1
|
Dong L, Qiu X, Li Z, Ge W, Tang X, Zhou R, Chen W, Xu X, Wang K. Potential crosstalk between Naïve CD4 + T cells and SPP1 + Macrophages is associated with clinical outcome and therapeutic response in hepatocellular carcinoma. Int Immunopharmacol 2024; 142:113231. [PMID: 39332093 DOI: 10.1016/j.intimp.2024.113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The highly heterogeneity of the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) results in diverse clinical outcomes and therapeutic responses. This study aimed to investigate potential intercellular crosstalk and its impact on clinical outcomes and therapeutic responses. METHODS Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST) and bulk RNA sequencing (RNA-seq) datasets were integrated to comprehensively analyze the intercellular interactions within the TME. Multiplex immunohistochemistry was conducted to validate the intercellular interactions. A machine learning-based integrative procedure was used in bulk RNA-seq datasets to generate a risk model to predict prognosis and therapeutic responses. RESULTS Survival analyses based on the bulk RNA-seq datasets revealed the negative impact of the naïve Cluster of Differentiation 4+ (CD4) T cells and Secreted Phosphoprotein 1+ (SPP1) macrophages on prognosis. Furthermore, their intricate intercellular crosstalk and spatial colocalization were also observed by scRNA-seq and ST analyses. Based on this crosstalk, a machine learning model, termed the naïve CD4+ T cell and SPP1+ macrophage prognostic score (TMPS), was established in the bulk-RNA seq datasets for prognostic prediction. The TMPS achieved C-index values of 0.785, 0.715, 0.692 and 0.857, respectively, across 4 independent cohorts. A low TMPS was associated with a significantly increased survival rates, improved response to immunotherapy and reduced infiltration of immunosuppressive cells, such as. regulatory T cells. Finally, 8 potential sensitive drugs and 6 potential targets were predicted for patients based on their TMPS. CONCLUSION The crosstalk between naïve CD4+ T cells and SPP1+ macrophages play a crucial role in the TME. TMPS can reflect this crosstalk and serve as a valuable tool for prognostic stratification and guiding clinical decision-making.
Collapse
Affiliation(s)
- Libin Dong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xun Qiu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zekuan Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Wenwen Ge
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiao Tang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Wei Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiao Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, Zhejiang, China.
| | - Kai Wang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, Zhejiang, China.
| |
Collapse
|
2
|
Wu Y, Zhai Y, Ding Z, Xie T, Zhu W, Zhang C, Lu Y, Chen Y, Ren S, Hu Y, Li X, Zhong F, Liang Y, Wang S. Single-cell transcriptomics reveals tumor microenvironment changes and prognostic gene signatures in hepatocellular carcinoma. Int Immunopharmacol 2024; 143:113317. [PMID: 39447409 DOI: 10.1016/j.intimp.2024.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is the most common type of primary liver cancer, accounting for the majority of liver cancer cases. Hepatocellular Carcinoma not only exhibits high heterogeneity but also possesses an immune-suppressive tumor microenvironment that promotes tumor evasion, posing substantial difficulties for efficient therapy. Our aim is to utilize single-cell RNA transcriptome data to investigate the dynamic changes in the tumor microenvironment during the malignant progression of HCC, the communication among immune cells, and the marker genes associated with patient prognosis. METHODS We constructed expression matrices from open single-cell RNA transcriptome data (GSE149614) of HCC patients (representing stages I-IV), establishing single-cell RNA transcriptional atlases for different stages of HCC progression. For each stage, we conducted cell subgroup analysis to identify cell types at each stage. Horizontally, we explored the dynamic changes of the same cell type across different stages, performing trajectory analysis and prognosis analysis. Vertically, we investigated pairwise comparisons of different stages of HCC progression, probing the dynamic alterations in tumor microenvironment immune cell signaling pathways. Finally, potential drugs for the treatment of HCC were predicted based on relevant genes. FINDINGS As the HCC advances towards increased malignancy, there is a shift in the predominant composition of the tumor microenvironment, with a decline in the dominance of hepatic cells. Tumor-infiltrating immune cells migrate and accumulate within the tumor microenvironment, where T cells and myeloid cells display distinct patterns of change. Genes associated with cancer-associated fibroblasts (CAFs) and T cells are correlated with adverse patient outcomes. In the late stages of HCC, the tumor microenvironment is infiltrated by more myeloid-derived suppressor cells (MDSCs), and a prognostic model constructed based on genes related to myeloid cells can predict patient outcomes. Additionally, in the analysis of transcription factors, YY1 and MYC are found to be highly expressed. Cell communication analysis among tumor-infiltrating immune cells reveals significant differences in the main signaling pathways at different stages of HCC progression. Finally, drug sensitivity analysis based on key genes identifies Acetalax, Allopurinol, and Amonafide as potential candidates for HCC treatment.
Collapse
Affiliation(s)
- Yilin Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yangyang Zhai
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhilong Ding
- Department of Hepatobiliary Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China
| | - Tong Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - WeiJie Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Cui Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Ying Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yunli Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Shiying Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yihuai Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Xiangqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Fei Zhong
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China.
| | - Yong Liang
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China.
| | - Shiyan Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China.
| |
Collapse
|
3
|
Zhang WQ, Sun JX, Lan ST, Sun XM, Guo YJ, Wen BC, Chen J, Liu G. Regulation of Fuzheng Huayu capsule on inhibiting the fibrosis-associated hepatocellular carcinogenesis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1219-1238. [PMID: 38780602 DOI: 10.1080/10286020.2024.2355132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
In the current study, bioinformatics analysis of the hepatocellular carcinoma (HCC) dataset was conducted with the hepatoprotective effect of the Fuzheng Huayu (FZHY) capsule against the diethylnitrosamine-induced HCC progression analyzed. Eight cell clusters were defined and tanshinone IIA, arachidonic acid, and quercetin, compounds of the FZHY capsule, inhibit HCC progression-related fibrosis by regulating the expression of PLAU and IGFBP3. Combined with the ameliorative effect of the FZHY capsule against liver dysfunctions and expression of PLAU and IGFBP3, our study confirmed the effect of the FZHY capsule on inhibiting the fibrosis-associated HCC progression via regulating the expression of PLAU and IGFBP3.
Collapse
Affiliation(s)
- Wen-Qi Zhang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jia-Xin Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Shu-Ting Lan
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiao-Mei Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Yi-Jing Guo
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Bi-Chao Wen
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jie Chen
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|
4
|
Zeng Z, Ma Y, Hu L, Tan B, Liu P, Wang Y, Xing C, Xiong Y, Du H. OmicVerse: a framework for bridging and deepening insights across bulk and single-cell sequencing. Nat Commun 2024; 15:5983. [PMID: 39013860 PMCID: PMC11252408 DOI: 10.1038/s41467-024-50194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Single-cell sequencing is frequently affected by "omission" due to limitations in sequencing throughput, yet bulk RNA-seq may contain these ostensibly "omitted" cells. Here, we introduce the single cell trajectory blending from Bulk RNA-seq (BulkTrajBlend) algorithm, a component of the OmicVerse suite that leverages a Beta-Variational AutoEncoder for data deconvolution and graph neural networks for the discovery of overlapping communities. This approach effectively interpolates and restores the continuity of "omitted" cells within single-cell RNA sequencing datasets. Furthermore, OmicVerse provides an extensive toolkit for both bulk and single cell RNA-seq analysis, offering seamless access to diverse methodologies, streamlining computational processes, fostering exquisite data visualization, and facilitating the extraction of significant biological insights to advance scientific research.
Collapse
Affiliation(s)
- Zehua Zeng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.
| | - Yuqing Ma
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, China
- Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, China
| | - Lei Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Bowen Tan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Peng Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yixuan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Cencan Xing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun-Yat-Sen University, Guangzhou, Guangdong, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
5
|
Guillot A, Tacke F. Liver macrophages revisited: The expanding universe of versatile responses in a spatiotemporal context. Hepatol Commun 2024; 8:e0491. [PMID: 38967563 PMCID: PMC11227356 DOI: 10.1097/hc9.0000000000000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024] Open
Abstract
The liver is a vital organ that continuously adapts to a wide and dynamic diversity of self-antigens and xenobiotics. This involves the active contribution of immune cells, particularly by the liver-resident macrophages, the Kupffer cells (KCs), which exert a variety of central functions in liver homeostasis and disease. As such, KCs interact with their microenvironment to shape the hepatic cellular landscape, control gut-derived signal integration, and modulate metabolism. On injury, the rapid recruitment of bone marrow monocyte-derived macrophages alters this status quo and, when unrestrained, drastically compromises liver homeostasis, immune surveillance, and tissue organization. Several factors determine the functional roles of liver macrophages in these processes, such as their ontogeny, activation/polarization profile and, importantly, spatial distribution within the liver. Loss of tolerance and adaptability of the hepatic immune environment may result in persistent inflammation, hepatic fibrosis, cirrhosis, and a tumorigenic niche promoting liver cancer. In this review, we aim at providing the most recent breakthroughs in our understanding of liver macrophage biology, particularly their diversity and adaptability in the hepatic spatiotemporal context, as well as on potential therapeutic interventions that may hold the key to tackling remaining clinical challenges of varying etiologies in hepatology.
Collapse
|
6
|
Xu J, Zhang Y, Li M, Shao Z, Dong Y, Li Q, Bai H, Duan J, Zhong J, Wan R, Bai J, Yi X, Tang F, Wang J, Wang Z. A single-cell characterised signature integrating heterogeneity and microenvironment of lung adenocarcinoma for prognostic stratification. EBioMedicine 2024; 102:105092. [PMID: 38547579 PMCID: PMC10990706 DOI: 10.1016/j.ebiom.2024.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The high heterogeneity of tumour and the complexity of tumour microenvironment (TME) greatly impacted the tumour development and the prognosis of cancer in the era of immunotherapy. In this study, we aimed to portray the single cell-characterised landscape of lung adenocarcinoma (LUAD), and develop an integrated signature incorporating both tumour heterogeneity and TME for prognosis stratification. METHODS Single-cell tagged reverse transcription sequencing (STRT-seq) was performed on tumour tissues and matched normal tissues from 14 patients with LUAD for immune landscape depiction and candidate key genes selection for signature construction. Kaplan-Meier survival analyses and in-vitro cell experiments were conducted to confirm the gene functions. The transcriptomic profile of 1949 patients from 11 independent cohorts including nine public datasets and two in-house cohorts were obtained for validation. FINDINGS We selected 11 key genes closely related to cell-to-cell interaction, tumour development, T cell phenotype transformation, and Ma/Mo cell distribution, including HLA-DPB1, FAM83A, ITGB4, OAS1, FHL2, S100P, FSCN1, SFTPD, SPP1, DBH-AS1, CST3, and established an integrated 11-gene signature, stratifying patients to High-Score or Low-Score group for better or worse prognosis. Moreover, the prognostically-predictive potency of the signature was validated by 11 independent cohorts, and the immunotherapeutic predictive potency was also validated by our in-house cohort treated by immunotherapy. Additionally, the in-vitro cell experiments and drug sensitivity prediction further confirmed the gene function and generalizability of this signature across the entire RNA profile spectrum. INTERPRETATION This single cell-characterised 11-gene signature might offer insights for prognosis stratification and potential guidance for treatment selection. FUNDING Support for the study was provided by National key research and development project (2022YFC2505004, 2022YFC2505000 to Z.W. and J.W.), Beijing Natural Science Foundation (7242114 to J.X.), National Natural Science Foundation of China of China (82102886 to J.X., 81871889 and 82072586 to Z.W.), Beijing Nova Program (20220484119 to J.X.), NSFC general program (82272796 to J.W.), NSFC special program (82241229 to J.W.), CAMS Innovation Fund for Medical Sciences (2021-1-I2M-012, 2022-I2M-1-009 to Z.W. and J.W.), Beijing Natural Science Foundation (7212084 to Z.W.), CAMS Key lab of translational research on lung cancer (2018PT31035 to J.W.), Aiyou Foundation (KY201701 to J.W.). Medical Oncology Key Foundation of Cancer Hospital Chinese Academy of Medical Sciences (CICAMS-MOCP2022003 to J.X.).
Collapse
Affiliation(s)
- Jiachen Xu
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yundi Zhang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Man Li
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Shao
- Geneplus-Beijing Institute, Changping District, Beijing, China
| | - Yiting Dong
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingqing Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jia Zhong
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Bai
- Geneplus-Beijing Institute, Changping District, Beijing, China
| | - Xin Yi
- Geneplus-Beijing Institute, Changping District, Beijing, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Song D, Yang Q, Li L, Wei Y, Zhang C, Du H, Ren G, Li H. Novel prognostic biomarker TBC1D1 is associated with immunotherapy resistance in gliomas. Front Immunol 2024; 15:1372113. [PMID: 38529286 PMCID: PMC10961388 DOI: 10.3389/fimmu.2024.1372113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Background Glioma, an aggressive brain tumor, poses a challenge in understanding the mechanisms of treatment resistance, despite promising results from immunotherapy. Methods We identified genes associated with immunotherapy resistance through an analysis of The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases. Subsequently, qRT-PCR and western blot analyses were conducted to measure the mRNA and protein levels of TBC1 Domain Family Member 1 (TBC1D1), respectively. Additionally, Gene Set Enrichment Analysis (GSEA) was employed to reveal relevant signaling pathways, and the expression of TBC1D1 in immune cells was analyzed using single-cell RNA sequencing (scRNA-seq) data from GEO database. Tumor Immune Dysfunction and Exclusion (TIDE) database was utilized to assess T-cell function, while Tumor Immunotherapy Gene Expression Resource (TIGER) database was employed to evaluate immunotherapy resistance in relation to TBC1D1. Furthermore, the predictive performance of molecules on prognosis was assessed using Kaplan-Meier plots, nomograms, and ROC curves. Results The levels of TBC1D1 were significantly elevated in tumor tissue from glioma patients. Furthermore, high TBC1D1 expression was observed in macrophages compared to other cells, which negatively impacted T cell function, impaired immunotherapy response, promoted treatment tolerance, and led to poor prognosis. Inhibition of TBC1D1 was found to potentially synergistically enhance the efficacy of immunotherapy and prolong the survival of cancer patients with gliomas. Conclusion Heightened expression of TBC1D1 may facilitate an immunosuppressive microenvironment and predict a poor prognosis. Blocking TBC1D1 could minimize immunotherapy resistance in cancer patients with gliomas.
Collapse
Affiliation(s)
- Daqiang Song
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qian Yang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuying Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Ji S, Shi Y, Yin B. Macrophage barrier in the tumor microenvironment and potential clinical applications. Cell Commun Signal 2024; 22:74. [PMID: 38279145 PMCID: PMC10811890 DOI: 10.1186/s12964-023-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024] Open
Abstract
The tumor microenvironment (TME) constitutes a complex microenvironment comprising a diverse array of immune cells and stromal components. Within this intricate context, tumor-associated macrophages (TAMs) exhibit notable spatial heterogeneity. This heterogeneity contributes to various facets of tumor behavior, including immune response modulation, angiogenesis, tissue remodeling, and metastatic potential. This review summarizes the spatial distribution of macrophages in both the physiological environment and the TME. Moreover, this paper explores the intricate interactions between TAMs and diverse immune cell populations (T cells, dendritic cells, neutrophils, natural killer cells, and other immune cells) within the TME. These bidirectional exchanges form a complex network of immune interactions that influence tumor immune surveillance and evasion strategies. Investigating TAM heterogeneity and its intricate interactions with different immune cell populations offers potential avenues for therapeutic interventions. Additionally, this paper discusses therapeutic strategies targeting macrophages, aiming to uncover novel approaches for immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yuqing Shi
- Department of Respiratory Medicine, Shenyang 10th People's Hospital, Shenyang, 110096, China
| | - Bo Yin
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
9
|
Liu J, Lu J, Wu L, Zhang T, Wu J, Li L, Tai Z, Chen Z, Zhu Q. Targeting tumor-associated macrophages: Novel insights into immunotherapy of skin cancer. J Adv Res 2024:S2090-1232(24)00026-2. [PMID: 38242529 DOI: 10.1016/j.jare.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ling Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
10
|
Zheng Q, Wang T, Jiang G, Li M, Zhang Z, Chen Y, Tian X. Immunoglobulin superfamily 6 is a molecule involved in the anti-tumor activity of macrophages in lung adenocarcinoma. BMC Cancer 2023; 23:1170. [PMID: 38037023 PMCID: PMC10688083 DOI: 10.1186/s12885-023-11681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Immunoglobulin superfamily 6 (IGSF6) is a novel member of the immunoglobulin superfamily and has been implicated in various diseases. However, the specific role of IGSF6 in the anti-tumor immunity within lung adenocarcinoma (LUAD) remains unclear. METHODS We analyzed the IGSF6 expression in LUAD using data from TCGA, and we performed qRT-PCR and western blotting to validate these findings using tissue samples obtained from LUAD patients. Images of IHC staining were obtained from HPA. To assess the clinical relevance of IGSF6 expression, we utilized UALCAN and SPSS to analyze its association with major clinical features of LUAD. Additionally, we employed ROC curves and survival analysis to evaluate the potential diagnostic and prognostic value of IGSF6 in LUAD. To gain insights into the functional implications of IGSF6, we performed enrichment analysis using the R software clusterProfiler package. Moreover, we utilized TIMER2.0 and TISIDB to investigate the relationship between IGSF6 and immune infiltrates in LUAD. The proportion of tumor-infiltrating immune cells in LUAD was assessed using FCM, and their correlation with IGSF6 expression in tumor tissues was analyzed. The localization of IGSF6 protein on macrophages was confirmed using the HPA and FCM. To determine the regulatory role of IGSF6 on macrophage activity in LUAD, we employed ELISA, FCM, and tumor-bearing models. RESULTS We discovered that both IGSF6 mRNA and protein levels were significantly decreased in LUAD. Additionally, we observed a negative correlation between IGSF6 expression and TNM stages as well as pathologic stages in LUAD. Notably, IGSF6 exhibited high sensitivity and specificity in diagnosing LUAD, and was positively associated with the survival rate of LUAD patients. Furthermore, IGSF6 expression was closely linked to gene sets involved in immune response. IGSF6 expression showed a positive correlation with immune infiltrates exhibiting anti-tumor activity, particularly M1 macrophages. We confirmed the predominant localization of the IGSF6 protein on the membrane of M1 macrophages. Importantly, the knockdown of IGSF6 resulted in a reduction in the anti-tumor activity of M1 macrophages, thereby promoting tumor progression. CONCLUSION IGSF6 is a molecule that is essential for the anti-tumor activity of macrophages in LUAD.
Collapse
Affiliation(s)
- Qisi Zheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ting Wang
- Department of Laboratory Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Gechen Jiang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Miao Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhi Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Xinyu Tian
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
11
|
Chen H, Ma R, Zhou B, Yang X, Duan F, Wang G. Integrated immunological analysis of single-cell and bulky tissue transcriptomes reveals the role of interactions between M0 macrophages and naïve CD4 + T cells in the immunosuppressive microenvironment of cervical cancer. Comput Biol Med 2023; 163:107151. [PMID: 37348264 DOI: 10.1016/j.compbiomed.2023.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
In recent decades, the incidence and mortality of cervical cancer have declined in developed countries due to the implementation of screening and vaccination programs. However, cervical cancer remains one of the major culprits of cancer-related deaths in young women. Current studies have found that immune cell-related intercellular communication in the tumor microenvironment has a large impact on the construction of the immunosuppressive microenvironment. In this study, we performed a comprehensive immune analysis on bulk RNA-seq and scRNA-seq data obtained from cervical cancer and revealed that two highly plastic cell populations, M0 macrophages and naïve CD4+ T cells, were significantly correlated with prognosis and clinical phenotypes. Notably, signaling between M0 macrophages and naïve CD4+ T cells as well as intracellular transcription factor activity were significantly altered in the tumor state. Furthermore, we identified overlapping genes between the transcription factor target genes of M0 macrophages or naïve CD4+ T cells and the differentially expressed genes in each type of cell, and these overlapping genes were subsequently subjected to an analysis using the LASSO regression model. Finally, we generated a score index that was significantly associated with the clinical prognosis of cervical cancer. In conclusion, interventions to improve the communication between M0 macrophages and naïve CD4+ T cells may help to improve the immunosuppressive microenvironment of cervical cancer and prevent immune evasion. The relevant molecular mechanisms need to be further validated by experimental and cohort studies.
Collapse
Affiliation(s)
- Huaqiu Chen
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan Province, 671000, China; Department of Laboratory, Xichang People's Hospital, Sichuan, 615000, China
| | - Rong Ma
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan Province, 671000, China; Department of Laboratory, The First People's Hospital of Qujing, Yunnan Province, 655000, China
| | - Bingjie Zhou
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan Province, 671000, China; Maternity and Obstetrics Department of Fangshan District Maternity and Child Health Hospital of Beijing, Fangshan District of Beijing, 102488, China
| | - Xitong Yang
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan Province, 671000, China
| | - Fuhui Duan
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan Province, 671000, China
| | - Guangming Wang
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan Province, 671000, China.
| |
Collapse
|
12
|
Chen S, Han P, Zhang Q, Liu P, Liu J, Zhao L, Guo L, Li J. Lactobacillus brevis alleviates the progress of hepatocellular carcinoma and type 2 diabetes in mice model via interplay of gut microflora, bile acid and NOTCH 1 signaling. Front Immunol 2023; 14:1179014. [PMID: 37234174 PMCID: PMC10206262 DOI: 10.3389/fimmu.2023.1179014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Type 2 diabetes (T2DM) clinically exhibits a higher incidence of hepatocellular carcinoma (HCC), contributing to a lousy prognosis in patients harboring both diseases. Microflora-based therapy draws attention with low side effects. Accumulating evidence shows that Lactobacillus brevis can improve blood glucose and body weight of the T2DM mice model and reduce several cancer incidences. However, the therapeutic effect of Lactobacillus brevis in affecting the prognosis of T2DM+HCC remains unknown. In this study, we aim to explore this question via an established T2DM+HCC mice model. We observed a significant alleviation after the probiotic intervention. Lactobacillus brevis improves blood glucose and insulin resistance and ameliorates Mechanically. Combined with a multi-omics approach including 16SrDNA, GC-MS, and RNA-seq, we identified distinct intestinal microflora composition and metabolites after Lactobacillus brevis intervention. Furthermore, we found that Lactobacillus brevis delayed disease progression by regulating MMP9 and NOTCH 1 signaling pathways, potentially through gut microflora and BA interaction. This study indicates that Lactobacillus brevis may improve the prognosis of T2DM + HCC, providing novel therapeutic opportunities via targeting intestinal flora for patients with T2DM+HCC.
Collapse
Affiliation(s)
- Shujia Chen
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Ping Han
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Qian Zhang
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Peiyan Liu
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Liu
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Lili Zhao
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Lianyi Guo
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jia Li
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| |
Collapse
|
13
|
Li W, Zhang B, Cao W, Zhang W, Li T, Liu L, Xu L, Gao F, Wang Y, Wang F, Xing H, Jiang Z, Shi J, Bian Z, Song Y. Identification of potential resistance mechanisms and therapeutic targets for the relapse of BCMA CAR-T therapy in relapsed/refractory multiple myeloma through single-cell sequencing. Exp Hematol Oncol 2023; 12:44. [PMID: 37158921 PMCID: PMC10165782 DOI: 10.1186/s40164-023-00402-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND BCMA CAR-T is highly effective for relapsed/refractory multiple myeloma(R/R-MM) and significantly improves the survival of patients. However, the short remission time and high relapse rate of MM patients treated with BCMA CAR-T remain bottlenecks that limit long-term survival. The immune microenvironment of the bone marrow (BM) in R/R-MM may be responsible for this. The present study aims to present an in-depth analysis of resistant mechanisms and to explore potential novel therapeutic targets for relapse of BCMA CAR-T treatment via single-cell RNA sequencing (scRNA-seq) of BM plasma cells and immune cells. METHODS This study used 10X Genomic scRNA-seq to identify cell populations in R/R-MM CD45+ BM cells before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. Cell Ranger pipeline and CellChat were used to perform detailed analysis. RESULTS We compared the heterogeneity of CD45+ BM cells before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. We found that the proportion of monocytes/macrophages increased, while the percentage of T cells decreased at relapse after BCMA CAR-T treatment. We then reclustered and analyzed the alterations in plasma cells, T cells, NK cells, DCs, neutrophils, and monocytes/macrophages in the BM microenvironment before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. We show here that the percentage of BCMA positive plasma cells increased at relapse after BCMA CAR-T cell therapy. Other targets such as CD38, CD24, SLAMF7, CD138, and GPRC5D were also found to be expressed in plasma cells of the R/R-MM patient at relapse after BCMA CAR-T cell therapy. Furthermore, exhausted T cells, TIGIT+NK cells, interferon-responsive DCs, and interferon-responsive neutrophils, increased in the R/R-MM patient at relapse after BCMA CAR-T cell treatment. Significantly, the proportion of IL1βhi Mφ, S100A9hi Mφ, interferon-responsive Mφ, CD16hi Mφ, MARCO hi Mφ, and S100A11hi Mφ significantly increased in the R/R-MM patient at relapse after BCMA CAR-T cell therapy. Cell-cell communication analysis indicated that monocytes/macrophages, especially the MIF and APRIL signaling pathway are key players in R/R-MM patient at relapse after BCMA CAR-T cell therapy. CONCLUSION Taken together, our data extend the understanding of intrinsic and extrinsic relapse of BCMA CAR-T treatment in R/R-MM patient and the potential mechanisms involved in the alterations of antigens and the induced immunosuppressive microenvironment, which may provide a basis for the optimization of BCMA CAR-T strategies. Further studies should be performed to confirm these findings.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Binglei Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Wenli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lina Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - LinPing Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Yanmei Wang
- Department of Hematology, Zhengzhou People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Jianxiang Shi
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
14
|
Peng C, Ye H, li Z, Duan X, Yang W, Yi Z. Multi-omics characterization of a scoring system to quantify hypoxia patterns in patients with head and neck squamous cell carcinoma. J Transl Med 2023; 21:15. [PMID: 36627705 PMCID: PMC9830846 DOI: 10.1186/s12967-022-03869-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The 5-year survival rate of patients with head and neck squamous cell carcinoma (HNSCC) remains < 50%. Hypoxia patterns are a hallmark of HNSCC that are associated with its occurrence and progression. However, the precise role of hypoxia during HNSCC, such as the relationship between hypoxia, tumor immune landscape and cell communication orchestration remains largely unknown. The current study integrated data from bulk and single-cell RNA sequencing analyses to define the relationship between hypoxia and HNSCC. METHODS A scoring system named the hypoxia score (HS) was constructed based on hypoxia-related genes (HRGs) expression. The predictive value of HS response for patient outcomes and different treatments was evaluated. Single-cell datasets and cell communication were utilized to rule out cell populations which hypoxia targeted on. RESULTS The survival outcomes, immune/Estimate scores, responses to targeted inhibitors, and chemotherapeutic, and immunotherapy responses were distinct between a high HS group and a low HS group (all P < 0.05). Single-cell datasets showed different distributions of HS in immune cell populations (P < 0.05). Furthermore, HLA-DPA1/CD4 axis was identified as a unique interaction between CD4 + T Conv and pDC cells. CONCLUSIONS Altogether, the quantification for hypoxia patterns is a potential biomarker for prognosis, individualized chemotherapeutic and immunotherapy strategies. The portrait of cell communication characteristics over the HNSCC ecosystem enhances the understanding of hypoxia patterns in HNSCC.
Collapse
Affiliation(s)
- Cong Peng
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Huiping Ye
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhengyang li
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xiaofeng Duan
- grid.459540.90000 0004 1791 4503Department of Oral and Maxillofacial Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Wen Yang
- grid.452244.1Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhuguang Yi
- grid.459540.90000 0004 1791 4503Department of Otolaryngology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|