1
|
Tai Y, Zhang Z, Liu Z, Li X, Yang Z, Wang Z, An L, Ma Q, Su Y. D-ribose metabolic disorder and diabetes mellitus. Mol Biol Rep 2024; 51:220. [PMID: 38281218 PMCID: PMC10822815 DOI: 10.1007/s11033-023-09076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
D-ribose, an ubiquitous pentose compound found in all living cells, serves as a vital constituent of numerous essential biomolecules, including RNA, nucleotides, and riboflavin. It plays a crucial role in various fundamental life processes. Within the cellular milieu, exogenously supplied D-ribose can undergo phosphorylation to yield ribose-5-phosphate (R-5-P). This R-5-P compound serves a dual purpose: it not only contributes to adenosine triphosphate (ATP) production through the nonoxidative phase of the pentose phosphate pathway (PPP) but also participates in nucleotide synthesis. Consequently, D-ribose is employed both as a therapeutic agent for enhancing cardiac function in heart failure patients and as a remedy for post-exercise fatigue. Nevertheless, recent clinical studies have suggested a potential link between D-ribose metabolic disturbances and type 2 diabetes mellitus (T2DM) along with its associated complications. Additionally, certain in vitro experiments have indicated that exogenous D-ribose exposure could trigger apoptosis in specific cell lines. This article comprehensively reviews the current advancements in D-ribose's digestion, absorption, transmembrane transport, intracellular metabolic pathways, impact on cellular behaviour, and elevated levels in diabetes mellitus. It also identifies areas requiring further investigation.
Collapse
Affiliation(s)
- Yu Tai
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zehong Zhang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
- Department of Clinical Laboratory, the Fourth Hospital of Baotou, Baotou, Inner Mongolia, China
| | - Zhi Liu
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaojing Li
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhongbin Yang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zeying Wang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Liang An
- Department of Clinical Laboratory, the Fourth Hospital of Baotou, Baotou, Inner Mongolia, China
| | - Qiang Ma
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yan Su
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China.
| |
Collapse
|
2
|
Moschini R, Balestri F, Cappiello M, Signore G, Mura U, Del-Corso A. Ribose Intake as Food Integrator: Is It a Really Convenient Practice? Biomolecules 2022; 12:biom12121775. [PMID: 36551203 PMCID: PMC9776227 DOI: 10.3390/biom12121775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Reports concerning the beneficial effects of D-ribose administration in cardiovascular and muscle stressful conditions has led to suggestions for the use of ribose as an energizing food supplement for healthy people. However, this practice still presents too many critical issues, suggesting that caution is needed. In fact, there are many possible negative effects of this sugar that we believe are underestimated, if not neglected, by the literature supporting the presentation of the product to the market. Here, the risks deriving from the use of free ribose as ATP source, forcing ribose-5-phosphate to enter into the pentose phosphate pathway, is emphasized. On the basis of the remarkable glycation capacity of ribose, the easily predictable cytotoxic effect of the molecule is also highlighted.
Collapse
Affiliation(s)
- Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Correspondence:
| | - Antonella Del-Corso
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno, 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
3
|
Resveratrol administration reduces pain perception but does not attenuate force loss following exercise-induced muscle damage. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-021-00889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Krueger KJ, Rahman FK, Shen Q, Vacek J, Hiebert JB, Pierce JD. Mitochondrial bioenergetics and D-ribose in HFpEF: a brief narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1504. [PMID: 34805366 PMCID: PMC8573443 DOI: 10.21037/atm-21-2291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/15/2021] [Indexed: 11/24/2022]
Abstract
Objective In this review article, we briefly describe the status of treatment options for HFpEF and the role of mitochondrial dysfunction in the pathogenesis of HFpEF as an alternative therapeutic target. We also examine the mechanisms of D-ribose in cellular energy production and discuss the potential disadvantages and benefits of supplemental use of D-ribose in patients with HFpEF. Background Heart failure is a major cardiovascular disease that impacts over 6 million Americans and is one of the leading causes for morbidity and mortality. Patients with heart failure often experience shortness of breath and fatigue along with impaired physical capacity, all leading to poor quality of life. As a subtype of heart failure, heart failure with preserved ejection fraction (HFpEF) is characterized with impaired diastolic function. Currently, there are no effective treatments specifically for HFpEF, thus clinicians and researchers are searching for therapies to improve cardiac function. Emerging evidence indicate that mitochondrial dysfunction and impaired cardiac bioenergetics are among the underlying mechanisms for HFpEF. There is increased interest in investigating the use of supplements such as D-ribose to enhance mitochondrial function and improve production of adenosine triphosphate (ATP). Methods For this narrative review, more than 100 relevant scientific articles were considered from various databases (e.g., PubMed, Web of Science, CINAHL, and Google Scholar) using the keywords “Heart Failure”, “HFpEF”, “D-ribose”, “ATP”, “Mitochondria”, Bioenergetics”, and “Cellular Respiration”. Conclusions It is essential to find potential targeted therapeutic treatments for HFpEF. Since there is evidence that the HFpEF is related to impaired myocardial bioenergetics, enhancing mitochondrial function could augment cardiac function. Using a supplement such as D-ribose could improve mitochondrial function by increasing ATP and enhancing cardiac performance for patients with HFpEF. There is a recently completed clinical trial with HFpEF patients that indicates D-ribose increases ATP production and improves cardiac ejection fraction.
Collapse
Affiliation(s)
- Kathryn J Krueger
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Faith K Rahman
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Qiuhua Shen
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - James Vacek
- The University of Kansas Health System, Kansas City, KS, USA
| | - John B Hiebert
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Janet D Pierce
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
5
|
Hendrix J, Nijs J, Ickmans K, Godderis L, Ghosh M, Polli A. The Interplay between Oxidative Stress, Exercise, and Pain in Health and Disease: Potential Role of Autonomic Regulation and Epigenetic Mechanisms. Antioxidants (Basel) 2020; 9:E1166. [PMID: 33238564 PMCID: PMC7700330 DOI: 10.3390/antiox9111166] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress can be induced by various stimuli and altered in certain conditions, including exercise and pain. Although many studies have investigated oxidative stress in relation to either exercise or pain, the literature presents conflicting results. Therefore, this review critically discusses existing literature about this topic, aiming to provide a clear overview of known interactions between oxidative stress, exercise, and pain in healthy people as well as in people with chronic pain, and to highlight possible confounding factors to keep in mind when reflecting on these interactions. In addition, autonomic regulation and epigenetic mechanisms are proposed as potential mechanisms of action underlying the interplay between oxidative stress, exercise, and pain. This review highlights that the relation between oxidative stress, exercise, and pain is poorly understood and not straightforward, as it is dependent on the characteristics of exercise, but also on which population is investigated. To be able to compare studies on this topic, strict guidelines should be developed to limit the effect of several confounding factors. This way, the true interplay between oxidative stress, exercise, and pain, and the underlying mechanisms of action can be revealed and validated via independent studies.
Collapse
Affiliation(s)
- Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Unit of Physiotherapy, Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
- University of Gothenburg Center for Person-Centred Care (GPCC), Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kelly Ickmans
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- External Service for Prevention and Protection at Work (IDEWE), 3001 Heverlee, Belgium
| | - Manosij Ghosh
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| |
Collapse
|