1
|
Lehikoinen J, Nurmi K, Ainola M, Clancy J, Nieminen JK, Jansson L, Vauhkonen H, Vaheri A, Smura T, Laakso SM, Eklund KK, Tienari PJ. Epstein-Barr Virus in the Cerebrospinal Fluid and Blood Compartments of Patients With Multiple Sclerosis and Controls. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200226. [PMID: 38608226 PMCID: PMC11087029 DOI: 10.1212/nxi.0000000000200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/24/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Epstein-Barr virus (EBV) infection is a major risk factor of multiple sclerosis (MS). We examined the presence of EBV DNA in the CSF and blood of patients with MS and controls. We analyzed whether EBV DNA is more common in the CSF of patients with MS than in controls and estimated the proportions of EBV-positive B cells in the CSF and blood. METHODS CSF supernatants and cells were collected at diagnostic lumbar punctures from 45 patients with MS and 45 HLA-DR15 matched controls with other conditions, all participants were EBV seropositive. Cellular DNA was amplified by Phi polymerase targeting both host and viral DNA, and representative samples were obtained in 28 cases and 28 controls. Nonamplified DNA from CSF cells (14 cases, 14 controls) and blood B cells (10 cases, 10 controls) were analyzed in a subset of participants. Multiple droplet digital PCR (ddPCR) runs were performed per sample to assess the cumulative EBV positivity rate. To detect viral RNA as a sign of activation, RNA sequencing was performed in blood CD4-positive, CD8-positive, and CD19-positive cells from 21 patients with MS and 3 controls. RESULTS One of the 45 patients with MS and none of the 45 controls were positive for EBV DNA in CSF supernatants (1 mL). CSF cellular DNA was analyzed in 8 independent ddPCRs: EBV DNA was detected at least once in 18 (64%) of the 28 patients with MS and in 15 (54%) of the 28 controls (p = 0.59, Fisher test). The cumulative EBV positivity increased steadily up to 59% in the successive ddPCRs, suggesting that all individuals would have reached EBV positivity in the CSF cells, if more DNA would have been analyzed. The estimated proportion of EBV-positive B cells was >1/10,000 in both the CSF and blood. We did not detect viral RNA, except from endogenous retroviruses, in the blood lymphocyte subpopulations. DISCUSSION EBV-DNA is equally detectable in the CSF cells of both patients with MS and controls with ddPCR, and the probabilistic approach indicates that the true positivity rate approaches 100% in EBV-positive individuals. The proportion of EBV-positive B cells seems higher than previously estimated.
Collapse
Affiliation(s)
- Joonas Lehikoinen
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Katariina Nurmi
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Mari Ainola
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Jonna Clancy
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Janne K Nieminen
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Lilja Jansson
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Hanna Vauhkonen
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Antti Vaheri
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Teemu Smura
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Sini M Laakso
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Kari K Eklund
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| | - Pentti J Tienari
- From the Translational Immunology Research Program (J.L., K.N., M.A., J.K.N., L.J., S.M.L., K.K.E., P.J.T.), University of Helsinki; Departments of Neurology (J.L., J.K.N., L.J., S.M.L., P.J.T.), Neurocenter, and Rheumatology (K.N., M.A., K.K.E.), Helsinki University Hospital; Research and Development (J.C.), Finnish Red Cross Blood Service, Helsinki; and Department of Virology (H.V., A.V., T.S.), Medicum, University of Helsinki, Finland
| |
Collapse
|
2
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
3
|
Hrastelj J, Andrews R, Loveless S, Morgan J, Bishop SM, Bray NJ, Williams NM, Robertson NP. CSF-resident CD4 + T-cells display a distinct gene expression profile with relevance to immune surveillance and multiple sclerosis. Brain Commun 2021; 3:fcab155. [PMID: 34761221 PMCID: PMC8574295 DOI: 10.1093/braincomms/fcab155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
The CNS has traditionally been considered an immune privileged site, but is now understood to have a system of immune surveillance, predominantly involving CD4+ T-cells. Identifying functional differences between CNS and blood CD4+ T-cells, therefore, have relevance to CNS immune surveillance as well as to neurological conditions, such as multiple sclerosis, in which CD4+ T-cells play a central role. Here, CD4+ T-cells were purified from CSF and blood from 21 patients with newly diagnosed treatment-naïve multiple sclerosis and 20 individuals with non-inflammatory disorders using fluorescence-activated cell sorting, and their transcriptomes were profiled by RNA sequencing. Paired comparisons between CD4+ T-cells from CSF and blood identified 5156 differentially expressed genes in controls and 4263 differentially expressed in multiple sclerosis patients at false discovery rate <5%. Differential expression analysis of CD4+ T-cells collected from the CSF highlighted genes involved in migration, activation, cholesterol biosynthesis and signalling, including those with known relevance to multiple sclerosis pathogenesis and treatment. Expression of markers of CD4+ T-cell subtypes suggested an increased proportion of Th1 and Th17 cells in CSF. Gene ontology terms significant only in multiple sclerosis were predominantly those involved in cellular proliferation. A two-way comparison of CSF versus blood CD4+ T-cells in multiple sclerosis compared with non-inflammatory disorder controls identified four significant genes at false discovery rate <5% (CYP51A1, LRRD1, YES1 and PASK), further implicating cholesterol biosynthesis and migration mechanisms. Analysis of CSF CD4+ T-cells in an extended cohort of multiple sclerosis cases (total N = 41) compared with non-inflammatory disorder controls (total N = 38) identified 140 differentially expressed genes at false discovery rate < 5%, many of which have known relevance to multiple sclerosis, including XBP1, BHLHE40, CD40LG, DPP4 and ITGB1. This study provides the largest transcriptomic analysis of purified cell subpopulations in CSF to date and has relevance for the understanding of CNS immune surveillance, as well as multiple sclerosis pathogenesis and treatment discovery.
Collapse
Affiliation(s)
- James Hrastelj
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Robert Andrews
- School of Medicine, Cardiff
University, Cardiff CF14 4XW, UK
| | - Samantha Loveless
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Joanne Morgan
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Stefan Mark Bishop
- European Cancer Stem Cell Research Institute,
Cardiff University, Cardiff CF24 4HQ, UK
| | - Nicholas J Bray
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Nigel M Williams
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| |
Collapse
|
4
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Severa M, Farina C, Salvetti M, Coccia EM. Three Decades of Interferon-β in Multiple Sclerosis: Can We Repurpose This Information for the Management of SARS-CoV2 Infection? Front Immunol 2020; 11:1459. [PMID: 32655578 PMCID: PMC7326001 DOI: 10.3389/fimmu.2020.01459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Salvetti
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy.,Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | | |
Collapse
|
6
|
Abd WS, Kareem RMAA. Impact of EBV on multiple sclerosis in some of the Iraqi males: Immunological and molecular study. INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019 2020. [DOI: 10.1063/5.0027964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Song H, Lim Y, Im H, Bae JM, Kang GH, Ahn J, Baek D, Kim TY, Yoon SS, Koh Y. Interpretation of EBV infection in pan-cancer genome considering viral life cycle: LiEB (Life cycle of Epstein-Barr virus). Sci Rep 2019; 9:3465. [PMID: 30837539 PMCID: PMC6401378 DOI: 10.1038/s41598-019-39706-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
We report a novel transcriptomic analysis workflow called LiEB (Life cycle of Epstein-Barr virus) to characterize distributions of oncogenic virus, Epstein-Barr virus (EBV) infection in human tumors. We analyzed 851 The Cancer Genome Atlas whole-transcriptome sequencing (WTS) data to investigate EBV infection by life cycle information using three-step LiEB workflow: 1) characterize virus infection generally; 2) align transcriptome sequences against a hybrid human-EBV genome, and 3) quantify EBV gene expression. Our results agreed with EBV infection status of public cell line data. Analysis in stomach adenocarcinoma identified EBV-positive cases involving PIK3CA mutations and/or CDKN2A silencing with biologically more determination, compared to previous reports. In this study, we found that a small number of colorectal adenocarcinoma cases involved with EBV lytic gene expression. Expression of EBV lytic genes was also observed in 3% of external colon cancer cohort upon WTS analysis. Gene set enrichment analysis showed elevated expression of genes related to E2F targeting and interferon-gamma responses in EBV-associated tumors. Finally, we suggest that interpretation of EBV life cycle is essential when analyzing its infection in tumors, and LiEB provides high capability of detecting EBV-positive tumors. Observation of EBV lytic gene expression in a subset of colon cancers warrants further research.
Collapse
Affiliation(s)
- Hyojin Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoojoo Lim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hogune Im
- Genome Opinion, Ansan, Gyeonggi-do, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junhak Ahn
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Baek
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Youngil Koh
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Nakayama A, Abe H, Kunita A, Saito R, Kanda T, Yamashita H, Seto Y, Ishikawa S, Fukayama M. Viral loads correlate with upregulation of PD-L1 and worse patient prognosis in Epstein-Barr Virus-associated gastric carcinoma. PLoS One 2019; 14:e0211358. [PMID: 30695048 PMCID: PMC6350976 DOI: 10.1371/journal.pone.0211358] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/13/2019] [Indexed: 12/13/2022] Open
Abstract
Epstein–Barr virus (EBV)-associated gastric carcinoma (EBVaGC), one of four major gastric cancer types, consists of clonal growth of EBV-infected epithelial cells. However, the significance of viral loads in each tumor cell has not been evaluated. EBV-DNA is stably maintained in episomal form in the nucleus of each cancer cell. To estimate EBV copy number per genome (EBV-CN), qPCR of viral EBNA1 and host GAPDH, standardized by Namalwa DNA (one copy/genome), was applied to the formalin-fixed paraffin embedded (FFPE) surgically resected EBVaGC specimens (n = 43) and EBVaGC cell lines (SNU-719 and NCC-24). In surgical specimens, the cancer cell ratio (CCR) was determined with image analysis, and EBV-CN was obtained by adjusting qPCR value with CCR. Fluorescent in situ hybridization (FISH) was also applied to the FFPE sections using the whole EBV-genome as a probe. In surgical specimens, EBV-CN obtained by qPCR/CCR was between 1.2 and 185 copies with a median of 9.9. EBV-CN of SNU-719 and NCC-24 was 42.0 and 1.1, respectively. A linear correlation was observed with qPCR/CCR data up to 20 copies/genome (40 signals/nucleus), the limit of FISH analysis. In addition, substantial variation in the number of EBV foci was observed. Based on qPCR/CCR, high EBV-CN (>10 copies) correlated with PD-L1 expression in cancer cells (P = 0.015), but not with other pathological indicators. Furthermore, EBVaGC with high EBV-CN showed worse disease-specific survival (P = 0.041). Our findings suggest that cancer cell viral loads may contribute to expression of the immune checkpoint molecule and promotion of cancer progression in EBVaGC.
Collapse
Affiliation(s)
- Atsuhito Nakayama
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Ruri Saito
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Teru Kanda
- Department of Microbiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroharu Yamashita
- Department of Gastrointestinal Surgery, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Trivedi P, Slack FJ, Anastasiadou E. Epstein-Barr virus: From kisses to cancer, an ingenious immune evader. Oncotarget 2018; 9:36411-36412. [PMID: 30559926 PMCID: PMC6284857 DOI: 10.18632/oncotarget.26381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Pankaj Trivedi
- Harvard Medical School Initiative for RNA Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Bhagat R, Prajapati B, Narwal S, Agnihotri N, Adlakha YK, Sen J, Mani S, Seth P. Zika virus E protein alters the properties of human fetal neural stem cells by modulating microRNA circuitry. Cell Death Differ 2018; 25:1837-1854. [PMID: 30050059 PMCID: PMC6180120 DOI: 10.1038/s41418-018-0163-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023] Open
Abstract
Zika virus (ZV) infects neural stem cells (NSCs) and causes quiescence in NSCs, reducing the pool of brain cells, leading to microcephaly. Despite conscientious efforts, the molecular mechanisms for ZV-mediated effects on NSCs lack clarity. This study aimed to explore the underlying mechanisms for ZV-mediated induction of quiescence in the primary cultures of human fetal neural stem cells (fNSCs). We demonstrate that expression of ZV envelope (E) protein displays maximum quiescence in human fNSCs by accumulating cells in the G0/G1 phase of the cell cycle as compared to other non-structural proteins, viz. NS2A, NS4A and NS4B. E protein induces immature differentiation by induction of pro-neuronal genes in proliferating fNSCs, induces apoptosis in differentiating fNSCs 3 days post differentiation, and disrupts migration of cells from differentiating neurospheres. In utero electroporation of mouse brain with E protein shows drastic downregulation of proliferating cells in ventricular and subventricular zone regions. Global microRNA sequencing suggests that E protein modulates miRNA circuitry. Among differentially expressed miRNAs, we found 14 upregulated and 11 downregulated miRNAs. Mir-204-3p and mir-1273g-3p directly regulate NOTCH2 and PAX3 expression, respectively, by binding to their 3'UTR. Bioinformatic analysis using GO analysis for the targets of differentially expressed miRNAs revealed enrichment of cell cycle and developmental processes. Furthermore, WNT, CCKR, PDGF, EGF, p53, and NOTCH signaling pathways were among the top enriched pathways. Thus, our study provides evidence for the involvement of ZV E protein and novel insights into the molecular mechanism through identification of miRNA circuitry. Art work depicting the effect of Zika virus E protein on human fetal neural stem cells.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Bharat Prajapati
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sonia Narwal
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Nitin Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Yogita K Adlakha
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Shyamala Mani
- Curadev Pharma Pvt. Ltd, B87 Sector 83, Noida, Uttar Pradesh, India
- INSERM, U1141, Hôpital Robert Debré, Paris, France
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| |
Collapse
|
11
|
The Nefarious Nexus of Noncoding RNAs in Cancer. Int J Mol Sci 2018; 19:ijms19072072. [PMID: 30018188 PMCID: PMC6073630 DOI: 10.3390/ijms19072072] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The past decade has witnessed enormous progress, and has seen the noncoding RNAs (ncRNAs) turn from the so-called dark matter RNA to critical functional molecules, influencing most physiological processes in development and disease contexts. Many ncRNAs interact with each other and are part of networks that influence the cell transcriptome and proteome and consequently the outcome of biological processes. The regulatory circuits controlled by ncRNAs have become increasingly more relevant in cancer. Further understanding of these complex network interactions and how ncRNAs are regulated, is paving the way for the identification of better therapeutic strategies in cancer.
Collapse
|
12
|
Anastasiadou E, Stroopinsky D, Alimperti S, Jiao AL, Pyzer AR, Cippitelli C, Pepe G, Severa M, Rosenblatt J, Etna MP, Rieger S, Kempkes B, Coccia EM, Sui SJH, Chen CS, Uccini S, Avigan D, Faggioni A, Trivedi P, Slack FJ. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia 2018; 33:132-147. [PMID: 29946193 PMCID: PMC6327052 DOI: 10.1038/s41375-018-0178-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 04/27/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
Abstract
Cancer cells subvert host immune surveillance by altering immune checkpoint (IC) proteins. Some Epstein−Barr virus (EBV)-associated tumors have higher Programmed Cell Death Ligand, PD-L1 expression. However, it is not known how EBV alters ICs in the context of its preferred host, the B lymphocyte and in derived lymphomas. Here, we found that latency III-expressing Burkitt lymphoma (BL), diffuse large B-cell lymphomas (DLBCL) or their EBNA2-transfected derivatives express high PD-L1. In a DLBCL model, EBNA2 but not LMP1 is sufficient to induce PD-L1. Latency III-expressing DLBCL biopsies showed high levels of PD-L1. The PD-L1 targeting oncosuppressor microRNA miR-34a was downregulated in EBNA2-transfected lymphoma cells. We identified early B-cell factor 1 (EBF1) as a repressor of miR-34a transcription. Short hairpin RNA (shRNA)-mediated knockdown of EBF1 was sufficient to induce miR-34a transcription, which in turn reduced PD-L1. MiR-34a reconstitution in EBNA2-transfected DLBCL reduced PD-L1 expression and increased its immunogenicity in mixed lymphocyte reactions (MLR) and in three-dimensional biomimetic microfluidic chips. Given the importance of PD-L1 inhibition in immunotherapy and miR-34a dysregulation in cancers, our findings may have important implications for combinatorial immunotherapy, which include IC inhibiting antibodies and miR-34a, for EBV-associated cancers.
Collapse
Affiliation(s)
- Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dina Stroopinsky
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stella Alimperti
- The Wyss Institute for Biological Inspired Engineering at Harvard, Harvard University, Boston, MA, USA
| | - Alan L Jiao
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Athalia R Pyzer
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Claudia Cippitelli
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jacalyn Rosenblatt
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marilena P Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Rieger
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Marchioninistraße 25, 81377, Munich, Germany
| | - Bettina Kempkes
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Marchioninistraße 25, 81377, Munich, Germany
| | - Eliana M Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Shannan J Ho Sui
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Christopher S Chen
- The Wyss Institute for Biological Inspired Engineering at Harvard, Harvard University, Boston, MA, USA
| | - Stefania Uccini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - David Avigan
- Department of Hematology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alberto Faggioni
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 0161, Rome, Italy
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 0161, Rome, Italy.
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Veroni C, Serafini B, Rosicarelli B, Fagnani C, Aloisi F. Transcriptional profile and Epstein-Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. J Neuroinflammation 2018; 15:18. [PMID: 29338732 PMCID: PMC5771146 DOI: 10.1186/s12974-017-1049-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
Background It is debated whether multiple sclerosis (MS) might result from an immunopathological response toward an active Epstein-Barr virus (EBV) infection brought into the central nervous system (CNS) by immigrating B cells. Based on this model, a relationship should exist between the local immune milieu and EBV infection status in the MS brain. To test this hypothesis, we analyzed expression of viral and cellular genes in brain-infiltrating immune cells. Methods Twenty-three postmortem snap-frozen brain tissue blocks from 11 patients with progressive MS were selected based on good RNA quality and prominent immune cell infiltration. White matter perivascular and intrameningeal immune infiltrates, including B cell follicle-like structures, were isolated from brain sections using laser capture microdissection. Enhanced PCR-based methods were used to investigate expression of 75 immune-related genes and 6 EBV genes associated with latent and lytic infection. Data were analyzed using univariate and multivariate statistical methods. Results Genes related to T cell activation, cytotoxic cell-mediated (or type 1) immunity, B cell growth and differentiation, pathogen recognition, myeloid cell function, type I interferon pathway activation, and leukocyte recruitment were found expressed at different levels in most or all MS brain immune infiltrates. EBV genes were detected in brain samples from 9 of 11 MS patients with expression patterns suggestive of in situ activation of latent infection and, less frequently, entry into the lytic cycle. Comparison of data obtained in meningeal and white matter infiltrates revealed higher expression of genes related to interferonγ production, B cell differentiation, cell proliferation, lipid antigen presentation, and T cell and myeloid cell recruitment, as well as more widespread EBV infection in the meningeal samples. Multivariate analysis grouped genes expressed in meningeal and white matter immune infiltrates into artificial factors that were characterized primarily by genes involved in type 1 immunity effector mechanisms and type I interferon pathway activation. Conclusion These results confirm profound in situ EBV deregulation and suggest orchestration of local antiviral function in the MS brain, lending support to a model of MS pathogenesis that involves EBV as possible antigenic stimulus of the persistent immune response in the central nervous system. Electronic supplementary material The online version of this article (10.1186/s12974-017-1049-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Barbara Rosicarelli
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Corrado Fagnani
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
14
|
Laurence M, Benito-León J. Epstein–Barr virus and multiple sclerosis: Updating Pender's hypothesis. Mult Scler Relat Disord 2017; 16:8-14. [DOI: 10.1016/j.msard.2017.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/14/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
|
15
|
Safari-Alighiarloo N, Rezaei-Tavirani M, Taghizadeh M, Tabatabaei SM, Namaki S. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood reveals new candidate genes for multiple sclerosis. PeerJ 2016; 4:e2775. [PMID: 28028462 PMCID: PMC5183126 DOI: 10.7717/peerj.2775] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The involvement of multiple genes and missing heritability, which are dominant in complex diseases such as multiple sclerosis (MS), entail using network biology to better elucidate their molecular basis and genetic factors. We therefore aimed to integrate interactome (protein-protein interaction (PPI)) and transcriptomes data to construct and analyze PPI networks for MS disease. METHODS Gene expression profiles in paired cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) samples from MS patients, sampled in relapse or remission and controls, were analyzed. Differentially expressed genes which determined only in CSF (MS vs. control) and PBMCs (relapse vs. remission) separately integrated with PPI data to construct the Query-Query PPI (QQPPI) networks. The networks were further analyzed to investigate more central genes, functional modules and complexes involved in MS progression. RESULTS The networks were analyzed and high centrality genes were identified. Exploration of functional modules and complexes showed that the majority of high centrality genes incorporated in biological pathways driving MS pathogenesis. Proteasome and spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission) which were identified by both modularity and clique analyses. Finally, STK4, RB1, CDKN1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control) and CDC37, MAP3K3, MYC genes in PBMCs (relapse vs. remission) were identified as potential candidate genes for MS, which were the more central genes involved in biological pathways. DISCUSSION This study showed that network-based analysis could explicate the complex interplay between biological processes underlying MS. Furthermore, an experimental validation of candidate genes can lead to identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Nahid Safari-Alighiarloo
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mohammad Taghizadeh
- Bioinformatics Department, Institute of Biochemistry and Biophysics, Tehran University , Tehran , Iran
| | - Seyyed Mohammad Tabatabaei
- Medical Informatics Department, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeed Namaki
- Immunology Department, Faculty of Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
16
|
Serafini B, Rosicarelli B, Veroni C, Zhou L, Reali C, Aloisi F. RORγt Expression and Lymphoid Neogenesis in the Brain of Patients with Secondary Progressive Multiple Sclerosis. J Neuropathol Exp Neurol 2016; 75:877-88. [PMID: 27413074 DOI: 10.1093/jnen/nlw063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 12/16/2022] Open
Abstract
Ectopic B-cell follicle-like structures (ELS) are found in the meninges of patients with secondary progressive multiple sclerosis (SPMS). Because cells expressing the transcriptional regulator retinoic acid receptor-related orphan receptor-γt (RORγt) and producing interleukin 17 (IL17), e.g. T helper 17 cells and lymphoid tissue inducer (LTi) cells, have been implicated in the formation of ELS, we studied RORγt and IL17 expression in brain tissue from patients with SPMS an assessed their relationships to immune infiltrates and meningeal ELS. By immunohistochemistry, small numbers of RORγt-positive cells were detected in the meninges of 6 of 12 SPMS cases analyzed. RORγt-positive cells were localized in B-cell follicles or aggregates and nearby diffuse meningeal infiltrates, and predominantly co-expressed CD3. Only a few RORγt-positive, CD3-negative cells were observed, suggesting the presence of group 3 innate lymphoid cells, which comprise the LTi cell subset. Some IL17-positive cells, co-expressing in part RORγt and predominantly CD3, were found in meningeal B-cell follicles from 4 SPMS cases. Rare RORγt-positive and IL17-positive cells were detected in white matter. Gene expression analysis of laser dissected meningeal infiltrates and white matter lesions confirmed low frequencies and virtual absence of RORγt and IL17 signals, respectively. Thus, there is selective migration or survival of RORγt-positive cells in MS patient meninges and an association of these cells with ELS.
Collapse
Affiliation(s)
- Barbara Serafini
- From the Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy (BS, BR, CV, FA) and GlaxoSmithKline Shanghai Research and Development Center, Zhangjiang Hi-Tech Park, TAU, Pudong, China, Neuroscience Shanghai (LZ, CR)
| | - Barbara Rosicarelli
- From the Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy (BS, BR, CV, FA) and GlaxoSmithKline Shanghai Research and Development Center, Zhangjiang Hi-Tech Park, TAU, Pudong, China, Neuroscience Shanghai (LZ, CR)
| | - Caterina Veroni
- From the Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy (BS, BR, CV, FA) and GlaxoSmithKline Shanghai Research and Development Center, Zhangjiang Hi-Tech Park, TAU, Pudong, China, Neuroscience Shanghai (LZ, CR)
| | - Ling Zhou
- From the Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy (BS, BR, CV, FA) and GlaxoSmithKline Shanghai Research and Development Center, Zhangjiang Hi-Tech Park, TAU, Pudong, China, Neuroscience Shanghai (LZ, CR)
| | - Camilla Reali
- From the Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy (BS, BR, CV, FA) and GlaxoSmithKline Shanghai Research and Development Center, Zhangjiang Hi-Tech Park, TAU, Pudong, China, Neuroscience Shanghai (LZ, CR)
| | - Francesca Aloisi
- From the Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy (BS, BR, CV, FA) and GlaxoSmithKline Shanghai Research and Development Center, Zhangjiang Hi-Tech Park, TAU, Pudong, China, Neuroscience Shanghai (LZ, CR).
| |
Collapse
|
17
|
Creanza TM, Liguori M, Liuni S, Nuzziello N, Ancona N. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis. Int J Mol Sci 2016; 17:E936. [PMID: 27314336 PMCID: PMC4926469 DOI: 10.3390/ijms17060936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment.
Collapse
Affiliation(s)
- Teresa Maria Creanza
- Institute of Intelligent Systems for Automation, National Research Council of Italy, 70126 Bari, Italy.
- Center for Complex Systems in Molecular Biology and Medicine, University of Turin, 10123 Turin, Italy.
| | - Maria Liguori
- Institute of Biomedical Technologies, National Research Council of Italy, 70126 Bari, Italy.
| | - Sabino Liuni
- Institute of Biomedical Technologies, National Research Council of Italy, 70126 Bari, Italy.
| | - Nicoletta Nuzziello
- Institute of Biomedical Technologies, National Research Council of Italy, 70126 Bari, Italy.
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70126 Bari, Italy.
| | - Nicola Ancona
- Institute of Intelligent Systems for Automation, National Research Council of Italy, 70126 Bari, Italy.
| |
Collapse
|
18
|
Mameli G, Cocco E, Frau J, Marrosu MG, Sechi LA. Epstein Barr Virus and Mycobacterium avium subsp. paratuberculosis peptides are recognized in sera and cerebrospinal fluid of MS patients. Sci Rep 2016; 6:22401. [PMID: 26956729 PMCID: PMC4783662 DOI: 10.1038/srep22401] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/15/2016] [Indexed: 12/04/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) and Epstein-Barr virus (EBV) epitopes elicit a consistent humoral response in serum of multiple sclerosis patients, but the cross reactivity against the homologous myelin basic protein (MBP) and human interferon regulatory factor 5 (IRF5) has not been searched within the Cerebral Spinal Fluid (CSF). We evaluated in sera and CSF of patients with MS and with other neurological diseases (OND) the humoral response against EBV/MAP peptides and the IRF5/MBP. Our data showed that EBV and MAP peptides are able to induce a specific humoral immune response in MS patients compared to OND controls both in serum and in CSF. An intrathecal specific synthesis of IgG against MBP and their EBV and MAP homologous as indicated by the antibody index was observed in MS patients. The humoral response against EBV, MAP, MBP and IRF5 was significantly higher in MS patients compared to OND both in serum and in CSF. The higher presence of antibodies against MBP and their MAP and EBV homologous in CSF during relapses suggests a possible role of the pathogens in enhancing inflammation.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | - Eleonora Cocco
- Centro Sclerosi Multipla, Dipartimento di Sanità Pubblica Medicina Clinica e Molecolare, Università di Cagliari, Via Is Guadazzonis 2, 09126 Cagliari, Italy
| | - Jessica Frau
- Centro Sclerosi Multipla, Dipartimento di Sanità Pubblica Medicina Clinica e Molecolare, Università di Cagliari, Via Is Guadazzonis 2, 09126 Cagliari, Italy
| | - Maria Giovanna Marrosu
- Dipartimento di Scienze Mediche "Mario Aresu", Università di Cagliari, 09126 Cagliari, Italy
| | - Leonardo Antonio Sechi
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| |
Collapse
|