1
|
Migayron L, Bordes S, Closs B, Seneschal J, Boniface K. Type-2 immunity associated with type-1 related skin inflammatory diseases: friend or foe? Front Immunol 2024; 15:1405215. [PMID: 38868763 PMCID: PMC11167106 DOI: 10.3389/fimmu.2024.1405215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic inflammatory skin diseases are multifactorial diseases that combine genetic predisposition, environmental triggers, and metabolic disturbances associated with abnormal immune responses. From an immunological perspective, the better understanding of their physiopathology has demonstrated a large complex network of immune cell subsets and related cytokines that interact with both epidermal and dermal cells. For example, in type-1-associated diseases such as alopecia areata, vitiligo, and localized scleroderma, recent evidence suggests the presence of a type-2 inflammation that is well known in atopic dermatitis. Whether this type-2 immune response has a protective or detrimental impact on the development and chronicity of these diseases remains to be fully elucidated, highlighting the need to better understand its involvement for the management of patients. This mini-review explores recent insights regarding the potential role of type-2-related immunity in alopecia areata, vitiligo, and localized scleroderma.
Collapse
Affiliation(s)
- Laure Migayron
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
- R&D Department, SILAB, Brive-la-Gaillarde, France
| | | | | | - Julien Seneschal
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
- CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR 5164, Bordeaux, France
| | - Katia Boniface
- Univ. Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
2
|
Doeblin P, Steinbeis F, Witzenrath M, Hashemi D, Chen W, Weiss KJ, Stawowy P, Kelle S. Half-Dose versus Single-Dose Gadobutrol for Extracellular Volume Measurements in Cardiac Magnetic Resonance. J Cardiovasc Dev Dis 2023; 10:316. [PMID: 37623329 PMCID: PMC10455162 DOI: 10.3390/jcdd10080316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Cardiac magnetic resonance (CMR) imaging with gadolinium-based contrast agents offers unique non-invasive insights into cardiac tissue composition. Myocardial extracellular volume (ECV) has evolved as an objective and robust parameter with broad diagnostic and prognostic implications. For the gadolinium compound gadobutrol, the recommended dose for cardiac imaging, including ECV measurements, is 0.1 mmol/kg (single dose). This dose was optimized for late enhancement imaging, a measure of focal fibrosis. Whether a lower dose is sufficient for ECV measurements is unknown. We aim to evaluate the accuracy of ECV measurements using a half dose of 0.05 mmol/kg gadobutrol compared to the standard single dose of 0.1 mmol/kg. METHODS AND RESULTS From a contemporary trial (NCT04747366, registered 10 February 2021), a total of 25 examinations with available T1 mapping before and after 0.05 and 0.1 mmol/kg gadobutrol were analyzed. ECV values were calculated automatically from pre- and post-contrast T1 relaxation times. T1 and ECV Measurements were performed in the midventricular septum. ECV values after 0.05 and 0.1 mmol/kg gadobutrol were correlated (R2 = 0.920, p < 0.001). ECV values after 0.05 mmol/kg had a bias of +0.9% (95%-CI [0.4; 1.4], p = 0.002) compared to 0.1 mmol/kg gadobutrol, with limits of agreement from -1.5 to 3.3%. CONCLUSIONS CMR with a half dose of 0.05 mmol/kg gadobutrol overestimated ECV by 0.9% compared with a full dose of 0.1 mmol/kg, necessitating adjustment of normal values when using half-dose ECV imaging.
Collapse
Affiliation(s)
- Patrick Doeblin
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Fridolin Steinbeis
- Department of Infectious Diseases and Respiratory Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 10117 Berlin, Germany
| | - Djawid Hashemi
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Wensu Chen
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Karl Jakob Weiss
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Philipp Stawowy
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sebastian Kelle
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
3
|
McDiarmid AK, Swoboda PP, Erhayiem B, Bounford KA, Bijsterveld P, Tyndall K, Fent GJ, Garg P, Dobson LE, Musa TA, Foley JRJ, Witte KK, Kearney MT, Greenwood JP, Plein S. Myocardial Effects of Aldosterone Antagonism in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2020; 9:e011521. [PMID: 31852424 PMCID: PMC6988171 DOI: 10.1161/jaha.118.011521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022]
Abstract
Background Spironolactone may have prognostic benefit in selected patients with heart failure with preserved ejection fraction. This study assessed the myocardial tissue effects of spironolactone in heart failure with preserved ejection fraction. Methods and Results A 1:1 randomized controlled study of 6 months of spironolactone versus control in heart failure with preserved ejection fraction. The primary outcome was change in myocardial extracellular volume fraction by cardiovascular magnetic resonance as a surrogate of diffuse fibrosis. Of 55 randomized patients, 40 (20 women; age, 75.2±5.9 years) completed follow-up (19 treatment, 21 control). A significant change in extracellular volume over the study period was not seen (treatment, 28.7±3.7% versus 27.7±3.4% [P=0.14]; controls, 27.6±3.4% versus 28.3±4.4% [P=0.14]); however, the rate of extracellular volume expansion was decreased by spironolactone (-1.0±2.4% versus 0.8±2.2%). Indexed left ventricular mass decreased with treatment (104.4±26.6 versus 94.0±20.6 g/m2; P=0.001) but not in controls (101.4±29.4 versus 104.0±32.8 g/m2; P=0.111). Extracellular mass decreased by 13.8% (15.1±4.8 versus 13.0±3.4 g/m2; P=0.003), and cellular mass decreased by 8.3% (37.6±10.0 versus 34.3±7.9 g/m2; P=0.001) with spironolactone, but was static in controls. Conclusions Spironolactone did not lead to significant change in extracellular volume. However, spironolactone did decrease rate of extracellular expansion, with a decrease in the mass of both cellular and extracellular myocardial compartments. These data point to the mechanism of action of spironolactone in heart failure with preserved ejection fraction, including a direct tissue effect with a reduction in rate of myocardial fibrosis.
Collapse
Affiliation(s)
- Adam K. McDiarmid
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
- Department of CardiologyFreeman HospitalNewcastle‐upon‐TyneUnited Kingdom
| | - Peter P. Swoboda
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | - Bara Erhayiem
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | | | - Petra Bijsterveld
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | - Keith Tyndall
- Leeds Teaching Hospitals NHS TrustLeedsUnited Kingdom
| | - Graham J. Fent
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | - Pankaj Garg
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | - Laura E. Dobson
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | - Tarique A. Musa
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | - James R. J. Foley
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | - Klaus K. Witte
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | - Mark T. Kearney
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | - John P. Greenwood
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre and Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsUnited Kingdom
| |
Collapse
|
4
|
Considerations for Clinical Trials Targeting the Myocardial Interstitium. JACC Cardiovasc Imaging 2019; 12:2319-2331. [DOI: 10.1016/j.jcmg.2019.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 01/23/2023]
|
5
|
Blanken CPS, Farag ES, Boekholdt SM, Leiner T, Kluin J, Nederveen AJ, van Ooij P, Planken RN. Advanced cardiac MRI techniques for evaluation of left-sided valvular heart disease. J Magn Reson Imaging 2019; 48:318-329. [PMID: 30134000 PMCID: PMC6667896 DOI: 10.1002/jmri.26204] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
The most common types of left‐sided valvular heart disease (VHD) in the Western world are aortic valve stenosis, aortic valve regurgitation, and mitral valve regurgitation. Comprehensive clinical evaluation entails both hemodynamic analysis and structural as well as functional characterization of the left ventricle. Cardiac magnetic resonance imaging (MRI) is an established diagnostic modality for assessment of left‐sided VHD and is progressively gaining ground in modern‐day clinical practice. Detailed flow visualization and quantification of flow‐related biomarkers in VHD can be obtained using 4D flow MRI, an imaging technique capable of measuring blood flow in three orthogonal directions over time. In addition, recent MRI sequences enable myocardial tissue characterization and strain analysis. In this review we discuss the emerging potential of state‐of‐the‐art MRI including 4D flow MRI, tissue mapping, and strain quantification for the diagnosis and prognosis of left‐sided VHD. Level of Evidence: 1 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2018. J. MAGN. RESON. IMAGING 2018;48:318–329.
Collapse
Affiliation(s)
- Carmen P S Blanken
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Emile S Farag
- Department of Cardiothoracic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Tim Leiner
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
6
|
|
7
|
Abstract
Heart failure is a growing cardiovascular disease with significant epidemiological, clinical, and societal implications and represents a high unmet need. Strong efforts are currently underway by academic and industrial researchers to develop novel treatments for heart failure. Biomarkers play an important role in patient selection and monitoring in drug trials and in clinical management. The present review gives an overview of the role of available molecular, imaging, and device-derived digital biomarkers in heart failure drug development and highlights capabilities and limitations of biomarker use in this context.
Collapse
|
8
|
Scully PR, Bastarrika G, Moon JC, Treibel TA. Myocardial Extracellular Volume Quantification by Cardiovascular Magnetic Resonance and Computed Tomography. Curr Cardiol Rep 2018; 20:15. [PMID: 29511861 PMCID: PMC5840231 DOI: 10.1007/s11886-018-0961-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This review article discusses the evolution of extracellular volume (ECV) quantification using both cardiovascular magnetic resonance (CMR) and computed tomography (CT). RECENT FINDINGS Visualizing diffuse myocardial fibrosis is challenging and until recently, was restricted to the domain of the pathologist. CMR and CT both use extravascular, extracellular contrast agents, permitting ECV measurement. The evidence base around ECV quantification by CMR is growing rapidly and just starting in CT. In conditions with high ECV (amyloid, oedema and fibrosis), this technique is already being used clinically and as a surrogate endpoint. Non-invasive diffuse fibrosis quantification is also generating new biological insights into key cardiac diseases. CMR and CT can estimate ECV and in turn diffuse myocardial fibrosis, obviating the need for invasive endomyocardial biopsy. CT is an attractive alternative to CMR particularly in those individuals with contraindications to the latter. Further studies are needed, particularly in CT.
Collapse
Affiliation(s)
- Paul R. Scully
- Cardiac Imaging Department, Barts Heart Centre, St Bartholomew’s Hospital, 2nd Floor, King George V Building, West Smithfield, London, EC1A 7BE UK
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT UK
| | - Gorka Bastarrika
- Clínica Universidad de Navarra, University of Navarra, Avda/Pio XII 55, 31008 Pamplona, Spain
| | - James C. Moon
- Cardiac Imaging Department, Barts Heart Centre, St Bartholomew’s Hospital, 2nd Floor, King George V Building, West Smithfield, London, EC1A 7BE UK
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT UK
| | - Thomas A. Treibel
- Cardiac Imaging Department, Barts Heart Centre, St Bartholomew’s Hospital, 2nd Floor, King George V Building, West Smithfield, London, EC1A 7BE UK
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
9
|
Shang Y, Zhang X, Zhou X, Greiser A, Zhou Z, Li D, Wang J. Blood T1* correction increases accuracy of extracellular volume measurements using 3T cardiovascular magnetic resonance: Comparison of T1 and T1* maps. Sci Rep 2018; 8:3361. [PMID: 29463828 PMCID: PMC5820253 DOI: 10.1038/s41598-018-21696-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
The goals were to compare the differences between ECVL (extracellular volume derived from myocardial T1 and blood T1), ECVc (combination of myocardial T1 and blood T1*), and ECVnL (derived from myocardium T1* and blood T1*), and to explore the diagnostic accuracy of these factors for discriminating between controls and patients. The Modified Look-Locker Inversion Recovery sequence was performed in 42 subjects to generate both T1 and T1* maps. Native and post-contrast T1 values for myocardium and blood pool were obtained, and ECVL, ECVc, and ECVnL were then calculated. The global ECVc values were smaller than the ECVL values (0.006, 2.11%, p < 0.001) and larger than the ECVnL values (0.06, 21.6%, p < 0.001) in all participants. The ECVc led to a 4–6% increase in the AUC value and a 24–32% reduction in the sample size to differentiate between the controls and other patients when compared with the ECVL. Blood T1* correction can improve the precision of blood T1 values and can consequently increase the accuracy of the extracellular volume fraction measurement. The ECVc can be used to improve diagnostic accuracy and reduce the sample size required for a clinical study.
Collapse
Affiliation(s)
- Yongning Shang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaochun Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, China
| | | | - Zhengwei Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
10
|
Manning WJ. Review of Journal of Cardiovascular Magnetic Resonance (JCMR) 2015-2016 and transition of the JCMR office to Boston. J Cardiovasc Magn Reson 2017; 19:108. [PMID: 29284487 PMCID: PMC5747150 DOI: 10.1186/s12968-017-0423-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
The Journal of Cardiovascular Magnetic Resonance (JCMR) is the official publication of the Society for Cardiovascular Magnetic Resonance (SCMR). In 2016, the JCMR published 93 manuscripts, including 80 research papers, 6 reviews, 5 technical notes, 1 protocol, and 1 case report. The number of manuscripts published was similar to 2015 though with a 12% increase in manuscript submissions to an all-time high of 369. This reflects a decrease in the overall acceptance rate to <25% (excluding solicited reviews). The quality of submissions to JCMR continues to be high. The 2016 JCMR Impact Factor (which is published in June 2016 by Thomson Reuters) was steady at 5.601 (vs. 5.71 for 2015; as published in June 2016), which is the second highest impact factor ever recorded for JCMR. The 2016 impact factor means that the JCMR papers that were published in 2014 and 2015 were on-average cited 5.71 times in 2016.In accordance with Open-Access publishing of Biomed Central, the JCMR articles are published on-line in the order that they are accepted with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes with previously published JCMR papers to guide continuity of thought in the journal. In addition, I have elected to open this publication with information for the readership regarding the transition of the JCMR editorial office to the Beth Israel Deaconess Medical Center, Boston and the editorial process.Though there is an author publication charge (APC) associated with open-access to cover the publisher's expenses, this format provides a much wider distribution/availability of the author's work and greater manuscript citation. For SCMR members, there is a substantial discount in the APC. I hope that you will continue to send your high quality manuscripts to JCMR for consideration. Importantly, I also ask that you consider referencing recent JCMR publications in your submissions to the JCMR and elsewhere as these contribute to our impact factor. I also thank our dedicated Associate Editors, Guest Editors, and reviewers for their many efforts to ensure that the review process occurs in a timely and responsible manner and that the JCMR continues to be recognized as the leading publication in our field.
Collapse
Affiliation(s)
- Warren J Manning
- From the Journal of Cardiovascular Magnetic Resonance Editorial Office and the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, Mascherbauer J, Nezafat R, Salerno M, Schelbert EB, Taylor AJ, Thompson R, Ugander M, van Heeswijk RB, Friedrich MG. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017; 19:75. [PMID: 28992817 PMCID: PMC5633041 DOI: 10.1186/s12968-017-0389-8] [Citation(s) in RCA: 1036] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Parametric mapping techniques provide a non-invasive tool for quantifying tissue alterations in myocardial disease in those eligible for cardiovascular magnetic resonance (CMR). Parametric mapping with CMR now permits the routine spatial visualization and quantification of changes in myocardial composition based on changes in T1, T2, and T2*(star) relaxation times and extracellular volume (ECV). These changes include specific disease pathways related to mainly intracellular disturbances of the cardiomyocyte (e.g., iron overload, or glycosphingolipid accumulation in Anderson-Fabry disease); extracellular disturbances in the myocardial interstitium (e.g., myocardial fibrosis or cardiac amyloidosis from accumulation of collagen or amyloid proteins, respectively); or both (myocardial edema with increased intracellular and/or extracellular water). Parametric mapping promises improvements in patient care through advances in quantitative diagnostics, inter- and intra-patient comparability, and relatedly improvements in treatment. There is a multitude of technical approaches and potential applications. This document provides a summary of the existing evidence for the clinical value of parametric mapping in the heart as of mid 2017, and gives recommendations for practical use in different clinical scenarios for scientists, clinicians, and CMR manufacturers.
Collapse
Affiliation(s)
- Daniel R. Messroghli
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- Department of Internal Medicine and Cardiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - James C. Moon
- University College London and Barts Heart Centre, London, UK
| | - Vanessa M. Ferreira
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lars Grosse-Wortmann
- Division of Cardiology in the Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
| | - Taigang He
- Cardiovascular Science Research Centre, St George’s, University of London, London, UK
| | | | - Julia Mascherbauer
- Department of Internal Medicine II, Division of Cardiology, Vienna, Austria
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Michael Salerno
- Departments of Medicine Cardiology Division, Radiology and Medical Imaging, and Biomedical Engineering, University of Virginia Health System, Charlottesville, VA USA
| | - Erik B. Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Andrew J. Taylor
- The Alfred Hospital, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Richard Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ruud B. van Heeswijk
- Department of Radiology, Lausanne University Hospital (CHUV) and Lausanne University (UNIL), Lausanne, Switzerland
| | - Matthias G. Friedrich
- Departments of Medicine and Diagnostic Radiology, McGill University, Montréal, Québec Canada
- Department of Medicine, Heidelberg University, Heidelberg, Germany
- Département de radiologie, Université de Montréal, Montréal, Québec Canada
- Departments of Cardiac Sciences and Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
12
|
Caballeros M, Bartolomé P, Fernández González Ó, Greiser A, García del Barrio L, Pueyo J, Bastarrika G. Effect of contrast dose in the quantification of myocardial extra-cellular volume in adenosine stress/rest perfusion cardiac magnetic resonance examinations. Acta Radiol 2017; 58:809-815. [PMID: 27794025 DOI: 10.1177/0284185116674501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Diffuse myocardial fibrosis can be quantified by calculating extra-cellular volume (ECV) from native and post-contrast T1 values using dedicated single bolus contrast medium injection protocols. Purpose To evaluate differences in T1 maps and myocardial ECV measurements in routine stress/rest perfusion cardiovascular magnetic resonance (CMR) examinations after injection of single and double dose of contrast medium. Material and Methods Thirty-seven consecutive patients (30 men; mean age, 62 ± 13 years) underwent clinically indicated adenosine stress/rest perfusion CMR examination to rule out myocardial ischemia following a conventional split-dose contrast medium injection strategy. Native and post-contrast T1 mapping was performed 15 min after the first (0.1 mmol/kg) and second (0.1 mmol/kg) dose of contrast medium using a breath-held Modified Look-Locker Inversion recovery (MOLLI) sequence. Student's t-test for paired samples, Bland-Altman plots, and concordance-correlation coefficients (CCC) for agreement between T1 and ECV calculations after single and double dose of contrast medium were calculated. Intra- and inter-observer agreement for measurements was also analyzed. Results Myocardial T1 values after single and double dose of contrast medium significantly differed (mean difference of 114.1 ± 19.9 ms, P < 0.01). A single dose of contrast agent provided slightly higher ECV values (mean difference of 2.3 ± 1.1%). CCC for ECV calculations was 0.66. Intra- and inter-observer agreement for all measurements was excellent (CCC ≥ 0.83). Conclusion Quantification of myocardial ECV on conventional stress/rest perfusion CMR examination is feasible. T1 maps obtained 15 min after 0.1 mmol/kg of contrast medium provide slightly higher myocardial T1 measurements and ECV values compared with T1 maps obtained after a total dose of 0.2 mmol/kg.
Collapse
Affiliation(s)
- Meylin Caballeros
- Cardiothoracic Imaging Division, Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pablo Bartolomé
- Cardiothoracic Imaging Division, Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Loreto García del Barrio
- Cardiothoracic Imaging Division, Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jesús Pueyo
- Cardiothoracic Imaging Division, Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gorka Bastarrika
- Cardiothoracic Imaging Division, Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
13
|
Schelbert EB, Sabbah HN, Butler J, Gheorghiade M. Employing Extracellular Volume Cardiovascular Magnetic Resonance Measures of Myocardial Fibrosis to Foster Novel Therapeutics. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.116.005619. [PMID: 28512159 DOI: 10.1161/circimaging.116.005619] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantifying myocardial fibrosis (MF) with myocardial extracellular volume measures acquired during cardiovascular magnetic resonance promises to transform clinical care by advancing pathophysiologic understanding and fostering novel therapeutics. Extracellular volume quantifies MF by measuring the extracellular compartment depicted by the myocardial uptake of contrast relative to plasma. MF is a key domain of dysfunctional but viable myocardium among others (eg, microvascular dysfunction and cardiomyocyte/mitochondrial dysfunction). Although anatomically distinct, these domains may functionally interact. MF represents pathological remodeling in the heart associated with cardiac dysfunction and adverse outcomes likely mediated by interactions with the microvasculature and the cardiomyocyte. Reversal of MF improves key measures of cardiac dysfunction, so reversal of MF represents a likely mechanism for improved outcomes. Instead of characterizing the myocardium as homogenous tissue and using important yet still generic descriptors, such as thickness (hypertrophy) and function (diastolic or systolic), which lack mechanistic specificity, paradigms of cardiac disease have evolved to conceptualize myocardial disease and patient vulnerability based on the extent of disease involving its various compartments. Specifying myocardial compartmental involvement may then implicate cellular/molecular disease pathways for treatment and targeted pharmaceutical development and above all highlight the role of the cardiac-specific pathology in heart failure among myriad other changes in the heart and beyond. The cardiology community now requires phase 2 and 3 clinical trials to examine strategies for the regression/prevention of MF and eventually biomarkers to identify MF without reliance on cardiovascular magnetic resonance. It seems likely that efficacious antifibrotic therapy will improve outcomes, but definitive data are needed.
Collapse
Affiliation(s)
- Erik B Schelbert
- From the Department of Medicine, University of Pittsburgh School of Medicine, PA (E.B.S.); UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA (E.B.S.); Clinical and Translational Science Institute, University of Pittsburgh, PA (E.B.S.); Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Health System, Detroit, MI (H.N.S.); Cardiology Division, Department of Medicine, Stony Brook University, NY (J.B.); and Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, Chicago, IL (M.G.).
| | - Hani N Sabbah
- From the Department of Medicine, University of Pittsburgh School of Medicine, PA (E.B.S.); UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA (E.B.S.); Clinical and Translational Science Institute, University of Pittsburgh, PA (E.B.S.); Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Health System, Detroit, MI (H.N.S.); Cardiology Division, Department of Medicine, Stony Brook University, NY (J.B.); and Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, Chicago, IL (M.G.)
| | - Javed Butler
- From the Department of Medicine, University of Pittsburgh School of Medicine, PA (E.B.S.); UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA (E.B.S.); Clinical and Translational Science Institute, University of Pittsburgh, PA (E.B.S.); Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Health System, Detroit, MI (H.N.S.); Cardiology Division, Department of Medicine, Stony Brook University, NY (J.B.); and Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, Chicago, IL (M.G.)
| | - Mihai Gheorghiade
- From the Department of Medicine, University of Pittsburgh School of Medicine, PA (E.B.S.); UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA (E.B.S.); Clinical and Translational Science Institute, University of Pittsburgh, PA (E.B.S.); Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Health System, Detroit, MI (H.N.S.); Cardiology Division, Department of Medicine, Stony Brook University, NY (J.B.); and Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, Chicago, IL (M.G.)
| |
Collapse
|
14
|
Puntmann VO, Peker E, Chandrashekhar Y, Nagel E. T1 Mapping in Characterizing Myocardial Disease: A Comprehensive Review. Circ Res 2017; 119:277-99. [PMID: 27390332 DOI: 10.1161/circresaha.116.307974] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/20/2016] [Indexed: 01/06/2023]
Abstract
Cardiovascular magnetic resonance provides insights into myocardial structure and function noninvasively, with high diagnostic accuracy and without ionizing radiation. Myocardial tissue characterization in particular gives cardiovascular magnetic resonance a prime role among all the noninvasive cardiovascular investigations. Late gadolinium enhancement imaging is an established method for visualizing replacement scar, providing diagnostic and prognostic information in a variety of cardiac conditions. Late gadolinium enhancement, however, relies on the regional segregation of tissue characteristics to generate the imaging contrast. Thus, myocardial pathology that is diffuse in nature and affecting the myocardium in a rather uniform and global distribution is not well visualized with late gadolinium enhancement. Examples include diffuse myocardial inflammation, fibrosis, hypertrophy, and infiltration. T1 mapping is a novel technique allowing to diagnose these diffuse conditions by measurement of T1 values, which directly correspond to variation in intrinsic myocardial tissue properties. In addition to providing clinically meaningful indices, T1-mapping measurements also allow for an estimation of extracellular space by calculation of extracellular volume fraction. Multiple lines of evidence suggest a central role for T1 mapping in detection of diffuse myocardial disease in early disease stages and complements late gadolinium enhancement in visualization of the regional changes in common advanced myocardial disease. As a quantifiable measure, it may allow grading of disease activity, monitoring progress, and guiding treatment, potentially as a fast contrast-free clinical application. We present an overview of clinically relevant technical aspects of acquisition and processing, and the current state of art and evidence, supporting its clinical use.
Collapse
Affiliation(s)
- Valentina O Puntmann
- From the Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging (V.O.P., E.P., E.N.) and Department of Cardiology (V.O.P., E.N.), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Radiology, Ankara University School of Medicine, Ankara, Turkey (E.P.); and University of Minnesota and VA Medical Centre, Minneapolis (Y.C.)
| | - Elif Peker
- From the Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging (V.O.P., E.P., E.N.) and Department of Cardiology (V.O.P., E.N.), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Radiology, Ankara University School of Medicine, Ankara, Turkey (E.P.); and University of Minnesota and VA Medical Centre, Minneapolis (Y.C.)
| | - Y Chandrashekhar
- From the Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging (V.O.P., E.P., E.N.) and Department of Cardiology (V.O.P., E.N.), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Radiology, Ankara University School of Medicine, Ankara, Turkey (E.P.); and University of Minnesota and VA Medical Centre, Minneapolis (Y.C.)
| | - Eike Nagel
- From the Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging (V.O.P., E.P., E.N.) and Department of Cardiology (V.O.P., E.N.), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Radiology, Ankara University School of Medicine, Ankara, Turkey (E.P.); and University of Minnesota and VA Medical Centre, Minneapolis (Y.C.).
| |
Collapse
|
15
|
Pennell DJ, Baksi AJ, Prasad SK, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider JE, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2015. J Cardiovasc Magn Reson 2016; 18:86. [PMID: 27846914 PMCID: PMC5111217 DOI: 10.1186/s12968-016-0305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
There were 116 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2015, which is a 14 % increase on the 102 articles published in 2014. The quality of the submissions continues to increase. The 2015 JCMR Impact Factor (which is published in June 2016) rose to 5.75 from 4.72 for 2014 (as published in June 2015), which is the highest impact factor ever recorded for JCMR. The 2015 impact factor means that the JCMR papers that were published in 2013 and 2014 were cited on average 5.75 times in 2015. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25 % and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D. J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - A. J. Baksi
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. K. Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - R. H. Mohiaddin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - F. Alpendurada
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. V. Babu-Narayan
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - J. E. Schneider
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - D. N. Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| |
Collapse
|
16
|
McDiarmid AK, Swoboda PP, Erhayiem B, Lancaster RE, Lyall GK, Broadbent DA, Dobson LE, Musa TA, Ripley DP, Garg P, Greenwood JP, Ferguson C, Plein S. Athletic Cardiac Adaptation in Males Is a Consequence of Elevated Myocyte Mass. Circ Cardiovasc Imaging 2016; 9:e003579. [PMID: 27033835 PMCID: PMC4841180 DOI: 10.1161/circimaging.115.003579] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 02/10/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cardiac remodeling occurs in response to regular athletic training, and the degree of remodeling is associated with fitness. Understanding the myocardial structural changes in athlete's heart is important to develop tools that differentiate athletic from cardiomyopathic change. We hypothesized that athletic left ventricular hypertrophy is a consequence of increased myocardial cellular rather than extracellular mass as measured by cardiovascular magnetic resonance. METHODS AND RESULTS Forty-five males (30 athletes and 15 sedentary age-matched healthy controls) underwent comprehensive cardiovascular magnetic resonance studies, including native and postcontrast T1 mapping for extracellular volume calculation. In addition, the 30 athletes performed a maximal exercise test to assess aerobic capacity and anaerobic threshold. Participants were grouped by athleticism: untrained, low performance, and high performance (O2max <60 or>60 mL/kg per min, respectively). In athletes, indexed cellular mass was greater in high- than low-performance athletes 60.7±7.5 versus 48.6±6.3 g/m(2); P<0.001), whereas extracellular mass was constant (16.3±2.2 versus 15.3±2.2 g/m(2); P=0.20). Indexed left ventricular end-diastolic volume and mass correlated with O2max (r=0.45, P=0.01; r=0.55, P=0.002) and differed significantly by group (P=0.01; P<0.001, respectively). Extracellular volume had an inverse correlation with O2max (r=-0.53, P=0.003 and left ventricular mass index (r=-0.44, P=0.02). CONCLUSIONS Increasing left ventricular mass in athlete's heart occurs because of an expansion of the cellular compartment while the extracellular volume becomes relatively smaller: a difference which becomes more marked as left ventricular mass increases. Athletic remodeling, both on a macroscopic and cellular level, is associated with the degree of an individual's fitness. Cardiovascular magnetic resonance ECV quantification may have a future role in differentiating athlete's heart from change secondary to cardiomyopathy.
Collapse
Affiliation(s)
- Adam K McDiarmid
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - Peter P Swoboda
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - Bara Erhayiem
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - Rosalind E Lancaster
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - Gemma K Lyall
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - David A Broadbent
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - Laura E Dobson
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - Tarique A Musa
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - David P Ripley
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - Pankaj Garg
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - John P Greenwood
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - Carrie Ferguson
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK
| | - Sven Plein
- From the Multidisciplinary Cardiovascular Research Centre (MCRC) and Leeds Institute of Cardiovascular and Metabolic Medicine (A.K.M., P.P.S., B.E., D.A.B., L.E.D., T.A.M., D.P.R., P.G., J.P.G., S.P.), and Division of Biomedical Imaging, Multidisciplinary Cardiovascular Research Centre (MCRC) and School of Biomedical Sciences (R.E.L., G.K.L., C.F.), University of Leeds, Clarendon Way, Leeds, UK.
| |
Collapse
|
17
|
Schelbert EB, Messroghli DR. State of the Art: Clinical Applications of Cardiac T1 Mapping. Radiology 2016; 278:658-76. [DOI: 10.1148/radiol.2016141802] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|