1
|
Watson A, Queen R, Ferrández-Peral L, Dorgau B, Collin J, Nelson A, Hussain R, Coxhead J, McCorkindale M, Atkinson R, Zerti D, Chichagova V, Conesa A, Armstrong L, Cremers FPM, Lako M. Unravelling genotype-phenotype correlations in Stargardt disease using patient-derived retinal organoids. Cell Death Dis 2025; 16:108. [PMID: 39971915 PMCID: PMC11840025 DOI: 10.1038/s41419-025-07420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/18/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Stargardt disease is an inherited retinopathy affecting approximately 1:8000 individuals. It is characterised by biallelic variants in ABCA4 which encodes a vital protein for the recycling of retinaldehydes in the retina. Despite its prevalence and impact, there are currently no treatments available for this condition. Furthermore, 35% of STGD1 cases remain genetically unsolved. To investigate the cellular and molecular characteristics associated with STGD1, we generated iPSCs from two monoallelic unresolved (PT1 & PT2), late-onset STGD1 cases with the heterozygous complex allele - c.[5461-10 T > C;5603 A > T]. Both patient iPSCs and those from a biallelic affected control (AC) carrying -c.4892 T > C and c.4539+2001G > A, were differentiated to retinal organoids, which developed all key retinal neurons and photoreceptors with outer segments positive for ABCA4 expression. We observed patient-specific disruption to lamination with OPN1MW/LW+ cone photoreceptor retention in the retinal organoid centre during differentiation. Photoreceptor retention was more severe in the AC case affecting both cones and rods, suggesting a genotype/phenotype correlation. scRNA-Seq suggests retention may be due to the induction of stress-related pathways in photoreceptors. Whole genome sequencing successfully identified the missing alleles in both cases; PT1 reported c.-5603A > T in homozygous state and PT2 uncovered a rare hypomorph - c.-4685T > C. Furthermore, retinal organoids were able to recapitulate the retina-specific splicing defect in PT1 as shown by long-read RNA-seq data. Collectively, these results highlight the suitability of retinal organoids in STGD1 modelling. Their ability to display genotype-phenotype correlations enhances their utility as a platform for therapeutic development.
Collapse
Affiliation(s)
- Avril Watson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcells Biotech Ltd., Newcastle upon Tyne, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Ferrández-Peral
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Nelson
- NU-OMICs, Northumbria University, Newcastle Upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, Università degli Studi dell'Aquila, L'Aquila, Italy
| | | | - Ana Conesa
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcells Biotech Ltd., Newcastle upon Tyne, UK
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Leckie J, Zia A, Yokota T. An Updated Analysis of Exon-Skipping Applicability for Duchenne Muscular Dystrophy Using the UMD-DMD Database. Genes (Basel) 2024; 15:1489. [PMID: 39596689 PMCID: PMC11593839 DOI: 10.3390/genes15111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antisense oligonucleotide (ASO)-mediated exon-skipping is an effective approach to restore the disrupted reading frame of the dystrophin gene for the treatment of Duchenne muscular dystrophy (DMD). Currently, four FDA-approved ASOs can target three different exons, but these therapies are mutation-specific and only benefit a subset of patients. Understanding the broad applicability of exon-skipping approaches is essential for prioritizing the development of additional therapies with the greatest potential impact on the DMD population. This review offers an updated analysis of all theoretical exon-skipping strategies and their applicability across the patient population, with a specific focus on DMD-associated mutations documented in the UMD-DMD database. Unlike previous studies, this approach leverages the inclusion of phenotypic data for each mutation, providing a more comprehensive and clinically relevant perspective. METHODS The theoretical applicability of all single and double exon-skipping strategies, along with multi exon-skipping strategies targeting exons 3-9 and 45-55, was evaluated for all DMD mutations reported in the UMD-DMD database. RESULTS Single and double exon-skipping approaches were applicable for 92.8% of large deletions, 93.7% of small lesions, 72.4% of duplications, and 90.3% of all mutations analyzed. Exon 51 was the most relevant target and was applicable for 10.6% of all mutations and 17.2% of large deletions. Additionally, two multi-exon-skipping approaches, targeting exons 45-55 and 3-9, were relevant for 70.6% of large deletions and 19.2% of small lesions. CONCLUSIONS Current FDA-approved ASOs were applicable to 27% of the UMD-DMD population analyzed, leaving a significant portion of patients without access to exon-skipping therapies. The clinical translation of alternative approaches is critical to expanding the accessibility of these therapies for the DMD population.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
| | - Abdullah Zia
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Vázquez-Domínguez I, Anido AA, Duijkers L, Hoppenbrouwers T, Hoogendoorn AM, Koster C, Collin RJ, Garanto A. Efficacy, biodistribution and safety comparison of chemically modified antisense oligonucleotides in the retina. Nucleic Acids Res 2024; 52:10447-10463. [PMID: 39119918 PMCID: PMC11417397 DOI: 10.1093/nar/gkae686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Antisense oligonucleotides (AONs) are a versatile tool for treating inherited retinal diseases. However, little is known about how different chemical modifications of AONs can affect their biodistribution, toxicity, and uptake in the retina. Here, we addressed this question by comparing splice-switching AONs with three different chemical modifications commonly used in a clinical setting (2'O-methyl-phosphorothioate (2-OMe/PS), 2'O-methoxyethyl-phosphoriate (2-MOE/PS), and phosphorodiamidite morpholino oligomers (PMO)). These AONs targeted genes exclusively expressed in certain types of retinal cells. Overall, studies in vitro and in vivo in C57BL/6J wild-type mouse retinas showed that 2-OMe/PS and 2-MOE/PS AONs have comparable efficacy and safety profiles. In contrast, octa-guanidine-dendrimer-conjugated in vivo PMO-oligonucleotides (ivPMO) caused toxicity. This was evidenced by externally visible ocular phenotypes in 88.5% of all ivPMO-treated animals, accompanied by severe alterations at the morphological level. However, delivery of unmodified PMO-AONs did not cause any toxicity, although it clearly reduced the efficacy. We conducted the first systematic comparison of different chemical modifications of AONs in the retina. Our results showed that the same AON sequence with different chemical modifications displayed different splicing modulation efficacies, suggesting the 2'MOE/PS modification as the most efficacious in these conditions. Thereby, our work provides important insights for future clinical applications.
Collapse
Affiliation(s)
| | - Alejandro Allo Anido
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Lonneke Duijkers
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Tamara Hoppenbrouwers
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Anita D M Hoogendoorn
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen, The Netherlands
| | - Céline Koster
- Departments of Human Genetics and Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob W J Collin
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Scortecci JF, Garces FA, Mahto JK, Molday LL, Van Petegem F, Molday RS. Structural and functional characterization of the nucleotide-binding domains of ABCA4 and their role in Stargardt disease. J Biol Chem 2024; 300:107666. [PMID: 39128720 PMCID: PMC11405800 DOI: 10.1016/j.jbc.2024.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
ABCA4 is an ATP-binding cassette (ABC) transporter that prevents the buildup of toxic retinoid compounds by facilitating the transport of N-retinylidene-phosphatidylethanolamine across membranes of rod and cone photoreceptor cells. Over 1500 missense mutations in ABCA4, many in the nucleotide-binding domains (NBDs), have been genetically linked to Stargardt disease. Here, we show by cryo-EM that ABCA4 is converted from an open outward conformation to a closed conformation upon the binding of adenylyl-imidodiphosphate. Structural information and biochemical studies were used to further define the role of the NBDs in the functional properties of ABCA4 and the mechanisms by which mutations lead to the loss in activity. We show that ATPase activity in both NBDs is required for the functional activity of ABCA4. Mutations in Walker A asparagine residues cause a severe reduction in substrate-activated ATPase activity due to the loss in polar interactions with residues within the D-loops of the opposing NBD. The structural basis for how disease mutations in other NBD residues, including the R1108C, R2077W, R2107H, and L2027F, affect the structure and function of ABCA4 is described. Collectively, our studies provide insight into the structure and function of ABCA4 and mechanisms underlying Stargardt disease.
Collapse
Affiliation(s)
- Jessica Fernandes Scortecci
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jai K Mahto
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Corradi Z, Dhaenens CM, Grunewald O, Kocabaş IS, Meunier I, Banfi S, Karali M, Cremers FPM, Hitti-Malin RJ. Novel and Recurrent Copy Number Variants in ABCA4-Associated Retinopathy. Int J Mol Sci 2024; 25:5940. [PMID: 38892127 PMCID: PMC11173210 DOI: 10.3390/ijms25115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
ABCA4 is the most frequently mutated gene leading to inherited retinal disease (IRD) with over 2200 pathogenic variants reported to date. Of these, ~1% are copy number variants (CNVs) involving the deletion or duplication of genomic regions, typically >50 nucleotides in length. An in-depth assessment of the current literature based on the public database LOVD, regarding the presence of known CNVs and structural variants in ABCA4, and additional sequencing analysis of ABCA4 using single-molecule Molecular Inversion Probes (smMIPs) for 148 probands highlighted recurrent and novel CNVs associated with ABCA4-associated retinopathies. An analysis of the coverage depth in the sequencing data led to the identification of eleven deletions (six novel and five recurrent), three duplications (one novel and two recurrent) and one complex CNV. Of particular interest was the identification of a complex defect, i.e., a 15.3 kb duplicated segment encompassing exon 31 through intron 41 that was inserted at the junction of a downstream 2.7 kb deletion encompassing intron 44 through intron 47. In addition, we identified a 7.0 kb tandem duplication of intron 1 in three cases. The identification of CNVs in ABCA4 can provide patients and their families with a genetic diagnosis whilst expanding our understanding of the complexity of diseases caused by ABCA4 variants.
Collapse
Affiliation(s)
- Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Université de Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Olivier Grunewald
- Université de Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Ipek Selen Kocabaş
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Isabelle Meunier
- Institute des Neurosciences de Montpellier, INSERM, Université de Montpellier, F-34295 Montpellier, France
| | - Sandro Banfi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Marianthi Karali
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Naples, Italy
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 81031 Naples, Italy
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rebekkah J. Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
6
|
Kaltak M, de Bruijn P, van Leeuwen W, Platenburg G, Cremers FPM, Collin RWJ, Swildens J. QR-1011 restores defective ABCA4 splicing caused by multiple severe ABCA4 variants underlying Stargardt disease. Sci Rep 2024; 14:684. [PMID: 38182646 PMCID: PMC10770117 DOI: 10.1038/s41598-024-51203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Stargardt disease type 1 (STGD1), the most common form of hereditary macular dystrophy, can be caused by biallelic combinations of over 2200 variants in the ABCA4 gene. This leads to reduced or absent ABCA4 protein activity, resulting in toxic metabolite accumulation in the retina and damage of the retinal pigment epithelium and photoreceptors. Approximately 21% of all ABCA4 variants that contribute to disease influence ABCA4 pre-mRNA splicing. This emphasizes the need for therapies to restore disrupted ABCA4 splicing and halt STGD1 progression. Previously, QR-1011, an antisense oligonucleotide (AON), successfully corrected splicing abnormalities and restored normal ABCA4 protein translation in human retinal organoids carrying the prevalent disease-causing variant c.5461-10T>C in ABCA4. Here, we investigated whether QR-1011 could also correct splicing in four less common non-canonical splice site (NCSS) variants flanking ABCA4 exon 39: c.5461-8T>G, c.5461-6T>C, c.5584+5G>A and c.5584+6T>C. We administered QR-1011 and three other AONs to midigene-transfected cells and demonstrate that QR-1011 had the most pronounced effect on splicing compared to the others. Moreover, QR-1011 significantly increased full-length ABCA4 transcript levels for c.5461-8T>G and c.5584+6T>C. Splicing restoration could not be achieved in the other two variants, suggesting their more severe effect on splicing. Overall, QR-1011, initially developed for a single ABCA4 variant, exhibited potent splice correction capabilities for two additional severe NCSS variants nearby. This suggests the possibility of a broader therapeutic impact of QR-1011 extending beyond its original target and highlights the potential for treating a larger population of STGD1 patients affected by multiple severe ABCA4 variants with a single AON.
Collapse
Affiliation(s)
- Melita Kaltak
- R&D Department, ProQR Therapeutics, Zernikedreef 9, 2333 CK, Leiden, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Petra de Bruijn
- R&D Department, ProQR Therapeutics, Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - Willemijn van Leeuwen
- R&D Department, ProQR Therapeutics, Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - Gerard Platenburg
- R&D Department, ProQR Therapeutics, Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Jim Swildens
- R&D Department, ProQR Therapeutics, Zernikedreef 9, 2333 CK, Leiden, The Netherlands.
| |
Collapse
|