1
|
Liu J, Chang Y, Ou Q, Chen L, Yan H, Guo D, Wang C, Zhang S. Advances in research on the relationship between mitochondrial function and colorectal cancer: a bibliometric study from 2013 to 2023. Front Immunol 2024; 15:1480596. [PMID: 39611141 PMCID: PMC11602704 DOI: 10.3389/fimmu.2024.1480596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
The study provides a thorough examination of literature from 2013 to 2023, delving into the intricate relationship between mitochondrial function and colorectal cancer (CRC). It offers a concise overview of the current landscape and emerging trends in this rapidly evolving research area. The findings indicate a consistent rise in annual publications, reflecting growing interest and significant potential in the field. China emerges as the leading contributor, followed by the United States and India. However, despite China's dominance in output, its average citation rate is lower than that of the US, which leads in citations per publication, highlighting a noticeable disparity. In the realm of research institutions, Shanghai Jiao Tong University and China Medical University are identified as major contributors, yet the potential for inter-institutional collaboration remains largely untapped, suggesting avenues for future synergy. Internationally, China-US collaborations are particularly robust, fostering cross-border knowledge exchange. Hyun Jin Won and Li Wei are recognized as prolific authors, while Ahmedin Jemal is an influential co-cited scholar, noted for his seminal contributions. Keyword analysis reveals research focus areas, such as the complex CRC tumor microenvironment, molecular mechanisms of oxidative stress, and key multidrug resistance pathways. It also highlights the promising potential of mitochondria-targeted therapies and nanomolecular technologies in clinical practice, signaling their growing significance in addressing complex health challenges. The study underscores the imperative to validate complex mitochondrial mechanisms and signaling pathways in CRC, with a particular emphasis on translating these insights into drug targets for clinical trials. Advancing this research is expected to refine and enhance CRC treatment strategies. Additionally, it highlights the urgency of validating mitochondrial complexities in CRC, advocating for collaborative efforts to link these mechanisms with tailored therapeutic interventions for clinical testing. This integrated approach promises significant advancements in developing effective, targeted CRC treatments, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jinhui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Linzi Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haixia Yan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duanyang Guo
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Chongjie Wang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sifang Zhang
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Zhou S, Wang K, Yuan Q, Liu L, Miao J, Wang H, Ding C, Guan W. The role of sarcopenia in pre- and postoperative inflammation: implications of outcomes in patients with colorectal cancer. J Gastrointest Surg 2024; 28:1791-1798. [PMID: 39154707 DOI: 10.1016/j.gassur.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Patients with colorectal cancer (CRC) with sarcopenia often have a poor prognosis, and the timing of preoperative intervention to improve sarcopenia is unclear. Sarcopenia can affect the body's overall inflammatory status. This study aimed to investigate whether sarcopenia exacerbates the inflammatory response in patients with CRC after surgical stimulation and its effect on the prognosis. METHODS A retrospective analysis was conducted on a cohort of 215 patients with CRC who were categorized into either the sarcopenia group or the nonsarcopenia group based on their skeletal muscle index values. Inflammation-related indicators were collected from patients before and after surgery, allowing for the calculation of the differences in preoperative and postoperative changes. In addition, the correlation between inflammatory markers and postoperative complications was assessed. All patients were followed up for a period ranging from 2 to 5 years, with an average follow-up duration of 3 years, during which their recurrence and mortality rates were recorded. In addition, the relationship between inflammation indicators was explored. RESULTS Of note, 45 of 215 patients with sarcopenia had higher levels of preoperative baseline inflammation markers, such as C-reactive protein (P = .002), immune-inflammation index (IBI; P < .001), systemic inflammatory response index (SIRI; P = .009), and systemic immune-inflammation index (SII; P = .002) than patients without sarcopenia. There was a significant difference in inflammatory indicators before and after surgery between dIBI, dSIRI, and dSII, with the largest effect observed. In addition, the predictive capabilities of dIBI, dSIRI, and dSII for postoperative complications, as measured using the area under the receiver operating characteristic curve, were found to be 0.938, 0.877, and 0.818, respectively. Furthermore, survival analysis indicated that the differences in preoperative and postoperative alterations in IBI (dIBI), SIRI (dSIRI), and SII (dSII) were effective in predicting long-term postoperative mortality. CONCLUSION Our findings suggest that sarcopenia plays a significant role in exacerbating postoperative inflammatory response in patients with CRC, leading to an increased risk of postoperative complications and influencing long-term survival outcomes.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kai Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qinggang Yuan
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Leemasawat K, Osataphan N, Apaijai N, Yanpiset P, Phrommintikul A, Somwangprasert A, Chattipakorn SC, Chattipakorn N. Changes in Mitochondrial Function and Cell Death Patterns in Peripheral Blood Mononuclear Cells during Trastuzumab Treatment Following Doxorubicin Chemotherapy. Biomedicines 2024; 12:1970. [PMID: 39335484 PMCID: PMC11429371 DOI: 10.3390/biomedicines12091970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Trastuzumab, a monoclonal antibody which works against human epidermal growth factor receptor 2 (HER2), possibly causes cardiotoxicity through mitochondrial dysfunction. The usefulness of isolated peripheral blood mononuclear cells (PBMCs) in the assessment of trastuzumab-induced cardiotoxicity remains uncertain. This study aimed to determine the temporal changes in mitochondrial function, oxidative stress, and cell death in the isolated PBMCs of HER2-positive breast cancer patients during breast cancer treatment and to compare the changes with HER2-negative breast cancer patients who did not receive trastuzumab therapy. Eighteen newly diagnosed HER2-positive breast cancer women who received sequential doxorubicin and trastuzumab were consecutively recruited. Age- and gender-matched controls with HER2-negative breast cancer were selected. Echocardiography was carried out, and blood samples for the study of cardiac biomarkers and PBMCs were collected periodically during treatment. Only one patient in our cohort developed asymptomatic left ventricular dysfunction during trastuzumab treatment. However, trastuzumab following doxorubicin aggravated subclinical cardiac injury, determined by cardiac troponin and echocardiography. Cellular and mitochondrial oxidative stress in isolated PBMCs remained unchanged throughout breast cancer treatment. Regarding mitochondrial respiration, the maximal respiration and spare respiration capacity was significantly increased in controls after doxorubicin treatment but not in patients who received trastuzumab therapy. Moreover, the percentage of apoptosis and necroptosis in isolated PBMCs was dramatically decreased in the control, compared to patients with trastuzumab treatment. In conclusion, trastuzumab caused subtle myocardial injury and impaired mitochondrial respiration and cell viability in isolated PBMCs.
Collapse
Affiliation(s)
- Krit Leemasawat
- Cardiology Division, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nichanan Osataphan
- Cardiology Division, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panat Yanpiset
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arintaya Phrommintikul
- Cardiology Division, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Areewan Somwangprasert
- Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Khan I, Kamal A, Akhtar S. Diabetes Driven Oncogenesis and Anticancer Potential of Repurposed Antidiabetic Drug: A Systemic Review. Cell Biochem Biophys 2024; 82:1907-1929. [PMID: 38954353 DOI: 10.1007/s12013-024-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Diabetes and cancer are two prevalent disorders, pose significant public health challenges and contribute substantially to global mortality rates, with solely 10 million reported cancer-related deaths in 2020. This review explores the pathological association between diabetes and diverse cancer progressions, examining molecular mechanisms and potential therapeutic intersections. From altered metabolic landscapes to dysregulated signaling pathways, the intricate links are delineated, offering a comprehensive understanding of diabetes as a modulator of tumorigenesis. Cancer cells develop drug resistance through mechanisms like enhanced drug efflux, genetic mutations, and altered drug metabolism, allowing them to survive despite chemotherapeutic agent. Glucose emerges as a pivotal player in diabetes progression, and serving as a crucial energy source for cancer cells, supporting their biosynthetic needs and adaptation to diverse microenvironments. Glycation, a non-enzymatic process that produces advanced glycation end products (AGEs), has been linked to the etiology of cancer and has been shown in a number of tumor forms, such as leiomyosarcomas, adenocarcinomas, and squamous cell carcinomas. Furthermore, in aggressive and metastatic breast cancer, the receptor for AGEs (RAGE) is increased, which may increase the malignancy of the tumor. Reprogramming glucose metabolism manifests as hallmark cancer features, including accelerated cell proliferation, angiogenesis, metastasis, and evasion of apoptosis. This manuscript encapsulates the dual narrative of diabetes as a driver of cancer progression and the potential of repurposed antidiabetic drugs as formidable countermeasures. The amalgamation of mechanistic understanding and clinical trial outcomes establishes a robust foundation for further translational research and therapeutic advancements in the dynamic intersection of diabetes and cancer.
Collapse
Affiliation(s)
- Iqra Khan
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Aisha Kamal
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India.
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| |
Collapse
|
5
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
6
|
Muchtaridi M, Az-Zahra F, Wongso H, Setyawati LU, Novitasari D, Ikram EHK. Molecular Mechanism of Natural Food Antioxidants to Regulate ROS in Treating Cancer: A Review. Antioxidants (Basel) 2024; 13:207. [PMID: 38397805 PMCID: PMC10885946 DOI: 10.3390/antiox13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is the second-highest mortality rate disease worldwide, and it has been estimated that cancer will increase by up to 20 million cases yearly by 2030. There are various options of treatment for cancer, including surgery, radiotherapy, and chemotherapy. All of these options have damaging adverse effects that can reduce the patient's quality of life. Cancer itself arises from a series of mutations in normal cells that generate the ability to divide uncontrollably. This cell mutation can happen as a result of DNA damage induced by the high concentration of ROS in normal cells. High levels of reactive oxygen species (ROS) can cause oxidative stress, which can initiate cancer cell proliferation. On the other hand, the cytotoxic effect from elevated ROS levels can be utilized as anticancer therapy. Some bioactive compounds from natural foods such as fruit, vegetables, herbs, honey, and many more have been identified as a promising source of natural antioxidants that can prevent oxidative stress by regulating the level of ROS in the body. In this review, we have highlighted and discussed the benefits of various natural antioxidant compounds from natural foods that can regulate reactive oxygen species through various pathways.
Collapse
Affiliation(s)
- Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
| | - Farhah Az-Zahra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
| | - Hendris Wongso
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Jl. Puspiptek, Kota Tangerang 15314, Indonesia
| | - Luthfi Utami Setyawati
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
| | - Dhania Novitasari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
| | - Emmy Hainida Khairul Ikram
- Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia;
| |
Collapse
|
7
|
Yang W, Lv Y, Ma T, Wang N, Chen P, Liu Q, Yan H. Exploring the association between inflammatory biomarkers and gastric cancer development: A two-sample mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e36458. [PMID: 38306562 PMCID: PMC10843383 DOI: 10.1097/md.0000000000036458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 02/04/2024] Open
Abstract
This study aimed to elucidate the potential causative links between inflammatory biomarkers and gastric cancer risk via a two-sample Mendelian randomization approach. Leveraging genome-wide association study (GWAS) data, we conducted a two-sample Mendelian randomization analysis. Instrumental variable selection for inflammatory markers - namely, tissue factor, monocyte chemotactic protein-1, E-selectin, interleukin 6 receptor, and fatty acid-binding protein 4 - was informed by SNP data from the IEU database. Strongly associated SNPs served as instrumental variables. We applied a suite of statistical methods, including Inverse Variance Weighted (IVW), Weighted Median Estimator (WME), MR-Egger, and mode-based estimates, to compute the odds ratios (ORs) that articulate the impact of these markers on gastric cancer susceptibility. The IVW method revealed that the interleukin 6 receptor was inversely correlated with gastric cancer progression (OR = 0.86, 95% CI = 0.74-0.99, P = .03), whereas fatty acid-binding protein 4 was found to elevate the risk (OR = 1.21, 95% CI = 1.05-1.39, P = .03). Instrumental variables comprised 5, 4, 7, 2, and 3 SNPs respectively. Convergent findings from WME, MR-Egger, and mode-based analyses corroborated these associations. Sensitivity checks, including heterogeneity, horizontal pleiotropy assessments, and leave-one-out diagnostics, affirmed the robustness and reliability of our instruments across diverse gastric malignancy tissues without substantial bias. Our research suggests that the interleukin 6 receptor potentially mitigates, while fatty acid-binding protein 4 may contribute to the pathogenesis of gastric cancer (GC). Unraveling the intricate biological interplay between inflammation and oncogenesis offers valuable insights for preemptive strategies and therapeutic interventions in gastric malignancy management.
Collapse
Affiliation(s)
- Wenjing Yang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ye Lv
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Ma
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ningju Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ping Chen
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Quanxia Liu
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui Yan
- General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Charoenkwan K, Apaijai N, Sriwichaiin S, Chattipakorn N, Chattipakorn SC. Alterations in mitochondria isolated from peripheral blood mononuclear cells and tumors of patients with epithelial ovarian cancers. Sci Rep 2024; 14:15. [PMID: 38168673 PMCID: PMC10762226 DOI: 10.1038/s41598-023-51009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Metabolic alterations play an essential role in ovarian carcinogenesis. The flexibility of mitochondrial functions facilitates cellular adaptation to the tough environment associated with carcinogenesis. An understanding of the differences in mitochondrial functions in normal ovaries and cancers could provide a basis for further exploration of future mitochondria-based screening, diagnosis, prognostic prediction, and targeted therapy for epithelial ovarian cancers. The main objective of this study was to assess mitochondrial function profiles measured from PBMCs and ovarian tissues of epithelial ovarian cancers in comparison with normal ovaries. A total of 36 patients were recruited for the study, all of whom underwent primary surgical treatment for malignant epithelial ovarian neoplasm. Of these, 20 patients were in the early stage and 16 patients were in the advanced stage. Additionally, 21 patients who had pelvic surgery for benign gynecologic conditions, with normal ovaries incidentally removed, were recruited as controls. At the time of surgery, a blood sample was collected from each participant for PBMC isolation, and ovarian tissue was retained for molecular studies. These studies included the examination of oxidative stress, mitochondrial mass, mitochondrial respiration, mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP) changes, and mitochondrial swelling. Clinical and histopathological data were also collected and compared between different stages of epithelial ovarian cancers: early-stage (group 1), advanced-stage (group 2), and normal ovaries (group 3). The levels of cellular oxidative stress, mitochondrial mass, and mitochondrial biogenesis in the peripheral blood mononuclear cells (PBMCs) of participants with ovarian cancer were significantly lower than those of the control group. However, the mitochondrial respiratory parameters measured from the PBMCs were similar across all three groups. Furthermore, mitochondrial membrane depolarization and mitochondrial swelling were observed in ovarian tissues of both early-stage and advanced-stage cancer groups. We demonstrated the dynamic nature of mitochondrial ROS production, biogenesis, and respiratory function in response to epithelial ovarian carcinogenesis. The flexibility of mitochondrial functions under diverse conditions may make it a challenging therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Kittipat Charoenkwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirawit Sriwichaiin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Balló A, Czétány P, Busznyákné KS, Márk L, Mike N, Török A, Szántó Á, Máté G. Oxido-Reduction Potential as a Method to Determine Oxidative Stress in Semen Samples. Int J Mol Sci 2023; 24:11981. [PMID: 37569357 PMCID: PMC10418886 DOI: 10.3390/ijms241511981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
There are different estimates for the incidence of infertility. Its occurrence may vary from area to area, but on average, it affects 15% of couples and 10-12% of men worldwide. Many aspects of infertility can be linked to reactive oxygen species (ROS) and the process of oxidative stress (OS). The association between poor semen quality and OS is well known. Unfortunately, there is no accepted protocol for the diagnosis and treatment of OS in andrology. Oxido-reduction potential (ORP) measurement is a new method for determining the ratio between oxidant and antioxidant molecules. Currently, ORP measurement is one of the fastest and most user-friendly methods of andrological OS determination and our goals were to confirm published correlations between ORP values and sperm parameters, examine how sperm concentration influences these results, and investigate whether intracellular ROS formations are also manifested in the ORP values or not after artificial ROS induction. Intracellular ROS formations were induced by menadione (superoxide anion inducer), hydrogen peroxide, and tert-butyl hydroperoxide (lipid peroxidation inducer) treatments; sperm parameters like motility and viability were determined with an SCA Scope system, and ORP changes were recorded by the Mioxsys system. Significant correlations were noticed among the ORP, spermatozoa concentration, motility, progressive motility, and viability. Nevertheless, only the ORP value after normalization with the sperm count correlated with these parameters. Due to normalization, very low and very high sperm concentrations can give misleading results. The means of the non-normalized ORP values were almost the same. All of the applied treatments resulted in decreases in the viability, motility, and progressive motility, and interestingly, altered ORP levels were detected. In addition, it was determined that seminal plasma had a significant protective effect on spermatozoa. The elimination of seminal plasma caused higher sensitivity of spermatozoa against used OS inducers, and higher ORP levels and decreased viabilities and motilities were measured. The ORP level could be a good indicator of male OS; however, in cases of low and high sperm counts, its result can be misleading. Overall, the conclusion can be drawn that ORP determination is a suitable method for detecting intracellular ROS accumulation, but it has limitations that still need to be clarified.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Péter Czétány
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | | | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Nóra Mike
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| |
Collapse
|