-02893-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multifaceted condition that affects most body systems. There is currently no known diagnostic biomarker; instead, diagnosis is dependent on application of symptom-based case criteria following exclusion of any other potential medical conditions. While there are some studies that report potential biomarkers for ME/CFS, their efficacy has not been validated. The aim of this systematic review is to collate and appraise literature pertaining to a potential biomarker(s) which may effectively differentiate ME/CFS patients from healthy controls. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Cochrane review guidelines. PubMed, Embase and Scopus were systematically searched for articles containing "biomarker" and "ME/CFS" keywords in the abstract or title and if they included the following criteria: (1) were observational studies published between December 1994 and April 2022; (2) involved adult human participants; (3) full text is available in English (4) original research; (5) diagnosis of ME/CFS patients made according to the Fukuda criteria (1994), Canadian Consensus Criteria (2003), International Consensus Criteria (2011) or Institute of Medicine Criteria (2015); (6) study investigated potential biomarkers of ME/CFS compared to healthy controls. Quality and Bias were assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Case Control Studies. RESULTS A total of 101 publications were included in this systematic review. Potential biomarkers ranged from genetic/epigenetic (19.8%), immunological (29.7%), metabolomics/mitochondrial/microbiome (14.85%), endovascular/circulatory (17.82%), neurological (7.92%), ion channel (8.91%) and physical dysfunction biomarkers (8.91%). Most of the potential biomarkers reported were blood-based (79.2%). Use of lymphocytes as a model to investigate ME/CFS pathology was prominent among immune-based biomarkers. Most biomarkers had secondary (43.56%) or tertiary (54.47%) selectivity, which is the ability for the biomarker to identify a disease-causing agent, and a moderate (59.40%) to complex (39.60%) ease-of-detection, including the requirement of specialised equipment. CONCLUSIONS All potential ME/CFS biomarkers differed in efficiency, quality, and translatability as a diagnostic marker. Reproducibility of findings between the included publications were limited, however, several studies validated the involvement of immune dysfunction in the pathology of ME/CFS and the use of lymphocytes as a model to investigate the pathomechanism of illness. The heterogeneity shown across many of the included studies highlights the need for multidisciplinary research and uniform protocols in ME/CFS biomarker research.
Collapse
Affiliation(s)
- Rebekah Maksoud
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Australia.
| | - Chandi Magawa
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
10
|
Tate WP, Walker MOM, Peppercorn K, Blair ALH, Edgar CD. Towards a Better Understanding of the Complexities of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID. Int J Mol Sci 2023; 24:ijms24065124. [PMID: 36982194 PMCID: PMC10048882 DOI: 10.3390/ijms24065124] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex condition arising in susceptible people, predominantly following viral infection, but also other stressful events. The susceptibility factors discussed here are both genetic and environmental although not well understood. While the dysfunctional physiology in ME/CFS is becoming clearer, understanding has been hampered by different combinations of symptoms in each affected person. A common core set of mainly neurological symptoms forms the modern clinical case definition, in the absence of an accessible molecular diagnostic test. This landscape has prompted interest in whether ME/CFS patients can be classified into a particular phenotype/subtype that might assist better management of their illness and suggest preferred therapeutic options. Currently, the same promising drugs, nutraceuticals, or behavioral therapies available can be beneficial, have no effect, or be detrimental to each individual patient. We have shown that individuals with the same disease profile exhibit unique molecular changes and physiological responses to stress, exercise and even vaccination. Key features of ME/CFS discussed here are the possible mechanisms determining the shift of an immune/inflammatory response from transient to chronic in ME/CFS, and how the brain and CNS manifests the neurological symptoms, likely with activation of its specific immune system and resulting neuroinflammation. The many cases of the post viral ME/CFS-like condition, Long COVID, following SARS-CoV-2 infection, and the intense research interest and investment in understanding this condition, provide exciting opportunities for the development of new therapeutics that will benefit ME/CFS patients.
Collapse
Affiliation(s)
- Warren P Tate
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Max O M Walker
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Anna L H Blair
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Christina D Edgar
- Department of Biochemistry, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
11
|
Qin H, You C, Yan F, Tan K, Xu C, Zhao R, Ekpo MD, Tan S. Overcoming the challenges in translational development of natural killer cell therapeutics: An opinion paper. Front Oncol 2022; 12:1062765. [DOI: 10.3389/fonc.2022.1062765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
|
12
|
Vallings R. ‘The Lightning Process’ and chronic fatigue syndrome/myalgic encephalomyelitis. J Prim Health Care 2022; 14:283-284. [PMID: 36178839 DOI: 10.1071/hc22078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
|
13
|
Du Y, Chen J, Shen L, Wang B. TRP channels in inflammatory bowel disease: potential therapeutic targets. Biochem Pharmacol 2022; 203:115195. [DOI: 10.1016/j.bcp.2022.115195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
|