1
|
Xie X, Xi X, Zhao D, Zhao Y, Yi T, Chen D, Liu R, Qi L, Pan Z, Wang H, Zhang H, Ding R, Du H. Advancing pathogen and tumor copy number variation detection through simultaneous metagenomic next-generation sequencing: A comprehensive review. Heliyon 2024; 10:e38826. [PMID: 39568836 PMCID: PMC11577201 DOI: 10.1016/j.heliyon.2024.e38826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 11/22/2024] Open
Abstract
In clinical practice, timely and accurate diagnosis can effectively reduce unnecessary treatment, avoid high medical costs, and prevent adverse prognoses. However, some patients with malignant tumors and those with infection often exhibit similar symptoms, which are difficult to distinguish, posing challenges in accurate clinical diagnosis. Metagenomic next-generation sequencing (mNGS) technology has been widely applied to confirm the source of infection. Recent studies have shown that for pathogen detection, mNGS technology can be used to perform chromosomal copy number variations (CNVs) analysis in two different analytical pipelines using the same wet test. mNGS technology has further demonstrated its utility in not only the determination of pathogenic microorganisms but also of CNVs, thereby facilitating early differential diagnosis for malignant tumors. In this review, we aim to analyze the diagnostic performance of mNGS technology in the simultaneous detection of pathogenic microorganisms and CNVs in current clinical practice and discuss the advantages and limitations of mNGS-CNV dual-omics detection technology. Our review highlights the need for more large-scale prospective research data on current mNGS-CNV dual-omics detection technology to provide more evidence-based results for researchers and clinicians and to promote the greater role of this technology in future clinical practice.
Collapse
Affiliation(s)
- Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, China
| | - Xiaotong Xi
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dan Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Yingyue Zhao
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tiantian Yi
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Dongsheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Rui Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Lin Qi
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Zhen Pan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Hongqiu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Ran Ding
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| |
Collapse
|
2
|
Zeng Y, Ma Q, Chen J, Kong X, Chen Z, Liu H, Liu L, Qian Y, Wang X, Lu S. Single-cell sequencing: Current applications in various tuberculosis specimen types. Cell Prolif 2024; 57:e13698. [PMID: 38956399 PMCID: PMC11533074 DOI: 10.1111/cpr.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (M.tb) and responsible for millions of deaths worldwide each year. It has a complex pathogenesis that primarily affects the lungs but can also impact systemic organs. In recent years, single-cell sequencing technology has been utilized to characterize the composition and proportion of immune cell subpopulations associated with the pathogenesis of TB disease since it has a high resolution that surpasses conventional techniques. This paper reviews the current use of single-cell sequencing technologies in TB research and their application in analysing specimens from various sources of TB, primarily peripheral blood and lung specimens. The focus is on how these technologies can reveal dynamic changes in immune cell subpopulations, genes and proteins during disease progression after M.tb infection. Based on the current findings, single-cell sequencing has significant potential clinical value in the field of TB research. Next, we will focus on the real-world applications of the potential targets identified through single-cell sequencing for diagnostics, therapeutics and the development of effective vaccines.
Collapse
Affiliation(s)
- Yuqin Zeng
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Quan Ma
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Jinyun Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xingxing Kong
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Zhanpeng Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Huazhen Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Lanlan Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Yan Qian
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xiaomin Wang
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| |
Collapse
|
3
|
Chan KKP, Lee YCG. Tuberculous pleuritis: clinical presentations and diagnostic challenges. Curr Opin Pulm Med 2024; 30:210-216. [PMID: 38323466 PMCID: PMC10990028 DOI: 10.1097/mcp.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW Tuberculous pleuritis (TBP) is one of the most common types of extrapulmonary tuberculosis. We highlight the latest epidemiology of TBP, the heterogeneity of its presentation and the performance of different diagnostic strategies. RECENT FINDINGS There are differential trends in the incidences of TBP worldwide. Its incidence increased in China but decreased in the United States in the past decade. The presentation of TBP is heterogeneous regarding clinical symptoms, radiological findings and pleural fluid analysis results. Conventional microbiological tests have low sensitivities to diagnose TBP. Recent research focused on various diagnostic tools with better yield. The sensitivity of nucleic acid amplification tests (NAAT) in pleural fluid, including the latest generation of PCR and sequencing-based techniques for detecting tuberculosis, remains suboptimal. Various pleural fluid biomarkers have been explored, but there is a lack of consensus on their clinical utility and cutoff levels. SUMMARY The heterogeneity of clinical presentation poses obstacles to diagnosing TBP. Further development of diagnostic tools, including more robust NAAT and biomarkers with additional validation, is needed before incorporation into routine clinical practice.
Collapse
Affiliation(s)
- Ken Ka Pang Chan
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Yun Chor Gary Lee
- Institute for Respiratory Health and Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|