1
|
Liu JP, Yao XC, Shi M, Xu ZY, Wu Y, Shi XJ, Li M, Du XR. Impact of myosteatosis on prognosis in multiple myeloma patients: A subgroup analysis of 182 cases and development of a nomogram. J Bone Oncol 2025; 51:100670. [PMID: 40162121 PMCID: PMC11952022 DOI: 10.1016/j.jbo.2025.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 04/02/2025] Open
Abstract
Background This study aims to explore the prognostic value of myosteatosis in multiple myeloma (MM) and to analyze the factors influencing myosteatosis. Methods A retrospective analysis was conducted on 182 patients treated for MM at our institution from 2009 to 2020 who underwent MRI examinations. The fatty infiltration rate (FIR) of the erector spinae and multifidus muscles at the L3 level was measured to assess the degree of myosteatosis. Patients were grouped based on fracture presence and median FIR, and group differences were compared, with P < 0.05 considered statistically significant. Survival and fractures were used as prognostic indicators, and regression analysis was performed to determine the impact of FIR on these outcomes in MM patients. The factors influencing FIR were analyzed, and the relationship between myosteatosis and MM prognosis was further analyzed within its sensitive subgroups. Finally, a nomogram based on FIR was established and validated. Results Significant differences were observed between the fracture and non-fracture groups in lactate dehydrogenase, serum phosphorus, visual analogue scale, oswestry disability index and FIR (P < 0.05). When patients were grouped based on the median FIR (28.89 %), there were significant differences in age, sex, body mass index (BMI), red blood cell (RBC) count, hemoglobin, hematocrit, albumin, visual analogue scale, oswestry disability index, and fracture incidence (P < 0.05). Univariate COX regression analysis indicated that myosteatosis had no significant impact on survival prognosis in MM patients (HR = 0.999, P = 0.852), with a log-rank test P value of 0.11 when grouped by the cut-off FIR value of 33.67 %. Multivariate logistic regression indicated that FIR is an independent predictor of fractures (OR = 1.054, P = 0.000). Multivariate linear regression revealed that age, sex, RBC count, and BMI are independent factors influencing FIR (P < 0.05). When not grouped, FIR's prediction of fractures showed no significant interaction with age, sex, RBC count, or BMI (P for interaction > 0.05). In subgroups with BMI ≥ 25 kg/m2 or RBC count > 3.68 × 10^12/L, FIR lost its predictive significance for fractures. The FIR nomogram model had a C-index of 0.777, and the calibration curve, decision curve analysis, and clinical impact curve all validated its effectiveness. Conclusions Myosteatosis characterized by FIR is not a reliable predictor of survival in MM patients but is effective in predicting fractures and is closely related to back pain and functional impairment. FIR is significantly associated with age, sex, RBC count, and BMI.
Collapse
Affiliation(s)
- Jun-Peng Liu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xing-Chen Yao
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ming Shi
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zi-Yu Xu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yue Wu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiang-Jun Shi
- Department of Rheumatology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100020, China
| | - Meng Li
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin-Ru Du
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
2
|
Soureas K, Malandrakis P, Papadimitriou MA, Minopoulos C, Ntanasis-Stathopoulos I, Liacos CI, Gavriatopoulou M, Kastritis E, Dimopoulos MA, Scorilas A, Avgeris M, Terpos E. Refining precision prognostics in multiple myeloma: loss of miR-221/222 cluster in CD138+ plasma cells results in short-term progression and worse treatment outcome. Blood Cancer J 2025; 15:41. [PMID: 40089465 PMCID: PMC11910569 DOI: 10.1038/s41408-025-01248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
The persistence of high relapse rates and therapy resistance continues to challenge the effective management of multiple myeloma (MM). The identification of novel MM-specific molecular markers could ameliorate risk-stratification tools and accurately identify high-risk patients towards personalized prognosis and therapy. miRNA-seq analysis of CD138+ plasma cells (n = 24) unveiled miR-221-3p and miR-222-3p (miR-221/222 cluster) as the most downregulated miRNAs in R-ISS III compared to R-ISS I/II patients. Subsequently, miR-221/222 levels were quantified by RT-qPCR in CD138+ plasma cells of our screening cohort (n = 141), assessing patients' mortality and disease progression as clinical endpoints. Internal validation was performed by bootstrap analysis, while clinical benefit was estimated by decision curve analysis. Kryukov et al. (n = 149) and Aass et al. (n = 86) served as institutional-independent validation cohorts. Loss of miR-221/222 cluster was strongly associated with patients' short-term progression and poor overall survival, which was confirmed by Kryukov et al. and Aass et al. validation cohorts. Intriguingly, miR-221/222-fitted multivariate models offered superior risk-stratification within R-ISS staging and risk-based cytogenetics. Moreover, miR-221/222 loss could effectively discriminate optimal 1st-line treatment responders with inferior treatment outcome. Our study identified the loss of miR-221/222 cluster as a powerful independent predictor of patients' post-treatment progression, ameliorating prognosis and supporting precision medicine in MM.
Collapse
Affiliation(s)
- Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Minopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece.
| |
Collapse
|
3
|
Růžičková T, Vlachová M, Pečinka L, Brychtová M, Večeřa M, Radová L, Ševčíková S, Jarošová M, Havel J, Pour L, Ševčíková S. Detection of early relapse in multiple myeloma patients. Cell Div 2025; 20:4. [PMID: 39881385 PMCID: PMC11776158 DOI: 10.1186/s13008-025-00143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times. It is currently not possible to predict when relapse will occur; numerous studies investigating the dysregulation of non-coding RNA molecules in cancer suggest that microRNAs could be good markers of relapse. RESULTS Using small RNA sequencing, we profiled microRNA expression in peripheral blood in three groups of MM patients who relapsed at different intervals. In total, 24 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed changed levels of miR-598-3p in MM patients with different times to relapse. At the same time, differences in the mass spectra between groups were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry. All results were analyzed by machine learning. CONCLUSION Mass spectrometry coupled with machine learning shows potential as a reliable, rapid, and cost-effective preliminary screening technique to supplement current diagnostics.
Collapse
Affiliation(s)
- Tereza Růžičková
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Monika Vlachová
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukáš Pečinka
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Monika Brychtová
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Večeřa
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Radová
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Simona Ševčíková
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie Jarošová
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Luděk Pour
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Sabina Ševčíková
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
4
|
Foutadakis S, Soureas K, Roupakia E, Besta S, Avgeris M, Kolettas E. Identification of Oncogene-Induced Senescence-Associated MicroRNAs. Methods Mol Biol 2025; 2906:189-213. [PMID: 40082357 DOI: 10.1007/978-1-0716-4426-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cellular senescence, a state of permanent cell cycle arrest, recapitulates the aging process at the cellular level. It can be triggered by intrinsic or extrinsic factors including telomere shortening (replicative senescence) and in response to various types of stresses such as oncogenic stress (oncogene-induced senescence, OIS). Senescence has been detected in vitro and in premalignant lesions in mice and humans expressing mutant oncogenes. MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression at the posttranscriptional level, and have been involved in both replicative senescence and OIS. Several methods have been used to identify miRNAs and compare their expression in normal versus oncogene-induced senescent cells, as well as to analyze their role and their targets in senescence. Here, we describe several methods that can be employed to identify miRNAs in cells undergoing OIS, including miRNA-sequencing, RT-qPCR-based detection and quantification of miRNAs and Nanostring miRNA analysis (nCounter miRNA Expression Assay). Moreover, we perform a meta-analysis of studies employing the above methodologies, pinpoint miRNAs with consistent expression changes across senescence models, and predict their target genes and the pathways in which they partake.
Collapse
Affiliation(s)
- Spyros Foutadakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Hellenic Institute for the Study of Sepsis, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, and Institute of Biosciences, Centre for Research and Innovation, University of Ioannina, Ioannina, Greece
- Molecular Cancer Biology & Senescence Group, Biomedical Research Institute, Foundation for Research and Technology, Ioannina, Greece
| | - Simoni Besta
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, and Institute of Biosciences, Centre for Research and Innovation, University of Ioannina, Ioannina, Greece
- Molecular Cancer Biology & Senescence Group, Biomedical Research Institute, Foundation for Research and Technology, Ioannina, Greece
- International Oncology Institute, The first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, and Institute of Biosciences, Centre for Research and Innovation, University of Ioannina, Ioannina, Greece.
- Molecular Cancer Biology & Senescence Group, Biomedical Research Institute, Foundation for Research and Technology, Ioannina, Greece.
| |
Collapse
|
5
|
Soureas K, Papadimitriou MA, Malandrakis P, Papanota AM, Adamopoulos PG, Ntanasis-Stathopoulos I, Liacos CI, Gavriatopoulou M, Sideris DC, Kastritis E, Dimopoulos MA, Scorilas A, Terpos E, Avgeris M. Small RNA-seq and clinical evaluation of tRNA-derived fragments in multiple myeloma: Loss of mitochondrial i-tRF HisGTG results in patients' poor treatment outcome. Br J Haematol 2024; 204:1790-1800. [PMID: 38414235 DOI: 10.1111/bjh.19332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
Despite the substantial progress in multiple myeloma (MM) therapy nowadays, treatment resistance and disease relapse remain major clinical hindrances. Herein, we have investigated tRNA-derived fragment (tRF) profiles in MM and precursor stages (smoldering MM/sMM; monoclonal gammopathy of undetermined significance/MGUS), aiming to unveil potential MM-related tRFs in ameliorating MM prognosis and risk stratification. Small RNA-seq was performed to profile tRFs in bone marrow CD138+ plasma cells, revealing the significant deregulation of the mitochondrial internal tRFHisGTG (mt-i-tRFHisGTG) in MM versus sMM/MGUS. The screening cohort of the study consisted of 147 MM patients, and mt-i-tRFHisGTG levels were quantified by RT-qPCR. Disease progression was assessed as clinical end-point for survival analysis, while internal validation was performed by bootstrap and decision curve analyses. Screening cohort analysis highlighted the potent association of reduced mt-i-tRFHisGTG levels with patients' bone disease (p = 0.010), osteolysis (p = 0.023) and with significantly higher risk for short-term disease progression following first-line chemotherapy, independently of patients' clinical data (HR = 1.954; p = 0.036). Additionally, mt-i-tRFHisGTG-fitted multivariate models led to superior risk stratification of MM patients' treatment outcome and prognosis compared to disease-established markers. Notably, our study highlighted mt-i-tRFHisGTG loss as a powerful independent indicator of post-treatment progression of MM patients, leading to superior risk stratification of patients' treatment outcome.
Collapse
Affiliation(s)
- Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Aristea-Maria Papanota
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
6
|
Dubaj M, Bigosiński K, Dembowska A, Mlak R, Szudy-Szczyrek A, Małecka-Massalska T, Homa-Mlak I. Role of Non-Coding RNAs in Diagnosis, Prediction and Prognosis of Multiple Myeloma. Cancers (Basel) 2024; 16:1033. [PMID: 38473390 DOI: 10.3390/cancers16051033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy in the world and accounts for 15% of primary hemocytopathies, with an ever-increasing number of new cases. It is asymptomatic in 30% of instances; hence, the determination of highly sensitive and specific markers is necessary to make a proper diagnosis. In the last 20 years, miRNAs, involved in regulating the expression of genes responsible for cell proliferation and differentiation, including tumor cells, have been identified as potential diagnostic and prognostic markers. The main aim of the following review was to outline the role of miRNAs in the diagnosis and prognosis of MM, considering their role in the pathogenesis of the disease and identifying their target genes and pathways. For this purpose, publications dating from 2013-2023 have been reviewed. Based on the available data, it is concluded that non-coding RNAs including miRNAs could be potential markers in MM. Furthermore, they may serve as therapeutic targets for certain drugs.
Collapse
Affiliation(s)
- Maciej Dubaj
- Student Scientific Group, Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland
| | - Karol Bigosiński
- Student Scientific Group, Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland
| | - Aleksandra Dembowska
- Student Scientific Group, Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, Doktora Witolda Chodźki 1 Str., 20-093 Lublin, Poland
| | - Aneta Szudy-Szczyrek
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| | | | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland
| |
Collapse
|