1
|
Tang H, Kong Q, Zhang Z, Wu W, Yuan L, Liu X. Regulation of transcription factor function by purinergic signalling in cardiovascular diseases. Purinergic Signal 2024:10.1007/s11302-024-10045-8. [PMID: 39215950 DOI: 10.1007/s11302-024-10045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs), including hypertension, atherosclerosis, myocardial ischemia, and myocardial infarction, constitute the primary cause of mortality worldwide. Transcription factors play critical roles in the development of CVDs and contribute to the pathophysiology of these diseases by coordinating the transcription of many genes involved in inflammation, oxidative stress, angiogenesis, and glycolytic metabolism. One important regulator of hemostasis in both healthy and pathological settings has been identified as a purinergic signalling pathway. Research has demonstrated that several signalling networks implicated in the pathophysiology of CVDs are formed by transcription factors that are regulated by purinergic substances. Here, we briefly summarize the roles and mechanisms of the transcription factors regulated by purinergic pathways in various types of CVD. This information will be essential for discovering novel approaches for CVD treatment and prevention.
Collapse
Affiliation(s)
- Hao Tang
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qihang Kong
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenchao Wu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Yuan
- Public Laboratory of West China Second University Hospital and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Hopman LH, Hillier E, Liu Y, Hamilton J, Fischer K, Seiberlich N, Friedrich MG. Dynamic Cardiac Magnetic Resonance Fingerprinting During Vasoactive Breathing Maneuvers: First Results. J Cardiovasc Imaging 2023; 31:71-82. [PMID: 37096671 PMCID: PMC10133810 DOI: 10.4250/jcvi.2022.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cardiac magnetic resonance fingerprinting (cMRF) enables simultaneous mapping of myocardial T1 and T2 with very short acquisition times. Breathing maneuvers have been utilized as a vasoactive stress test to dynamically characterize myocardial tissue in vivo. We tested the feasibility of sequential, rapid cMRF acquisitions during breathing maneuvers to quantify myocardial T1 and T2 changes. METHODS We measured T1 and T2 values using conventional T1 and T2-mapping techniques (modified look locker inversion [MOLLI] and T2-prepared balanced-steady state free precession), and a 15 heartbeat (15-hb) and rapid 5-hb cMRF sequence in a phantom and in 9 healthy volunteers. The cMRF5-hb sequence was also used to dynamically assess T1 and T2 changes over the course of a vasoactive combined breathing maneuver. RESULTS In healthy volunteers, the mean myocardial T1 of the different mapping methodologies were: MOLLI 1,224 ± 81 ms, cMRF15-hb 1,359 ± 97 ms, and cMRF5-hb 1,357 ± 76 ms. The mean myocardial T2 measured with the conventional mapping technique was 41.7 ± 6.7 ms, while for cMRF15-hb 29.6 ± 5.8 ms and cMRF5-hb 30.5 ± 5.8 ms. T2 was reduced with vasoconstriction (post-hyperventilation compared to a baseline resting state) (30.15 ± 1.53 ms vs. 27.99 ± 2.07 ms, p = 0.02), while T1 did not change with hyperventilation. During the vasodilatory breath-hold, no significant change of myocardial T1 and T2 was observed. CONCLUSIONS cMRF5-hb enables simultaneous mapping of myocardial T1 and T2, and may be used to track dynamic changes of myocardial T1 and T2 during vasoactive combined breathing maneuvers.
Collapse
Affiliation(s)
- Luuk H.G.A. Hopman
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Cardiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Elizabeth Hillier
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Jesse Hamilton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Kady Fischer
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Matthias G. Friedrich
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Departments of Cardiology and Diagnostic Radiology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
3
|
Gorecka M, Jex N, Thirunavukarasu S, Chowdhary A, Corrado J, Davison J, Tarrant R, Poenar AM, Sharrack N, Parkin A, Sivan M, Swoboda PP, Xue H, Vassiliou V, Kellman P, Plein S, Halpin SJ, Simms AD, Greenwood JP, Levelt E. Cardiovascular magnetic resonance imaging and spectroscopy in clinical long-COVID-19 syndrome: a prospective case-control study. J Cardiovasc Magn Reson 2022; 24:50. [PMID: 36089591 PMCID: PMC9464490 DOI: 10.1186/s12968-022-00887-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The underlying pathophysiology of post-coronavirus disease 2019 (long-COVID-19) syndrome remains unknown, but increased cardiometabolic demand and state of mitochondrial dysfunction have emerged as candidate mechanisms. Cardiovascular magnetic resonance (CMR) provides insight into pathophysiological mechanisms underlying cardiovascular disease and 31-phosphorus CMR spectroscopy (31P-CMRS) allows non-invasive assessment of the myocardial energetic state. The main aim of the study was to assess whether long COVID-19 syndrome is associated with abnormalities of myocardial structure, function, perfusion and energy metabolism. METHODS Prospective case-control study. A total of 20 patients with a clinical diagnosis of long COVID-19 syndrome (seropositive) and no prior underlying cardiovascular disease (CVD) and 10 matching healthy controls underwent 31P-CMRS and CMR at 3T at a single time point. All patients had been symptomatic with acute COVID-19, but none required hospital admission. RESULTS Between the long COVID-19 syndrome patients and matched contemporary healthy controls there were no differences in myocardial energetics (phosphocreatine to ATP ratio), in cardiac structure (biventricular volumes), function (biventricular ejection fractions, global longitudinal strain), tissue characterization (T1 mapping and late gadolinium enhancement) or perfusion (myocardial rest and stress blood flow, myocardial perfusion reserve). One patient with long COVID-19 syndrome showed subepicardial hyperenhancement on late gadolinium enhancement imaging compatible with prior myocarditis, but no accompanying abnormality in cardiac size, function, perfusion, extracellular volume fraction, native T1, T2 or cardiac energetics. CONCLUSIONS In this prospective case-control study, the overwhelming majority of patients with a clinical long COVID-19 syndrome with no prior CVD did not exhibit any abnormalities in myocardial energetics, structure, function, blood flow or tissue characteristics.
Collapse
Affiliation(s)
- Miroslawa Gorecka
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicholas Jex
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Sharmaine Thirunavukarasu
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Joanna Corrado
- Department of Rehabilitation Medicine, Leeds Teaching Hospitals Trust, Leeds, UK
| | | | | | - Ana-Maria Poenar
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Noor Sharrack
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy Parkin
- Leeds Community Healthcare NHS Trust, Leeds, UK
| | - Manoj Sivan
- Department of Rehabilitation Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter P Swoboda
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hui Xue
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, 10 Center Drive MSC-1061, Bethesda, MD, 20892, USA
| | - Vassilios Vassiliou
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, 10 Center Drive MSC-1061, Bethesda, MD, 20892, USA
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen J Halpin
- Department of Rehabilitation Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - John P Greenwood
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Abstract
Ischemic cardiomyopathy (ICM) is one of the most common causes of congestive heart failure. In patients with ICM, tissue characterization with cardiac magnetic resonance imaging (CMR) allows for evaluation of myocardial abnormalities in acute and chronic settings. Myocardial edema, microvascular obstruction (MVO), intracardiac thrombus, intramyocardial hemorrhage, and late gadolinium enhancement of the myocardium are easily depicted using standard CMR sequences. In the acute setting, tissue characterization is mainly focused on assessment of ventricular thrombus and MVO, which are associated with poor prognosis. Conversely, in chronic ICM, it is important to depict late gadolinium enhancement and myocardial ischemia using stress perfusion sequences. Overall, with CMR's ability to accurately characterize myocardial tissue in acute and chronic ICM, it represents a valuable diagnostic and prognostic imaging method for treatment planning. In particular, tissue characterization abnormalities in the acute setting can provide information regarding the patients that may develop major adverse cardiac event and show the presence of ventricular thrombus; in the chronic setting, evaluation of viable myocardium can be fundamental for planning myocardial revascularization. In this review, the main findings on tissue characterization are illustrated in acute and chronic settings using qualitative and quantitative tissue characterization.
Collapse
|
5
|
Manning WJ. Journal of Cardiovascular Magnetic Resonance: 2017/2018 in review. J Cardiovasc Magn Reson 2019; 21:79. [PMID: 31884956 PMCID: PMC6936125 DOI: 10.1186/s12968-019-0594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
There were 89 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2017, including 76 original research papers, 4 reviews, 5 technical notes, 1 guideline, and 3 corrections. The volume was down slightly from 2017 with a corresponding 15% decrease in manuscript submissions from 405 to 346 and thus reflects a slight increase in the acceptance rate from 25 to 26%. The decrease in submissions for the year followed the initiation of the increased author processing charge (APC) for Society for Cardiovascular Magnetic Resonance (SCMR) members for manuscripts submitted after June 30, 2018. The quality of the submissions continues to be high. The 2018 JCMR Impact Factor (which is published in June 2019) was slightly lower at 5.1 (vs. 5.46 for 2017; as published in June 2018. The 2018 impact factor means that on average, each JCMR published in 2016 and 2017 was cited 5.1 times in 2018. Our 5 year impact factor was 5.82.In accordance with Open-Access publishing guidelines of BMC, the JCMR articles are published on-line in a continuus fashion in the chronologic order of acceptance, with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful for the JCMR audience to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and contemporaneous JCMR publications. In this publication, the manuscripts are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought within the journal. In addition, as in the past two years, I have used this publication to also convey information regarding the editorial process and as a "State of our JCMR."This is the 12th year of JCMR as an open-access publication with BMC (formerly known as Biomed Central). The timing of the JCMR transition to the open access platform was "ahead of the curve" and a tribute to the vision of Dr. Matthias Friedrich, the SCMR Publications Committee Chair and Dr. Dudley Pennell, the JCMR editor-in-chief at the time. The open-access system has dramatically increased the reading and citation of JCMR publications and I hope that you, our authors, will continue to send your very best, high quality manuscripts to JCMR for consideration. It takes a village to run a journal and I thank our very dedicated Associate Editors, Guest Editors, Reviewers for their efforts to ensure that the review process occurs in a timely and responsible manner. These efforts have allowed the JCMR to continue as the premier journal of our field. This entire process would also not be possible without the dedication and efforts of our managing editor, Diana Gethers. Finally, I thank you for entrusting me with the editorship of the JCMR as I begin my 4th year as your editor-in-chief. It has been a tremendous experience for me and the opportunity to review manuscripts that reflect the best in our field remains a great joy and highlight of my week!
Collapse
Affiliation(s)
- Warren J Manning
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Manning WJ. Journal of Cardiovascular Magnetic Resonance 2017. J Cardiovasc Magn Reson 2018; 20:89. [PMID: 30593280 PMCID: PMC6309095 DOI: 10.1186/s12968-018-0518-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
There were 106 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2017, including 92 original research papers, 3 reviews, 9 technical notes, and 1 Position paper, 1 erratum and 1 correction. The volume was similar to 2016 despite an increase in manuscript submissions to 405 and thus reflects a slight decrease in the acceptance rate to 26.7%. The quality of the submissions continues to be high. The 2017 JCMR Impact Factor (which is published in June 2018) was minimally lower at 5.46 (vs. 5.71 for 2016; as published in June 2017), which is the second highest impact factor ever recorded for JCMR. The 2017 impact factor means that an average, each JCMR paper that were published in 2015 and 2016 was cited 5.46 times in 2017.In accordance with Open-Access publishing of Biomed Central, the JCMR articles are published on-line in continuus fashion and in the chronologic order of acceptance, with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful to annually summarize the publications into broad areas of interest or theme, so that readers can view areas of interest in a single article in relation to each other and other contemporary JCMR articles. In this publication, the manuscripts are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought within the journal. In addition, I have elected to use this format to convey information regarding the editorial process to the readership.I hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your very best, high quality manuscripts to JCMR for consideration. I thank our very dedicated Associate Editors, Guest Editors, and Reviewers for their efforts to ensure that the review process occurs in a timely and responsible manner and that the JCMR continues to be recognized as the forefront journal of our field. And finally, I thank you for entrusting me with the editorship of the JCMR as I begin my 3rd year as your editor-in-chief. It has been a tremendous learning experience for me and the opportunity to review manuscripts that reflect the best in our field remains a great joy and highlight of my week!
Collapse
Affiliation(s)
- Warren J Manning
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Ben Bouallègue F, Mariano-Goulart D, Agostini D, Manrique A. Feasibility of biventricular volume and function assessment using first-pass gated 15O-water PET. EJNMMI Res 2018; 8:92. [PMID: 30225682 PMCID: PMC6141411 DOI: 10.1186/s13550-018-0445-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 01/17/2023] Open
Abstract
Background We investigated the feasibility of left ventricular (LV) and right ventricular (RV) volume and function estimation using a first-pass gated 15O-water PET. This prospective study included 19 patients addressed for myocardial perfusion reserve assessment using 15O-water PET. PET data were acquired at rest and after regadenoson stress, and gated first-pass images were reconstructed over the time range corresponding to tracer first-pass through the cardiac cavities and post-processed using TomPool software; LV and RV were segmented using a semi-automated 4D immersion algorithm. LV volumes were computed using a count-based model and a fixed threshold at 30% of the maximal activity. RV volumes were computed using a geometrical model and an adjustable threshold that was set so as to fit LV and RV stroke volumes. Ejection curves were fitted using a deformable reference curve model. LV results were compared to those obtained using 99mTc-sestamibi gated myocardial SPECT in terms of end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF). Results There was an excellent concordance between rest and stress PET in terms of EDV and ESV (Lin’s coefficient ~ 0.85–0.90), SV (~ 0.80), and EF (~ 0.75) for both ventricles. Correlation with myocardial SPECT was high for LV EDV (Pearson’s R = 0.89, p < 0.001) and ESV (R = 0.87, p < 0.001) and satisfying for LV SV (R = 0.67, p < 0.001) and EF (R = 0.67, p < 0.001). Minimal LV ESV overestimation (+ 4 mL, p = 0.03) and EF underestimation (− 4%, p = 0.01) were observed using PET. Conclusions Biventricular volume and function assessment are achievable using the first-pass PET, and LV parameters correlate well with those derived from gated myocardial SPECT.
Collapse
Affiliation(s)
- Fayçal Ben Bouallègue
- Nuclear Medicine Department, Montpellier University Hospital, Montpellier, France. .,PhyMedExp, INSERM - CNRS, Montpellier University, Montpellier, France. .,Nuclear Medicine Department, CHU de Caen, Caen, France.
| | - Denis Mariano-Goulart
- Nuclear Medicine Department, Montpellier University Hospital, Montpellier, France.,PhyMedExp, INSERM - CNRS, Montpellier University, Montpellier, France
| | | | - Alain Manrique
- Nuclear Medicine Department, CHU de Caen, Caen, France.,UNICAEN, EA 4650 SEILIRM, GIP Cyceron, Normandie University, Caen, France
| |
Collapse
|