1
|
Ma Y, Du S, Wang S, Liu X, Cong L, Shen W, Ye K. Circ_0004674 regulation of glycolysis and proliferation mechanism of osteosarcoma through miR-140-3p/TCF4 pathway. J Biochem Mol Toxicol 2024; 38:e23846. [PMID: 39243204 DOI: 10.1002/jbt.23846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
As a subclass of noncoding RNAs, circular RNA play an important role in tumour development. The aim of this study was to investigate the role of circ_0004674 in osteosarcoma glycolysis and the molecular mechanism of its regulation. We examined the expression of circ_0004674, miR-140-3p, TCF4 and glycolysis-related proteins (including HK2, PKM2, GLUT1 and LDHA) in osteosarcoma cells and tissues by quantitative reverse transcription-polymerase chain reaction and immunoblotting (Western blot analysis). The role of circ_0004674, miR-140-3p and TCF4 in the proliferation, apoptosis, migration and invasion of OS cells was examined using CCK8 assay, Apoptosis assay, Wound healing assay, Transwell migration and Matrigel invasion assay. The interaction of circ_0004674/miR-140-3p and miR-1543/TCF4 was also analysed using a dual luciferase reporter assay. Finally, the glycolytic process was assessed by glucose uptake assays and lactate production measurements. The results showed that the expression of circ_0004674 and TCF4 was significantly higher in MG63 and U2OS cells compared to hFOB1.19 cells, while the expression of miR-140-3p was downregulated. Silencing of circ_0004674 gene significantly inhibited the proliferation, migration and invasion of cancer cells and promoted apoptosis of cancer cells. Experiments such as dual luciferase reporter analysis showed that circ_0004674 regulates the expression of glycolysis-related proteins through the miR-140-3p/TCF4 pathway, and inhibition of this gene attenuated the depletion of glucose content and the production of lactate in cancer cells. Furthermore, inhibition of miR-140-3p or overexpression of TCF could reverse the phenotypic changes in cancer cells induced by circ_0004674 silencing. In summary, this study elucidated the specific function and potential mechanisms of circ_0004674 in osteosarcoma glycolysis. The findings demonstrate that miR-140-3p and TCF4 function respectively as a tumor suppressor gene and an oncogene in osteosarcoma. Notably, they influence glycolysis and associated pathways, regulating osteosarcoma proliferation. Therefore, circ_0004674 promotes osteosarcoma glycolysis and proliferation through the miR-140-3p/TCF4 pathway, enhancing the malignant behaviour of tumours, and it is expected to be a potential molecular target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Shaowen Du
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Shengdong Wang
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiang Liu
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Liming Cong
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Wenxiang Shen
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Kaishan Ye
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Yang Y, Xie T, Gao P, Han W, Liu Y, Wang Y. Hsa_Circ_002144 Promotes Glycolysis and Immune Escape of Breast Cancer Through miR-326/PKM Axis. Cancer Biother Radiopharm 2024. [PMID: 38963787 DOI: 10.1089/cbr.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Background: Breast cancer is a leading cause of cancer-related deaths in women worldwide, posing a significant threat to female health. Therefore, it is crucial to search for new therapeutic targets and prognostic biomarkers for breast cancer patients. Method: Bioinformatics analysis, quantitative real-time PCR (qRT-PCR), and fluorescence in situ hybridization (FISH) were employed to investigate the expression of hsa_circ_002144 in breast cancer. Transwell assay, Western blotting, and cell viability assay were utilized to assess the impact of hsa_circ_002144 on the proliferation, migration, and invasion of breast cancer cells. Additionally, a mouse model was established to validate its functionality. Flow cytometry, WB analysis, enzyme-linked immunosorbent assay (ELISA), qRT-PCR, exosomes isolation, and co-culture system were employed to elucidate the molecular mechanism underlying macrophage polarization. Result: we have discovered for the first time that hsa_circ_002144 is highly expressed in breast cancer. It affected tumor growth and metastasis and could influence macrophage polarization through the glycolytic pathway. Conclusion: This finding provides a new direction for breast cancer treatment and prognosis assessment.
Collapse
Affiliation(s)
- Yong Yang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang City, China
| | - Tianhao Xie
- General Surgery, The Affiliated Hospital of Hebei University, Baoding City, China
| | - Peng Gao
- Anesthesiology department, Affiliated hospital of Qingdao university, Qingdao City, China
| | - Weijun Han
- Third Surgery, Baoji traditional Chinese Medicine Hospital in Shaanxi Province, Baoji City, China
| | - Yuhong Liu
- Rheumatology and Immunology Department, The Affiliated Hospital of Yan 'an University, Yan 'an City, China
| | - Yanmei Wang
- School of Nursing and Health, Medical College of Yan 'an University, Yan 'an City, China
| |
Collapse
|
3
|
Zhao L, Huang J, Liu W, Su X, Zhao B, Wang X, He X. Long non-coding RNA RAD51-AS1 promotes the tumorigenesis of ovarian cancer by elevating EIF5A2 expression. J Cancer Res Clin Oncol 2024; 150:179. [PMID: 38584230 PMCID: PMC10999386 DOI: 10.1007/s00432-024-05671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE The present study aims to determine the molecular mechanism mediated by RAD51 antisense RNA 1 (RAD51-AS1) in ovarian cancer (OvCA). METHODS The data associated with RAD51-AS1 in OvCA were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Relative expression of RAD51-AS1 was detected. Determination of cell proliferation, metastasis, and invasion was performed by cell counting, colony formation, would-healing, and transwell invasion assays. Protein levels were detected by western blotting. The molecular mechanism mediated by RAD51-AS1 was predicted by bioinformatics analysis and verified by dual-luciferase reporter assays. Subcutaneous tumorigenesis models were used to confirm the function of RAD51-AS1 in vivo. RESULTS Data from TCGA and GEO showed that RAD51-AS1 was associated with poor prognosis in OvCA patients and DNA repair, cell cycle, focal adhesion, and apoptosis in SKOV3.ip cells. High levels of RAD51-AS1 were detected in OvCA cells. Overexpressing RAD51-AS1 enhanced the proliferative, invading, and migratory capabilities of OvCA cells in vitro while silencing RAD51-AS1 exhibited the opposite effects. Mechanically, RAD51-AS1 elevated eukaryotic initiation factor 5A2 (EIF5A2) expression as a sponge for microRNA (miR)-140-3p. Finally, the role of RAD51-AS1 was verified by subcutaneous tumorigenesis models. CONCLUSION RAD51-AS1 promoted OvCA progression by the regulation of the miR-140-3p/EIF5A2 axis, which illustrated the potential therapeutic target for OvCA.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jia Huang
- Reproductive Health Department, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Wenting Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiaoyan Su
- Pathology Department, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bei Zhao
- Traditional Chinese Medicine Department, Duchang County People's Hospital, Jiujiang, Jiangxi, China
| | - Xianggang Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiaoju He
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Hansen CE, Springstubbe D, Müller S, Petkovic S. Directed Circularization of a Short RNA. Methods Mol Biol 2024; 2765:209-226. [PMID: 38381342 DOI: 10.1007/978-1-0716-3678-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Basic research and functional analyses of circular RNA (circRNA) have been limited by challenges in circRNA formation of desired length and sequence in adequate yields. Nowadays, circular RNA can be obtained using enzymatic, "ribozymatic," or modulated splice events. However, there are few records for the directed circularization of RNA. Here, we present a proof of principle for an affordable and efficient RNA-based system for the controlled synthesis of circRNA with a physiological 3',5'-phosphodiester conjunction. The engineered hairpin ribozyme variant circular ribozyme 3 (CRZ-3) performs self-cleavage poorly. We designed an activator-polyamine complex to complete cleavage as a prerequisite for subsequent circularization. The developed protocol allows synthesizing circRNA without external enzymatic assistance and adds a controllable way of circularization to the existing methods.
Collapse
Affiliation(s)
| | | | - Sabine Müller
- University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Sonja Petkovic
- University Hospital Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
5
|
Han M, Zhang M, Qi M, Zhou Y, Li F, Fang S. Regulatory mechanism and promising clinical application of exosomal circular RNA in gastric cancer. Front Oncol 2023; 13:1236679. [PMID: 38094607 PMCID: PMC10718620 DOI: 10.3389/fonc.2023.1236679] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide and the leading cause of cancer-related deaths. Exosomes are nanoscale extracellular vesicles secreted by a variety of cells and play an important role in cellular communication and epigenetics by transporting bioactive substances in the tumor microenvironment (TME). Circular RNA (circRNA) is a type of non-coding RNA (ncRNA) with a specific structure, which is widely enriched in exosomes and is involved in various pathophysiological processes mediated by exosomes. Exosomal circRNAs play a critical role in the development of GC by regulating epithelial-mesenchymal transition (EMT), angiogenesis, proliferation, invasion, migration, and metastasis of GC. Given the biological characteristics of exosomal circRNAs, they have more significant diagnostic sensitivity and specificity in the clinic and may become biomarkers for GC diagnosis and prognosis. In this review, we briefly describe the biogenesis of exosomes and circRNAs and their biological functions, comprehensively summarize the mechanisms of exosomal circRNAs in the development of GC and chemotherapy resistance, and finally, we discuss the potential clinical application value and challenges of exosomal circRNAs in GC.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengquan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Fan W, Zhang Y, Wang D, Wang C, Yang J. The impact of Yiwei decoction on the LncRNA and CircRNA regulatory networks in premature ovarian insufficiency. Heliyon 2023; 9:e20022. [PMID: 37809621 PMCID: PMC10559751 DOI: 10.1016/j.heliyon.2023.e20022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/19/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Premature ovarian insufficiency(POI)is a female reproductive aging illness. Yiwei decoction(YWD) is a traditional treatment for Yangming nourishment. YWD can treat premature ovarian insufficiency, but the exact molecular mechanism is unknown. As a result, the differential expression of Long noncoding RNAs (LncRNAs) and Circular RNAs(CircRNAs) in the ovary of POI rats after YWD treatment was investigated in this paper, and the CeRNA regulatory network was built. The model was created using cyclophosphamide. The model group + YWD was in Group A, the model control group was in Group B, and the regular control group was in Group C. In this study, 177 differential expression Long noncoding RNAs(DELncRNAs) and 190 differential expression Circular RNAs (DECircRNAs) were discovered between A and B (P<0.05,|LogFC|>1). Following the analysis, 27 DELncRNAs and 96 DECircRNAs (P-adjusted<0.05,|LogFC|>1) were discovered. At the same time, we built the CeRNA network using differentially expressed mRNAs and microRNAs (miRNAs) expression between groups A and B. The DELncRNAs were used to construct a lncRNA-miRNA-mRNA ceRNA network with 27 LncRNAs, 4 miRNAs, and 19 mRNAs. The DECircRNAs were utilized to establish a CircRNA-miRNA-mRNA ceRNA network that was made up of 15 CircRNAs, 4 miRNAs, and 20 mRNA. The highly correlated regulatory networks were the LncMSTRG.22691.3/miR-3102/ANGPT4 and Circ10_34698898_34699378/miR-33-5p/TTC22. Circ20_12035276_12036793、Circ20_30693935_30696337、Circ4_157723097_157723378 and Circ4_157923266_157923904 occurred concurrently in AvsB, BvsC, and AvsC. MiRDB predicted eight target miRNAs for these CircRNAs. The miRanda(score = 140,energy = -1) binding energy calculation revealed that seven miRNAs were well combined with three CircRNA base complementary pairs. This implies that 3 DECircRNAs could serve as spongy bodies for these miRNAs. Network pharmacological analysis showed that ten active components in YWD may regulate the expression of LncRNAs and CircRNAs, such as Stigmasterol, Uridine, Ophiopogonanone A, Gamma-Aminobutyric Acid, and others. In conclusion, this study combined transcriptomics and network pharmacological analysis to identify differentially expressed lncRNAs as well as CircRNAs in ovaries of YWD-treated POI rats, thereby constructing ceRNA networks implicated in POI. This would contribute to clarifying the pathways by which Chinese herbal compounds regulate gene expression in POI.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Yingjie Zhang
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Dandan Wang
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Chen Wang
- School of Traditional Chinese Medicine, Shandong University of Chinese Medicine, Jinan, 250013, China
| | - Jie Yang
- School of Physical Education and Health, Shandong Sport University, Jinan, 250013, China
| |
Collapse
|
7
|
Yi Q, Yue J, Liu Y, Shi H, Sun W, Feng J, Sun W. Recent advances of exosomal circRNAs in cancer and their potential clinical applications. J Transl Med 2023; 21:516. [PMID: 37525158 PMCID: PMC10388565 DOI: 10.1186/s12967-023-04348-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed, uninterrupted loop. The expression of circRNA differs among cell types and tissues, and various circRNAs are aberrantly expressed in a variety of diseases, including cancer. Aberrantly expressed circRNAs contribute to disease progression by acting as microRNA sponges, functional protein sponges, or novel templates for protein translation. Recent studies have shown that circRNAs are enriched in exosomes. Exosomes are spherical bilayer vesicles released by cells into extracellular spaces that mediate intercellular communication by delivering cargoes. These cargoes include metabolites, proteins, lipids, and RNA molecules. Exosome-mediated cell-cell or cell-microenvironment communications influence the progression of carcinogenesis by regulating cell proliferation, angiogenesis, metastasis as well as immune escape. In this review, we summarize the current knowledge about exosomal circRNAs in cancers and discuss their specific functions in tumorigenesis. Additionally, we discuss the potential value of exosomal circRNAs as diagnostic biomarkers and the potential applications of exosomal circRNA-based cancer therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Jiaji Yue
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Yang Liu
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Houyin Shi
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weichao Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|