1
|
Calastra CG, Kleban E, Helfenstein FN, Haupt F, Peters AA, Huber A, von Tengg-Kobligk H, Jung B. Dynamic contrast-enhanced MRA of the aorta using a Golden-angle RAdial Sparse Parallel (GRASP) sequence: comparison with conventional time-resolved cartesian MRA (TWIST). THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03259-9. [PMID: 39395076 DOI: 10.1007/s10554-024-03259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
PURPOSE To compare the application of two contrast-enhanced time-resolved magnetic resonance angiography sequences on an aortic disease patient cohort: the conventional Cartesian-sampling-based, Time-resolved angiography With Interleaved Stochastic Trajectories (TWIST) sequence, and the radial-sampling-based Golden-angle RAdial Sparse Parallel (GRASP) sequence. TWIST is highly sensitive to patient movement, which can lead to blurring and reduced sharpness of vascular structures, particularly in dynamic regions like the aorta. Such motion artifacts can compromise diagnostic accuracy. Radial-sampling-based techniques are less sensitive to motion than cartesian sampling and are expected to improve the image quality in body parts subjected to motion. METHODS 30 patients (60.9 ± 16.1y.o.) with various aortic diseases underwent a 1.5T magnetic resonance angiography examination. Assessment of image quality in the ascending aorta (AA), descending aorta (DA), and abdominal aorta (AbA) on a 4-point Likert scale (1 = excellent, 4 = non-diagnostic) as well as max. aortic diameters (Dmax) were performed. T-test and multilevel mixed-effect proportional-odds models were used for the image analysis. RESULTS GRASP offered superior depiction of vascular structures in terms of vascular contrast for qualitative analysis (TWIST, reader 1: 1.6 ± 0.5; reader 2: 1.9 ± 0.4; reader 3: 1.1 ± 0.4; GRASP, reader 1: 1.5 ± 0.5; reader 2: 1.4 ± 0.5; reader 3: 1.0 ± 0.2) and vessel sharpness for qualitative (TWIST, reader 1: 1.9 ± 0.6; reader 2: 1.6 ± 0.6; reader 3: 2.0 ± 0.3; GRASP, reader 1: 1.4 ± 0.6; reader 2: 1.2 ± 0.4; reader 3: 1.3 ± 0.6) and quantitative analysis (TWIST, AA = 0.12 ± 0.04, DA = 0.12 ± 0.03, AbA = 0.11 ± 0.03; GRASP, AA = 0.20 ± 0.05, DA = 0.22 ± 0.06, AbA=0.20 ± 0.05). Streaking artefacts of GRASP were more visible compared to TWIST (TWIST, reader 1: 2.2 ± 0.6; reader 2: 1.9 ± 0.3; reader 3: 2.0 ± 0.5; GRASP, reader 1: 2.6 ± 0.6; reader 2: 2.3 ± 0.5; reader 3: 2.8 ± 0.6). Aortic Dmax comparison among the sequence showed no clinical relevance. CONCLUSION GRASP outperformed TWIST in SNR, vessel sharpness, and reduction in image blurring; streaking artefacts were stronger with GRASP, but did not affect diagnostic image quality.
Collapse
Affiliation(s)
- Camilla Giulia Calastra
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Elena Kleban
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Fabrice Noël Helfenstein
- Swiss Cardiovascular Center, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Fabian Haupt
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alan Arthur Peters
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian Huber
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Hendrik von Tengg-Kobligk
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Experimental Radiology, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Bernd Jung
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
2
|
Voges I, Raimondi F, McMahon CJ, Ait-Ali L, Babu-Narayan SV, Botnar RM, Burkhardt B, Gabbert DD, Grosse-Wortmann L, Hasan H, Hansmann G, Helbing WA, Krupickova S, Latus H, Martini N, Martins D, Muthurangu V, Ojala T, van Ooij P, Pushparajah K, Rodriguez-Palomares J, Sarikouch S, Grotenhuis HB, Greil FG. Clinical impact of novel CMR technology on patients with congenital heart disease. A scientific statement of the Association for European Pediatric and Congenital Cardiology (AEPC) and the European Association of Cardiovascular Imaging (EACVI) of the ESC. Eur Heart J Cardiovasc Imaging 2024:jeae172. [PMID: 38985851 DOI: 10.1093/ehjci/jeae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is recommended in patients with congenital heart disease (CHD) in clinical practice guidelines as the imaging standard for a large variety of diseases. As CMR is evolving, novel techniques are becoming available. Some of them are already used clinically, whereas others still need further evaluation. In this statement the authors give an overview of relevant new CMR techniques for the assessment of CHD. Studies with reference values for these new techniques are listed in the supplement.
Collapse
Affiliation(s)
- Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Germany
| | | | - Colin J McMahon
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Lamia Ait-Ali
- Institute of clinical Physiology CNR, Massa, Italy
- Heart Hospital, G. Monastery foundation, Massa, Italy
| | - Sonya V Babu-Narayan
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, England
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Institute for Biological and Medical Engineering and School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Barbara Burkhardt
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Dominik D Gabbert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Germany
| | - Lars Grosse-Wortmann
- Division of Cardiology, Oregon Health and Science University Hospital, Portland, Oregon, United States
| | - Hosan Hasan
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Willem A Helbing
- Department of Pediatrics, division of cardiology, and department of Radiology, Erasmus MC-Sophia children's hospital, Rotterdam, the Netherlands
| | - Sylvia Krupickova
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, England
- Department of Paediatric Cardiology, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Heiner Latus
- Clinic for Pediatric Cardiology and Congenital Heart Disease Klinikum Stuttgart Germany
| | - Nicola Martini
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Duarte Martins
- Pediatric Cardiology Department, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Vivek Muthurangu
- Centre for Translational Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Tiina Ojala
- New Children's Hospital Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Pim van Ooij
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Jose Rodriguez-Palomares
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Amsterdam, the Netherlands
- Servicio de Cardiología, Hospital Universitario Vall Hebrón. Institut de Recerca Vall Hebrón (VHIR). Departamento de Medicina, Universitat Autònoma de Barcelona. Barcelona. Spain
| | - Samir Sarikouch
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - F Gerald Greil
- Department of Pediatrics, UT Southwestern/Children's Health, 1935 Medical District Drive B3.09, Dallas, TX 75235
| |
Collapse
|
3
|
Craft J, Weber J, Li Y, Cheng JY, Diaz N, Kunze KP, Schmidt M, Grgas M, Weber S, Tang J, Parikh R, Onuegbu A, Yamashita AM, Haag E, Fuentes D, Czipo M, Neji R, Espada CB, Figueroa L, Rothbaum JA, Fujikura K, Bano R, Khalique OK, Prieto C, Botnar RM. Inversion recovery and saturation recovery pulmonary vein MR angiography using an image based navigator fluoro trigger and variable-density 3D cartesian sampling with spiral-like order. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1363-1376. [PMID: 38676848 DOI: 10.1007/s10554-024-03111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
Contrast enhanced pulmonary vein magnetic resonance angiography (PV CE-MRA) has value in atrial ablation pre-procedural planning. We aimed to provide high fidelity, ECG gated PV CE-MRA accelerated by variable density Cartesian sampling (VD-CASPR) with image navigator (iNAV) respiratory motion correction acquired in under 4 min. We describe its use in part during the global iodinated contrast shortage. VD-CASPR/iNAV framework was applied to ECG-gated inversion and saturation recovery gradient recalled echo PV CE-MRA in 65 patients (66 exams) using .15 mmol/kg Gadobutrol. Image quality was assessed by three physicians, and anatomical segmentation quality by two technologists. Left atrial SNR and left atrial/myocardial CNR were measured. 12 patients had CTA within 6 months of MRA. Two readers assessed PV ostial measurements versus CTA for intermodality/interobserver agreement. Inter-rater/intermodality reliability, reproducibility of ostial measurements, SNR/CNR, image, and anatomical segmentation quality was compared. The mean acquisition time was 3.58 ± 0.60 min. Of 35 PV pre-ablation datasets (34 patients), mean anatomical segmentation quality score was 3.66 ± 0.54 and 3.63 ± 0.55 as rated by technologists 1 and 2, respectively (p = 0.7113). Good/excellent anatomical segmentation quality (grade 3/4) was seen in 97% of exams. Each rated one exam as moderate quality (grade 2). 95% received a majority image quality score of good/excellent by three physicians. Ostial PV measurements correlated moderate to excellently with CTA (ICCs range 0.52-0.86). No difference in SNR was observed between IR and SR. High quality PV CE-MRA is possible in under 4 min using iNAV bolus timing/motion correction and VD-CASPR.
Collapse
Affiliation(s)
- Jason Craft
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA.
| | - Jonathan Weber
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Yulee Li
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Joshua Y Cheng
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Nancy Diaz
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Karl P Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | | | - Marie Grgas
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Suzanne Weber
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - John Tang
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Roosha Parikh
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Afiachukwu Onuegbu
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Ann-Marie Yamashita
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Elizabeth Haag
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | | | | | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Cristian B Espada
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Leana Figueroa
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Jonathan A Rothbaum
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Kana Fujikura
- Division of Cardiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ruqiyya Bano
- Department of Nephrology and Hypertension, Stony Brook University Hospital, New York, NY, 11794, USA
| | - Omar K Khalique
- Division of Cardiovascular Imaging, DeMatteis Cardiovascular Institute, St Francis Hospital & Heart Center, 101 Northern Blvd, Greenvale, NY, 11548, USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rene M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Azhe S, Li X, Zhou Z, Fu C, Wang Y, Zhou X, An J, Piccini D, Bastiaansen J, Guo Y, Wen L. Comparison between diaphragmatic-navigated and self-navigated coronary magnetic resonance angiography at 3T in pediatric patients with congenital coronary artery anomalies. Quant Imaging Med Surg 2024; 14:61-74. [PMID: 38223074 PMCID: PMC10784011 DOI: 10.21037/qims-23-556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/07/2023] [Indexed: 01/16/2024]
Abstract
Background Coronary magnetic resonance angiography (CMRA) is being increasingly used in pediatric patients with congenital coronary artery anomalies (CAAs). However, the data on the free-breathing self-navigation technique, which has the potential to simplify the acquisition plan with a high success rate at 3T, remain scarce. This study investigated the clinical application value of self-navigated (sNAV) CMRA at 3T in pediatric patients with suspected CAAs and compared it to conventional diaphragmatic-navigated (dNAV) CMRA. Methods From April 2019 to March 2022, we enrolled 65 pediatric patients (38 males and 27 females; mean age 8.5±4.4 years) with suspected CAAs in this prospective study. All patients underwent both dNAV and sNAV sequences in random order with gradient recalled echo (GRE) sequence during free breathing, with 39 (20 males and 19 females; mean age 10.2±3.6 years) of them additionally undergoing coronary computed tomography angiography (CCTA) or invasive coronary angiography (ICA). We measured and compared the success rate, scan time, visual score of the 9 main coronary artery segments, vessel sharpness, and vessel length between the two sequences. The diagnostic accuracy was compared using CCTA or ICA as a reference. Results The success rate of sNAV-CMRA (65/65, 100%) was higher than that of dNAV-CMRA (61/65, 93.8%) (P<0.001), and the scan time of sNAV-CMRA (7.3±2.5 min) was significantly shorter than that of dNAV-CMRA (9.1±3.6 min) (P=0.002). The acquisition efficiency of dNAV-CMRA was 40.5%±12.9%, while for sNAV-CMRA, 100% acquisition efficiency was achieved. There was no significant difference in vessel length of any of the coronary arteries, visual score, or vessel sharpness of the left circumflex coronary artery (LCX) between the two sequences (all P values >0.050). The visual score and vessel sharpness of the right coronary artery and left anterior descending coronary artery (LAD) were significantly improved in dNAV-CMRA compared with sNAV-CMRA (all P values <0.050). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the detection of CAAs were not significantly different between the two sequences (all P values >0.050). Conclusions Our findings demonstrated that both sNAV and dNAV in CMRA provide clinical application value in pediatric patients with CAAs and have similar diagnostic performance. Although the image quality of sNAV-CMRA is slightly inferior compared to that of dNAV-CMRA, sNAV-CMRA allows for a simpler scanning procedure.
Collapse
Affiliation(s)
- Shiganmo Azhe
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuesheng Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhongqin Zhou
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Fu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yun Wang
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Jessica Bastiaansen
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lingyi Wen
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Fotaki A, Pushparajah K, Rush C, Munoz C, Velasco C, Neji R, Kunze KP, Botnar RM, Prieto C. Highly efficient free-breathing 3D whole-heart imaging in 3-min: single center study in adults with congenital heart disease. J Cardiovasc Magn Reson 2023; 26:100008. [PMID: 38194762 PMCID: PMC11211218 DOI: 10.1016/j.jocmr.2023.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Three dimensional, whole-heart (3DWH) MRI is an established non-invasive imaging modality in patients with congenital heart disease (CHD) for the diagnosis of cardiovascular morphology and for clinical decision making. Current techniques utilise diaphragmatic navigation (dNAV) for respiratory motion correction and gating and are frequently limited by long acquisition times. This study proposes and evaluates the diagnostic performance of a respiratory gating-free framework, which considers respiratory image-based navigation (iNAV), and highly accelerated variable density Cartesian sampling in concert with non-rigid motion correction and low-rank patch-based denoising (iNAV-3DWH-PROST). The method is compared to the clinical dNAV-3DWH sequence in adult patients with CHD. METHODS In this prospective single center study, adult patients with CHD who underwent the clinical dNAV-3DWH MRI were also scanned with the iNAV-3DWH-PROST. Diagnostic confidence (4-point Likert scale) and diagnostic accuracy for common cardiovascular lesions was assessed by three readers. Scan times and diagnostic confidence were compared using the Wilcoxon-signed rank test. Co-axial vascular dimensions at three anatomic landmarks were measured, and agreement between the research and the corresponding clinical sequence was assessed with Bland-Altman analysis. RESULTS The study included 60 participants (mean age ± [SD]: 33 ± 14 years; 36 men). The mean acquisition time of iNAV-3DWH-PROST was significantly lower compared with the conventional clinical sequence (3.1 ± 0.9 min vs 13.9 ± 3.9 min, p < 0.0001). Diagnostic confidence was higher for the iNAV-3DWH-PROST sequence compared with the clinical sequence (3.9 ± 0.2 vs 3.4 ± 0.8, p < 0.001), however there was no significant difference in diagnostic accuracy. Narrow limits of agreement and mean bias less than 0.08 cm were found between the research and the clinical vascular measurements. CONCLUSIONS The iNAV-3DWH-PROST framework provides efficient, high quality and robust 3D whole-heart imaging in significantly shorter scan time compared to the standard clinical sequence.
Collapse
Affiliation(s)
- Anastasia Fotaki
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, SE1 7EH London, United Kingdom; Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| | - Kuberan Pushparajah
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, SE1 7EH London, United Kingdom; Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Christopher Rush
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Camila Munoz
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, SE1 7EH London, United Kingdom
| | - Carlos Velasco
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, SE1 7EH London, United Kingdom
| | - Radhouene Neji
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, SE1 7EH London, United Kingdom; MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Karl P Kunze
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, SE1 7EH London, United Kingdom; MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - René M Botnar
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, SE1 7EH London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile; Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, D-85748 Garching, Germany
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, SE1 7EH London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
6
|
Munoz C, Fotaki A, Hua A, Hajhosseiny R, Kunze KP, Ismail TF, Neji R, Pushparajah K, Botnar RM, Prieto C. Simultaneous Highly Efficient Contrast-Free Lumen and Vessel Wall MR Imaging for Anatomical Assessment of Aortic Disease. J Magn Reson Imaging 2023; 58:1110-1122. [PMID: 36757267 PMCID: PMC10946808 DOI: 10.1002/jmri.28613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Bright-blood lumen and black-blood vessel wall imaging are required for the comprehensive assessment of aortic disease. These images are usually acquired separately, resulting in long examinations and potential misregistration between images. PURPOSE To characterize the performance of an accelerated and respiratory motion-compensated three-dimensional (3D) cardiac MRI technique for simultaneous contrast-free aortic lumen and vessel wall imaging with an interleaved T2 and inversion recovery prepared sequence (iT2Prep-BOOST). STUDY TYPE Prospective. POPULATION A total of 30 consecutive patients with aortopathy referred for a clinically indicated cardiac MRI examination (9 females, mean age ± standard deviation: 32 ± 12 years). FIELD STRENGTH/SEQUENCE 1.5-T; bright-blood MR angiography (diaphragmatic navigator-gated T2-prepared 3D balanced steady-state free precession [bSSFP], T2Prep-bSSFP), breath-held black-blood two-dimensional (2D) half acquisition single-shot turbo spin echo (HASTE), and 3D bSSFP iT2Prep-BOOST. ASSESSMENT iT2Prep-BOOST bright-blood images were compared to T2prep-bSSFP images in terms of aortic vessel dimensions, lumen-to-myocardium contrast ratio (CR), and image quality (diagnostic confidence, vessel sharpness and presence of artifacts, assessed by three cardiologists on a 4-point scale, 1: nondiagnostic to 4: excellent). The iT2Prep-BOOST black-blood images were compared to 2D HASTE images for quantification of wall thickness. A visual comparison between computed tomography (CT) and iT2Prep-BOOST was performed in a patient with chronic aortic dissection. STATISTICAL TESTS Paired t-tests, Wilcoxon signed-rank tests, intraclass correlation coefficient (ICC), Bland-Altman analysis. A P value < 0.05 was considered statistically significant. RESULTS Bright-blood iT2Prep-BOOST resulted in significantly improved image quality (mean ± standard deviation 3.8 ± 0.5 vs. 3.3 ± 0.8) and CR (2.9 ± 0.8 vs. 1.8 ± 0.5) compared with T2Prep-bSSFP, with a shorter scan time (7.8 ± 1.7 minutes vs. 12.9 ± 3.4 minutes) while providing a complementary 3D black-blood image. Aortic lumen diameter and vessel wall thickness measurements in bright-blood and black-blood images were in good agreement with T2Prep-bSSFP and HASTE images (<0.02 cm and <0.005 cm bias, respectively) and good intrareader (ICC > 0.96) and interreader (ICC > 0.94) agreement was observed for all measurements. DATA CONCLUSION iT2Prep-BOOST might enable time-efficient simultaneous bright- and black-blood aortic imaging, with improved image quality compared to T2Prep-bSSFP and HASTE imaging, and comparable measurements for aortic wall and lumen dimensions. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Camila Munoz
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Alina Hua
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Karl P. Kunze
- MR Research CollaborationsSiemens Healthcare LimitedFrimleyUK
| | - Tevfik F. Ismail
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- MR Research CollaborationsSiemens Healthcare LimitedFrimleyUK
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - René M. Botnar
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Escuela de Ingeniería, Pontificia Universidad Católica de ChileSantiagoChile
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de ChileSantiagoChile
- Millenium Institute for Intelligent Healthcare Engineering iHEALTHSantiagoChile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Escuela de Ingeniería, Pontificia Universidad Católica de ChileSantiagoChile
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de ChileSantiagoChile
- Millenium Institute for Intelligent Healthcare Engineering iHEALTHSantiagoChile
| |
Collapse
|
7
|
Panda A, Francois CJ, Bookwalter CA, Chaturvedi A, Collins JD, Leiner T, Rajiah PS. Non-Contrast Magnetic Resonance Angiography: Techniques, Principles, and Applications. Magn Reson Imaging Clin N Am 2023; 31:337-360. [PMID: 37414465 DOI: 10.1016/j.mric.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Several non-contrast magnetic resonance angiography (MRA) techniques have been developed, providing an attractive alternative to contrast-enhanced MRA and a radiation-free alternative to computed tomography (CT) CT angiography. This review describes the physical principles, limitations, and clinical applications of bright-blood (BB) non-contrast MRA techniques. The principles of BB MRA techniques can be broadly divided into (a) flow-independent MRA, (b) blood-inflow-based MRA, (c) cardiac phase dependent, flow-based MRA, (d) velocity sensitive MRA, and (e) arterial spin-labeling MRA. The review also includes emerging multi-contrast MRA techniques that provide simultaneous BB and black-blood images for combined luminal and vessel wall evaluation.
Collapse
Affiliation(s)
- Ananya Panda
- Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India
| | | | | | - Abhishek Chaturvedi
- Department of Radiology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Tim Leiner
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
8
|
Fotaki A, Pushparajah K, Hajhosseiny R, Schneider A, Alam H, Ferreira J, Neji R, Kunze KP, Frigiola A, Botnar RM, Prieto C. Free-breathing, Contrast Agent-free Whole-Heart MTC-BOOST Imaging: Single-Center Validation Study in Adult Congenital Heart Disease. Radiol Cardiothorac Imaging 2023; 5:e220146. [PMID: 36860831 PMCID: PMC9969217 DOI: 10.1148/ryct.220146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 02/18/2023]
Abstract
Purpose To assess the clinical performance of the three-dimensional, free-breathing, Magnetization Transfer Contrast Bright-and-black blOOd phase-SensiTive (MTC-BOOST) sequence in adult congenital heart disease (ACHD). Materials and Methods In this prospective study, participants with ACHD undergoing cardiac MRI between July 2020 and March 2021 were scanned with the clinical T2-prepared balanced steady-state free precession sequence and proposed MTC-BOOST sequence. Four cardiologists scored their diagnostic confidence on a four-point Likert scale for sequential segmental analysis on images acquired with each sequence. Scan times and diagnostic confidence were compared using the Mann-Whitney test. Coaxial vascular dimensions at three anatomic landmarks were measured, and agreement between the research sequence and the corresponding clinical sequence was assessed with Bland-Altman analysis. Results The study included 120 participants (mean age, 33 years ± 13 [SD]; 65 men). The mean acquisition time of the MTC-BOOST sequence was significantly lower compared with that of the conventional clinical sequence (9 minutes ± 2 vs 14 minutes ± 5; P < .001). Diagnostic confidence was higher for the MTC-BOOST sequence compared with the clinical sequence (mean, 3.9 ± 0.3 vs 3.4 ± 0.7; P < .001). Narrow limits of agreement and mean bias less than 0.08 cm were found between the research and clinical vascular measurements. Conclusion The MTC-BOOST sequence provided efficient, high-quality, and contrast agent-free three-dimensional whole-heart imaging in ACHD, with shorter, more predictable acquisition time and improved diagnostic confidence compared with the reference standard clinical sequence.Keywords: MR Angiography, Cardiac Supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
|