1
|
Hughes AD, Teachey DT, Diorio C. Riding the storm: managing cytokine-related toxicities in CAR-T cell therapy. Semin Immunopathol 2024; 46:5. [PMID: 39012374 PMCID: PMC11252192 DOI: 10.1007/s00281-024-01013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/18/2024] [Indexed: 07/17/2024]
Abstract
The advent of chimeric antigen receptor T cells (CAR-T) has been a paradigm shift in cancer immunotherapeutics, with remarkable outcomes reported for a growing catalog of malignancies. While CAR-T are highly effective in multiple diseases, salvaging patients who were considered incurable, they have unique toxicities which can be life-threatening. Understanding the biology and risk factors for these toxicities has led to targeted treatment approaches which can mitigate them successfully. The three toxicities of particular interest are cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and immune effector cell-associated hemophagocytic lymphohistiocytosis (HLH)-like syndrome (IEC-HS). Each of these is characterized by cytokine storm and hyperinflammation; however, they differ mechanistically with regard to the cytokines and immune cells that drive the pathophysiology. We summarize the current state of the field of CAR-T-associated toxicities, focusing on underlying biology and how this informs toxicity management and prevention. We also highlight several emerging agents showing promise in preclinical models and the clinic. Many of these established and emerging agents do not appear to impact the anti-tumor function of CAR-T, opening the door to additional and wider CAR-T applications.
Collapse
Affiliation(s)
- Andrew D Hughes
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caroline Diorio
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Nguyen TTT, Kim YT, Jeong G, Jin M. Immunopathology of and potential therapeutics for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome: a translational perspective. Exp Mol Med 2024; 56:559-569. [PMID: 38448692 PMCID: PMC10984945 DOI: 10.1038/s12276-024-01182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 03/08/2024] Open
Abstract
Secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (sHLH/MAS) is a life-threatening immune disorder triggered by rheumatic disease, infections, malignancies, or medications. Characterized by the presence of hemophagocytic macrophages and a fulminant cytokine storm, sHLH/MAS leads to hyperferritinemia and multiorgan failure and rapidly progresses to death. The high mortality rate and the lack of specific treatments necessitate the development of a new drug. However, the complex and largely unknown immunopathologic mechanisms of sHLH/MAS, which involve dysfunction of various immune cells, diverse etiologies, and different clinical contexts make this effort challenging. This review introduces the terminology, diagnosis, and clinical features of sHLH/MAS. From a translational perspective, this review focuses on the immunopathological mechanisms linked to various etiologies, emphasizing potential drug targets, including key molecules and signaling pathways. We also discuss immunomodulatory biologics, existing drugs under clinical evaluation, and novel therapies in clinical trials. This systematic review aims to provide insights and highlight opportunities for the development of novel sHLH/MAS therapeutics.
Collapse
Affiliation(s)
- Tram T T Nguyen
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Yoon Tae Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Geunyeol Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
3
|
Del Giudice E, Sota J, Orlando F, Picciano L, Cimaz R, Cantarini L, Mauro A. Off-label use of canakinumab in pediatric rheumatology and rare diseases. Front Med (Lausanne) 2022; 9:998281. [PMID: 36330067 PMCID: PMC9622922 DOI: 10.3389/fmed.2022.998281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Since the first success of interleukin-1 blockade in cryopyrin-associated periodic syndrome, the use of interleukin-1 inhibitors has expanded to other disorders, including off-label indications. In particular, canakinumab has been employed in an off-label fashion in several diseases such as rare monogenic autoinflammatory diseases and multifactorial autoinflammatory diseases, disclosing an excellent efficacy and good safety profile in pediatric patients unresponsive to standards of care. In addition, hyperferritinemic syndromes and complex disorders, as well as Kawasaki disease, uveitis, and other pediatric rare disorders, represent additional areas where canakinumab efficacy is worth exploring. Altogether, the results summarized below are of paramount importance in pediatric patients where a considerable proportion of treatments are prescribed off-label. This review focuses on the off-label use of canakinumab in pediatric patients affected by systemic immune-mediated diseases.
Collapse
Affiliation(s)
- Emanuela Del Giudice
- Pediatric and Neonatology Unit, Maternal and Child Department, Sapienza University of Rome, Polo Pontino, Latina, Italy
| | - Jurgen Sota
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of Siena, Siena, Italy
| | - Francesca Orlando
- Pediatric Rheumatology Unit, Department of General and Emergency Pediatrics, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Ludovica Picciano
- Pediatric Emergency and Short Stay Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luca Cantarini
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of Siena, Siena, Italy
| | - Angela Mauro
- Pediatric Rheumatology Unit, Department of Childhood and Developmental Medicine, Fatebenefratelli-Sacco Hospital, Milan, Italy
- *Correspondence: Angela Mauro
| |
Collapse
|
4
|
Gleeson TA, Nordling E, Kaiser C, Lawrence CB, Brough D, Green JP, Allan SM. Looking into the IL-1 of the storm: are inflammasomes the link between immunothrombosis and hyperinflammation in cytokine storm syndromes? DISCOVERY IMMUNOLOGY 2022; 1:kyac005. [PMID: 38566906 PMCID: PMC10917224 DOI: 10.1093/discim/kyac005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 04/04/2024]
Abstract
Inflammasomes and the interleukin (IL)-1 family of cytokines are key mediators of both inflammation and immunothrombosis. Inflammasomes are responsible for the release of the pro-inflammatory cytokines IL-1β and IL-18, as well as releasing tissue factor (TF), a pivotal initiator of the extrinsic coagulation cascade. Uncontrolled production of inflammatory cytokines results in what is known as a "cytokine storm" leading to hyperinflammatory disease. Cytokine storms can complicate a variety of diseases and results in hypercytokinemia, coagulopathies, tissue damage, multiorgan failure, and death. Patients presenting with cytokine storm syndromes have a high mortality rate, driven in part by disseminated intravascular coagulation (DIC). While our knowledge on the factors propagating cytokine storms is increasing, how cytokine storm influences DIC remains unknown, and therefore treatments for diseases, where these aspects are a key feature are limited, with most targeting specific cytokines. Currently, no therapies target the immunothrombosis aspect of hyperinflammatory syndromes. Here we discuss how targeting the inflammasome and pyroptosis may be a novel therapeutic strategy for the treatment of hyperinflammation and its associated pathologies.
Collapse
Affiliation(s)
- Tara A Gleeson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Erik Nordling
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
| | | | - Catherine B Lawrence
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Jack P Green
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Kostik MM, Isupova EA, Belozerov K, Likhacheva TS, Suspitsin EN, Raupov R, Masalova VV, Chikova IA, Dubko MF, Kalashnikova OV, Chasnyk VG, Cron RQ. Standard and increased canakinumab dosing to quiet macrophage activation syndrome in children with systemic juvenile idiopathic arthritis. Front Pediatr 2022; 10:894846. [PMID: 35967555 PMCID: PMC9366524 DOI: 10.3389/fped.2022.894846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Macrophage activation syndrome (MAS) is a life-threatening, potentially fatal condition associated with systemic juvenile idiopathic arthritis (sJIA). Interleukin-1 (IL-1) is a key cytokine in the pathogenesis of sJIA MAS. Many cases of MAS are medically refractory to traditional doses of biologic cytokine inhibitors and may require increased dosing. When MAS occurs in the setting of sJIA treated with the IL-1 receptor antagonist (IL-1Ra), anakinra, increased anakinra dosing may be beneficial. Increased dosing of another IL-1 inhibitor, canakinumab, a monoclonal antibody to IL-1β, has not been reported to treat refractory MAS in the setting of sJIA. METHODS Retrospective data collection extracted from the electronic medical record focused on canakinumab usage and dosing in 8 children with sJIA who developed MAS at a single academic center from 2011 to 2020. RESULTS Eight sJIA children (five girls) with median age 8.5 years (range, 0.9-14.2 years) were included in the present study. Five children developed MAS at disease onset and three during ongoing canakinumab therapy. MAS resolved in all eight children with canakinumab treatment. When the canakinumab dosing was insufficient or MAS developed during canakinumab therapy, the dosing was temporally up-titrated (four patients, maximum 300 mg per dose) without observed side effects. CONCLUSION This report provides evidence for the efficacy and safety of short-term increased doses (2-3-times normal) of canakinumab in treating sJIA associated MAS. Further study of the efficacy and safety of increased doses of canakinumab for treatment of MAS in children with sJIA is warranted.
Collapse
Affiliation(s)
- Mikhail M Kostik
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Eugenia A Isupova
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Konstantin Belozerov
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Tatyana S Likhacheva
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Evgeny N Suspitsin
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia.,Medical Genetics, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia.,Molecular Oncology, National Medical Research Center of Oncology n.a. N.N. Petrov, Saint-Petersburg, Russia
| | - Rinat Raupov
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Vera V Masalova
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Irina A Chikova
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Margarita F Dubko
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Olga V Kalashnikova
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Vyacheslav G Chasnyk
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Randy Q Cron
- Division of Rheumatology, Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, United States
| |
Collapse
|
6
|
Nasonov EL. Coronavirus disease 2019 (COVID-19) and autoimmunity. RHEUMATOLOGY SCIENCE AND PRACTICE 2021. [DOI: 10.47360/1995-4484-2021-5-30] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The coronavirus 2019 pandemic (coronavirus disease, COVID-19), etiologically related to the SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus-2), has once again reawakened healthcare professionals’ interest towards new clinical and conceptual issues of human immunology and immunopathology. An unprecedented number of clinical trials and fundamental studies of epidemiology, virology, immunology and molecular biology, of the COVID-19 clinical course polymorphism and pharmacotherapy have been conducted within one year since the outbreak of 2019 pandemic, bringing together scientists of almost all biological and physicians of almost all medical specialties. Their joint efforts have resulted in elaboration of several types of vaccines against SARS-CoV-2 infection and, in general, fashioning of more rational approaches to patient management. Also important for COVID-19 management were all clinical trials of biologics and “targeted” anti-inflammatory drugs modulating intracellular cytokine signaling, which have been specifically developed for treatment immune-mediated inflammatory rheumatic disease (IMIRDs) over the past 20 years. It became obvious after a comprehensive analysis of the entire spectrum of clinical manifestations and immunopathological disorders in COVID-19 is accompanied by a wide range of extrapulmonary clinical and laboratory disorders, some of which are characteristic of IMIRDs and other autoimmune and auto-in-flammatory human diseases. All these phenomena substantiated the practice of anti-inflammatory drugs repurposing with off-label use of specific antirheumatic agents for treatment of COVID-19. This paper discusses potential use of glucocorticoids, biologics, JAK inhibitors, etc., blocking the effects of pro-inflammatory cytokines for treatment of COVID-19.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University of the Ministry of Health Care of Russian Federation (Sechenov University)
| |
Collapse
|