1
|
Pathak A, Willis KG, Bankaitis VA, McDermott MI. Mammalian START-like phosphatidylinositol transfer proteins - Physiological perspectives and roles in cancer biology. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159529. [PMID: 38945251 PMCID: PMC11533902 DOI: 10.1016/j.bbalip.2024.159529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
PtdIns and its phosphorylated derivatives, the phosphoinositides, are the biochemical components of a major pathway of intracellular signaling in all eukaryotic cells. These lipids are few in terms of cohort of unique positional isomers, and are quantitatively minor species of the bulk cellular lipidome. Nevertheless, phosphoinositides regulate an impressively diverse set of biological processes. It is from that perspective that perturbations in phosphoinositide-dependent signaling pathways are increasingly being recognized as causal foundations of many human diseases - including cancer. Although phosphatidylinositol transfer proteins (PITPs) are not enzymes, these proteins are physiologically significant regulators of phosphoinositide signaling. As such, PITPs are conserved throughout the eukaryotic kingdom. Their biological importance notwithstanding, PITPs remain understudied. Herein, we review current information regarding PITP biology primarily focusing on how derangements in PITP function disrupt key signaling/developmental pathways and are associated with a growing list of pathologies in mammals.
Collapse
Affiliation(s)
- Adrija Pathak
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Katelyn G Willis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Chemistry, Texas A&M University, College Station, Texas 77843 USA
| | - Mark I McDermott
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
2
|
Liu X, Wu D, Bao C, Huang Z, Wang W, Sun L, Qiu L. Identification of fatty acid metabolism signature genes in patients with pulmonary arterial hypertension using WGCNA and machine learning. J Int Med Res 2024; 52:3000605241277740. [PMID: 39324181 PMCID: PMC11437540 DOI: 10.1177/03000605241277740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE To investigate the signature genes of fatty acid metabolism and their association with immune cells in pulmonary arterial hypertension (PAH). METHODS Fatty acid metabolism-related genes were obtained from the GeneCards database. In this retrospective study, a PAH-related dataset was downloaded from the Gene Expression Omnibus database and analyzed to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) and machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) and random forest, were used to identify the signature genes. Diagnostic efficiency was assessed by receiver operating characteristic (ROC) curve analysis and a nomogram. Immune cell infiltration was subsequently classified using CIBERSORT. RESULTS In total, 817 DEGs were screened from the GSE33463 dataset. The data were clustered into six modules via WGCNA, and the MEdarkred module was significantly related to PAH. The LASSO and random forest algorithms identified five signature genes: ARV1, KCNJ2, PEX11B, PITPNC1, and SCO1. The areas under the ROC curves of these signature genes were 0.917, 0.934, 0.947, 0.963, and 0.940, respectively. CIBERSORT suggested these signature genes may participate in immune cell infiltration. CONCLUSIONS ARV1, KCNJ2, PEX11B, PITPNC1, and SCO1 show remarkable diagnostic performance in PAH and are involved in immune cell infiltration.
Collapse
Affiliation(s)
- Xibang Liu
- Department of Respiratory and Critical Care Medicine, Yuyao People's Hospital of Zhejiang Province (Affiliated Yangming Hospital), Yuyao, China
| | - Dandan Wu
- Department of Respiratory and Critical Care Medicine, Yuyao People's Hospital of Zhejiang Province (Affiliated Yangming Hospital), Yuyao, China
| | - Chunmiao Bao
- Department of Respiratory and Critical Care Medicine, Yuyao People's Hospital of Zhejiang Province (Affiliated Yangming Hospital), Yuyao, China
| | - Zeen Huang
- Department of Respiratory and Critical Care Medicine, Yuyao People's Hospital of Zhejiang Province (Affiliated Yangming Hospital), Yuyao, China
| | - Weiwei Wang
- Department of Respiratory and Critical Care Medicine, Yuyao People's Hospital of Zhejiang Province (Affiliated Yangming Hospital), Yuyao, China
| | - Lili Sun
- Department of Respiratory and Critical Care Medicine, Yuyao People's Hospital of Zhejiang Province (Affiliated Yangming Hospital), Yuyao, China
| | - Lin Qiu
- Department of Respiratory and Critical Care Medicine, Yuyao People's Hospital of Zhejiang Province (Affiliated Yangming Hospital), Yuyao, China
| |
Collapse
|
3
|
Xing F, Liu N, Wang C, Wang XD. Caffeic acid phenethyl ester promotes oxaliplatin sensitization in colon cancer by inhibiting autophagy. Sci Rep 2024; 14:14624. [PMID: 38918541 PMCID: PMC11199620 DOI: 10.1038/s41598-024-65409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Colon cancer ranks as the third most prevalent form of cancer globally, with chemotherapy remaining the primary treatment modality. To mitigate drug resistance and minimize adverse effects associated with chemotherapy, selection of appropriate adjuvants assumes paramount importance. Caffeic acid phenethyl ester (CAPE), a naturally occurring compound derived from propolis, exhibits a diverse array of biological activities. We observed that the addition of CAPE significantly augmented the drug sensitivity of colon cancer cells to oxaliplatin. In SW480 and HCT116 cells, oxaliplatin combined with 10 µM CAPE reduced the IC50 of oxaliplatin from 14.24 ± 1.03 and 84.16 ± 3.02 µM to 2.11 ± 0.15 and 3.92 ± 0.17 µM, respectively. We then used proteomics to detect differentially expressed proteins in CAPE-treated SW480 cells and found that the main proteins showing changes in expression after CAPE treatment were p62 (SQSTM1) and LC3B (MAP1LC3B). Gene ontology analysis revealed that CAPE exerted antitumor and chemotherapy-sensitization effects through the autophagy pathway. We subsequently verified the differentially expressed proteins using immunoblotting. Simultaneously, the autophagy inhibitor bafilomycin A1 and the mCherry-EGFP-LC3 reporter gene were used as controls to detect the effect of CAPE on autophagy levels. Collectively, the results indicate that CAPE may exert antitumor and chemotherapy-sensitizing effects by inhibiting autophagy, offering novel insights for the development of potential chemosensitizing agents.
Collapse
Affiliation(s)
- Fei Xing
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ning Liu
- Academic Center, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Can Wang
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Xu-Dong Wang
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
4
|
Yin W, Chen G, Li Y, Li R, Jia Z, Zhong C, Wang S, Mao X, Cai Z, Deng J, Zhong W, Pan B, Lu J. Identification of a 9-gene signature to enhance biochemical recurrence prediction in primary prostate cancer: A benchmarking study using ten machine learning methods and twelve patient cohorts. Cancer Lett 2024; 588:216739. [PMID: 38395379 DOI: 10.1016/j.canlet.2024.216739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Prostate cancer (PCa) is a prevalent malignancy among men worldwide, and biochemical recurrence (BCR) after radical prostatectomy (RP) is a critical turning point commonly used to guide the development of treatment strategies for primary PCa. However, the clinical parameters currently in use are inadequate for precise risk stratification and informing treatment choice. To address this issue, we conducted a study that collected transcriptomic data and clinical information from 1662 primary PCa patients across 12 multicenter cohorts globally. We leveraged 101 algorithm combinations that consisted of 10 machine learning methods to develop and validate a 9-gene signature, named BCR SCR, for predicting the risk of BCR after RP. Our results demonstrated that BCR SCR generally outperformed 102 published prognostic signatures. We further established the clinical significance of these nine genes in PCa progression at the protein level through immunohistochemistry on Tissue Microarray (TMA). Moreover, our data showed that patients with higher BCR SCR tended to have higher rates of BCR and distant metastasis after radical radiotherapy. Through drug target prediction analysis, we identified nine potential therapeutic agents for patients with high BCR SCR. In conclusion, the newly developed BCR SCR has significant translational potential in accurately stratifying the risk of patients who undergo RP, monitoring treatment courses, and developing new therapies for the disease.
Collapse
Affiliation(s)
- Wenjun Yin
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China; Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yutong Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Ruidong Li
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA, 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Shuo Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macau, China.
| | - Bin Pan
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| |
Collapse
|