1
|
Wu J, Zhang C, Li H, Zhang S, Chen J, Qin L. Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition. Cancer Cell Int 2024; 24:431. [PMID: 39725978 DOI: 10.1186/s12935-024-03580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer. However, the underlying roles and functions of various ncRNA types in the growth of this malignant tumor remain unclear. Competing endogenous RNAs (ceRNAs) refer to transcripts that can mutually regulate each other at the post-transcriptional level by vying for shared miRNAs. Networks of ceRNAs establish connections between the functions of protein-coding mRNAs and non-coding RNAs, including microRNA, long non-coding RNA, pseudogenic RNA, and circular RNA, piwi-RNA, snoRNA. A growing body of research has indicated that imbalances in ceRNAs networks play a crucial role in various facets of oral cancer, including development, metastasis, migration, invasion, and inflammatory responses. Hence, delving into the regulatory pathways of ceRNAs in oral cancer holds the potential to advance our understanding of the pathological mechanisms, facilitate early diagnosis, and foster targeted drug development for this malignancy. The present review summarized the fundamental role of ceRNA network, discussed the limitations of current ceRNA applications, which have been improved through chemical modification and carrier delivery as new biomarkers for diagnosis and prognosis is expected to offer a groundbreaking therapeutic approach for individuals with oral cancer.
Collapse
Affiliation(s)
- Jiajun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan, 410208, China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
2
|
Agrawal A, Vindal V. Competing endogenous RNAs in head and neck squamous cell carcinoma: a review. Brief Funct Genomics 2024; 23:335-348. [PMID: 37941447 DOI: 10.1093/bfgp/elad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Our understanding of RNA biology has evolved with recent advances in research from it being a non-functional product to molecules of the genome with specific regulatory functions. Competitive endogenous RNA (ceRNA), which has gained prominence over time as an essential part of post-transcriptional regulatory mechanism, is one such example. The ceRNA biology hypothesis states that coding RNA and non-coding RNA co-regulate each other using microRNA (miRNA) response elements. The ceRNA components include long non-coding RNAs, pseudogene and circular RNAs that exert their effect by interacting with miRNA and regulate the expression level of its target genes. Emerging evidence has revealed that the dysregulation of the ceRNA network is attributed to the pathogenesis of various cancers, including the head and neck squamous cell carcinoma (HNSCC). This is the most prevalent cancer developed from the mucosal epithelium in the lip, oral cavity, larynx and pharynx. Although many efforts have been made to comprehend the cause and subsequent treatment of HNSCC, the morbidity and mortality rate remains high. Hence, there is an urgent need to understand the holistic progression of HNSCC, mediated by ceRNA, that can have immense relevance in identifying novel biomarkers with a defined therapeutic intervention. In this review, we have made an effort to highlight the ceRNA biology hypothesis with a focus on its involvement in the progression of HNSCC. For the identification of such ceRNAs, we have additionally highlighted a number of databases and tools.
Collapse
Affiliation(s)
- Avantika Agrawal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
3
|
Xiao Y, Chen L, Xu Y, Yu R, Lu J, Ke Y, Guo R, Gu T, Yu H, Fang Y, Li Z, Yu J. Circ-ZNF236 mediates stem cells from apical papilla differentiation by regulating LGR4-induced autophagy. Int Endod J 2024; 57:431-450. [PMID: 38240345 DOI: 10.1111/iej.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 03/07/2024]
Abstract
AIM Human stem cells from the apical papilla (SCAPs) are an appealing stem cell source for tissue regeneration engineering. Circular RNAs (circRNAs) are known to exert pivotal regulatory functions in various cell differentiation processes, including osteogenesis of mesenchymal stem cells. However, few studies have shown the potential mechanism of circRNAs in the odonto/osteogenic differentiation of SCAPs. Herein, we identified a novel circRNA, circ-ZNF236 (hsa_circ_0000857) and found that it was remarkably upregulated during the SCAPs committed differentiation. Thus, in this study, we showed the significance of circ-ZNF236 in the odonto/osteogenic differentiation of SCAPs and its underlying regulatory mechanisms. METHODOLOGY The circular structure of circ-ZNF236 was identified via Sanger sequencing, amplification of convergent and divergent primers. The proliferation of SCAPs was detected by CCK-8, flow cytometry analysis and EdU incorporation assay. Western blotting, qRT-PCR, Alkaline phosphatase (ALP) and Alizarin red staining (ARS) were performed to explore the regulatory effect of circ-ZNF236/miR-218-5p/LGR4 axis in the odonto/osteogenic differentiation of SCAPs in vitro. Fluorescence in situ hybridization, as well as dual-luciferase reporting assays, revealed that circ-ZNF236 binds to miR-218-5p. Transmission electron microscopy (TEM) and mRFP-GFP-LC3 lentivirus were performed to detect the activation of autophagy. RESULTS Circ-ZNF236 was identified as a highly stable circRNA with a covalent closed loop structure. Circ-ZNF236 had no detectable influence on cell proliferation but positively regulated SCAPs odonto/osteogenic differentiation. Furthermore, circ-ZNF236 was confirmed as a sponge of miR-218-5p in SCAPs, while miR-218-5p targets LGR4 mRNA at its 3'-UTR. Subsequent rescue experiments revealed that circ-ZNF236 regulates odonto/osteogenic differentiation by miR-218-5p/LGR4 in SCAPs. Importantly, circ-ZNF236 activated autophagy, and the activation of autophagy strengthened the committed differentiation capability of SCAPs. Subsequently, in vivo experiments showed that SCAPs overexpressing circ-ZNF236 promoted bone formation in a rat skull defect model. CONCLUSIONS Circ-ZNF236 could activate autophagy through increasing LGR4 expression, thus positively regulating SCAPs odonto/osteogenic differentiation. Our findings suggested that circ-ZNF236 might represent a novel therapeutic target to prompt the odonto/osteogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- Ya Xiao
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luyao Chen
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yunlong Xu
- Endodontic Department, Changzhou Stomatological Hospital, Changzhou, Jiangsu, China
| | - Ruiyang Yu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiamin Lu
- Endodontic Department, Changzhou Stomatological Hospital, Changzhou, Jiangsu, China
| | - Yue Ke
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rong Guo
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tingjie Gu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Haowen Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Xie N, Mei S, Dai C, Chen W. Palmdelphin Inhibits Ovarian Cancer Cell Stem Specification via Downregulating Ring Finger Protein 145. Crit Rev Eukaryot Gene Expr 2024; 34:13-24. [PMID: 39180204 DOI: 10.1615/critreveukaryotgeneexpr.2024053542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
This study aimed to investigate the roles of PALMD in ovarian cancer. mRNA expression was detected using RT-qPCR. The aldehyde dehydrogenase (ALDH) activity and biomarkers of ovarian cancer stem cells were determined using flow cytometry. The stemness of ovarian cancer cells was determined using sphere formation assay. Cell viability was determined using CCK-8 assay. The number of colonies was determined using colony formation assay. Cell migration was detected using wound healing assay. Cell invasion was determined using transwell assay. The results showed that PALMD was downregulated in ovarian cancer. Overexpressed PALMD inhibited the proliferative, migrative, and invasive ability of ovarian cancer cells. Moreover, PALMD inhibited the stem-like properties of ovarian cancer cells. Additionally, PALMD downregulated ring finger protein 145 (RNF145) expression, overexpression of which contributed to the aggressiveness of ovarian cancer cells. Taken together, PALMD suppressed ovarian cancer cell stem specification via inhibiting RNF145 expression.
Collapse
Affiliation(s)
- Nanzi Xie
- Department of Pathology, People's Hospital of Anshun City Guizhou Province, Anshun 561000, Guizhou, China
| | - Sisi Mei
- Department of Pathology, People's Hospital of Anshun City Guizhou Province, Anshun 561000, Guizhou, China
| | - Changlan Dai
- Department of Pathology, People's Hospital of Anshun City Guizhou Province, Anshun 561000, Guizhou, China
| | - Wei Chen
- People's Hospital of Anshun City Guizhou Province
| |
Collapse
|
5
|
Yoo SS, Lee S, Choi JE, Hong MJ, Do SK, Lee JH, Lee WK, Park JE, Lee YH, Choi SH, Seo H, Lee J, Lee SY, Cha SI, Kim CH, Kang HG, Park JY. Promoter-Specific Variants in NeuroD1 and H3K4me3 Coincident Regions and Clinical Outcomes of Small Cell Lung Cancer. J Korean Med Sci 2023; 38:e381. [PMID: 37987107 PMCID: PMC10659920 DOI: 10.3346/jkms.2023.38.e381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/11/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Neurogenic differentiation 1 (NeuroD1) is a representative small cell lung cancer (SCLC) transcription regulator involved in the carcinogenesis and behavior of SCLC. Histone modifications play an important role in transcription, and H3 lysine 4 trimethylation (H3K4me3) is primarily associated with promoter regions. METHODS We investigated the association between single nucleotide polymorphisms (SNPs) in NeuroD1 and H3K4me3 coincident regions, selected using ChIP sequencing (ChIP-seq), and the clinical outcomes of 261 patients with SCLC. RESULTS Among 230 SNPs, two were significantly associated with both the chemotherapy response and overall survival (OS) of patients with SCLC. RNF145 rs2043268A>G was associated with worse chemotherapy response and OS (under a recessive model, adjusted odds ratio [aOR], 0.50, 95% confidence interval [CI], 0.26-0.94, P = 0.031, and adjusted hazard ratio [aHR], 1.88, 95% CI, 1.38-2.57, P < 0.001). CINP rs762105A>G was also associated with worse chemotherapy response and OS (under a dominant model, aOR, 0.47, 95% CI, 0.23-0.99, P = 0.046, and aHR, 2.03, 95% CI, 1.47-2.82, P < 0.001). ChIP-quantitative polymerase chain reaction and luciferase assay confirmed that the two SNPs were located in the active promoter regions and influenced the promoter activity of each gene. CONCLUSION To summarize, among SNPs selected using ChIP-seq in promoter regions with high peaks in both NeuroD1 and H3K4me3, RNF145 rs2043268A>G and CINP rs762105A>G were associated with clinical outcomes in patients with SCLC and also affected the promoter activity of each gene.
Collapse
Affiliation(s)
- Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sunwoong Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Mi Jeong Hong
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sook Kyung Do
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Won Kee Lee
- Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji Eun Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
6
|
Zhu M, Chen D, Ruan C, Yang P, Zhu J, Zhang R, Li Y. CircRNAs: A Promising Star for Treatment and Prognosis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:14194. [PMID: 37762497 PMCID: PMC10532269 DOI: 10.3390/ijms241814194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
CircRNAs are a class of endogenous long non-coding RNAs with a single-stranded circular structure. Most circRNAs are relatively stable, highly conserved, and specifically expressed in tissue during the cell and developmental stages. Many circRNAs have been discovered in OSCC. OSCC is one of the most severe and frequent forms of head and neck cancer today, with a poor prognosis and low overall survival rate. Due to its prevalence, OSCC is a global health concern, characterized by genetic and epigenomic changes. However, the mechanism remains vague. With the advancement of biotechnology, a large number of circRNAs have been discovered in mammalian cells. CircRNAs are dysregulated in OSCC tissues and thus associated with the clinicopathological characteristics and prognosis of OSCC patients. Research studies have demonstrated that circRNAs can serve as biomarkers for OSCC diagnosis and treatment. Here, we summarized the properties, functions, and biogenesis of circRNAs, focusing on the progress of current research on circRNAs in OSCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.Z.); (D.C.); (C.R.); (J.Z.)
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.Z.); (D.C.); (C.R.); (J.Z.)
| |
Collapse
|
7
|
Ortiz-Fernández L, Carmona EG, Kerick M, Lyons P, Carmona FD, López Mejías R, Khor CC, Grayson PC, Tombetti E, Jiang L, Direskeneli H, Saruhan-Direskeneli G, Callejas-Rubio JL, Vaglio A, Salvarani C, Hernández-Rodríguez J, Cid MC, Morgan AW, Merkel PA, Burgner D, Smith KG, Gonzalez-Gay MA, Sawalha AH, Martin J, Marquez A. Identification of new risk loci shared across systemic vasculitides points towards potential target genes for drug repurposing. Ann Rheum Dis 2023; 82:837-847. [PMID: 36797040 PMCID: PMC10314028 DOI: 10.1136/ard-2022-223697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVES The number of susceptibility loci currently associated with vasculitis is lower than in other immune-mediated diseases due in part to small cohort sizes, a consequence of the low prevalence of vasculitides. This study aimed to identify new genetic risk loci for the main systemic vasculitides through a comprehensive analysis of their genetic overlap. METHODS Genome-wide data from 8467 patients with any of the main forms of vasculitis and 29 795 healthy controls were meta-analysed using ASSET. Pleiotropic variants were functionally annotated and linked to their target genes. Prioritised genes were queried in DrugBank to identify potentially repositionable drugs for the treatment of vasculitis. RESULTS Sixteen variants were independently associated with two or more vasculitides, 15 of them representing new shared risk loci. Two of these pleiotropic signals, located close to CTLA4 and CPLX1, emerged as novel genetic risk loci in vasculitis. Most of these polymorphisms appeared to affect vasculitis by regulating gene expression. In this regard, for some of these common signals, potential causal genes were prioritised based on functional annotation, including CTLA4, RNF145, IL12B, IL5, IRF1, IFNGR1, PTK2B, TRIM35, EGR2 and ETS2, each of which has key roles in inflammation. In addition, drug repositioning analysis showed that several drugs, including abatacept and ustekinumab, could be potentially repurposed in the management of the analysed vasculitides. CONCLUSIONS We identified new shared risk loci with functional impact in vasculitis and pinpointed potential causal genes, some of which could represent promising targets for the treatment of vasculitis.
Collapse
Affiliation(s)
| | - Elio G Carmona
- Institute of Parasitology and Biomedicine "López- Neyra", CSIC, Granada, Spain
- Unidad de Enfermedades Autoinmunes Sistémicas, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Martin Kerick
- Institute of Parasitology and Biomedicine "López- Neyra", CSIC, Granada, Spain
| | - Paul Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Francisco David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Raquel López Mejías
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Spain
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Peter C Grayson
- Systemic Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Enrico Tombetti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, Milan University, Milan, Italy
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Evidence-Based Medicine Center, Fudan University, Shanghai, China
| | - Haner Direskeneli
- Department of Internal Medicine, Division of Rheumatology, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | | | - José-Luis Callejas-Rubio
- Systemic Autoimmune Diseases Unit, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Augusto Vaglio
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia and Azienda Ospedaliero - Universitaria di Modena, Università di Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Jose Hernández-Rodríguez
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Cinta Cid
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ann W Morgan
- School of Medicine and Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre and NIHR Leeds Medtech and In vitro Diagnostics Co-Operative, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Peter A Merkel
- Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of General Medicine, Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Kenneth Gc Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Miguel Angel Gonzalez-Gay
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, University of Cantabria, Santander, Spain
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Javier Martin
- Institute of Parasitology and Biomedicine "López- Neyra", CSIC, Granada, Spain
| | - Ana Marquez
- Institute of Parasitology and Biomedicine "López- Neyra", CSIC, Granada, Spain
| |
Collapse
|
8
|
Targeting Transcription Factors ATF5, CEBPB and CEBPD with Cell-Penetrating Peptides to Treat Brain and Other Cancers. Cells 2023; 12:cells12040581. [PMID: 36831248 PMCID: PMC9954556 DOI: 10.3390/cells12040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Developing novel therapeutics often follows three steps: target identification, design of strategies to suppress target activity and drug development to implement the strategies. In this review, we recount the evidence identifying the basic leucine zipper transcription factors ATF5, CEBPB, and CEBPD as targets for brain and other malignancies. We describe strategies that exploit the structures of the three factors to create inhibitory dominant-negative (DN) mutant forms that selectively suppress growth and survival of cancer cells. We then discuss and compare four peptides (CP-DN-ATF5, Dpep, Bpep and ST101) in which DN sequences are joined with cell-penetrating domains to create drugs that pass through tissue barriers and into cells. The peptide drugs show both efficacy and safety in suppressing growth and in the survival of brain and other cancers in vivo, and ST101 is currently in clinical trials for solid tumors, including GBM. We further consider known mechanisms by which the peptides act and how these have been exploited in rationally designed combination therapies. We additionally discuss lacunae in our knowledge about the peptides that merit further research. Finally, we suggest both short- and long-term directions for creating new generations of drugs targeting ATF5, CEBPB, CEBPD, and other transcription factors for treating brain and other malignancies.
Collapse
|
9
|
Han X, Tian R, Wang C, Li Y, Song X. CircRNAs: Roles in regulating head and neck squamous cell carcinoma. Front Oncol 2022; 12:1026073. [PMID: 36483049 PMCID: PMC9723173 DOI: 10.3389/fonc.2022.1026073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 09/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common head and neck malignant tumor, with only monotherapy, is characterized by poor prognosis, and low 5-year survival rate. Due to the lack of therapeutic targets, the targeted drugs for HNSCC are rare. Therefore, exploring the regulation mechanism of HNSCC and identifying effective therapeutic targets will be beneficial to its treatment of. Circular RNA (CircRNA) is a class of RNA molecules with a circular structure, which is widely expressed in human body. CircRNAs regulate gene expression by exerting the function as a miRNA sponge, thereby mediating the occurrence and development of HNSCC cell proliferation, apoptosis, migration, invasion, and other processes. In addition, circRNAs are also involved in the regulation of tumor sensitivity to chemical drugs and other biological functions. In this review, we systematically listed the functions of circRNAs and explored the regulatory mechanisms of circRNAs in HNSCC from the aspects of tumor growth, cell death, angiogenesis, tumor invasion and metastasis, tumor stem cell regulation, tumor drug resistance, immune escape, and tumor microenvironment. It will assist us in discovering new diagnostic markers and therapeutic targets, while encourage new ideas for the diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Xiao Han
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ruxian Tian
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Cai Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| |
Collapse
|