1
|
Li M, Cheng J, He R, Chen K, Zhang J, Liu X, Hu J, Lu Y. Red light-induced localized release of carbon monoxide for alleviating postoperative cognitive dysfunction. Biomaterials 2025; 312:122744. [PMID: 39106820 DOI: 10.1016/j.biomaterials.2024.122744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Inflammation within the central nervous system (CNS), which may be triggered by surgical trauma, has been implicated as a significant factor contributing to postoperative cognitive dysfunction (POCD). The relationship between mitigating inflammation at peripheral surgical sites and its potential to attenuate the CNS inflammatory response, thereby easing POCD symptoms, remains uncertain. Notably, carbon monoxide (CO), a gasotransmitter, exhibits pronounced anti-inflammatory effects. Herein, we have developed carbon monoxide-releasing micelles (CORMs), a nanoparticle that safely and locally liberates CO upon exposure to 650 nm light irradiation. In a POCD mouse model, treatment with CORMs activated by light (CORMs + hv) markedly reduced the concentrations of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α) in both the peripheral blood and the hippocampus, alongside a decrease in ionized calcium-binding adapter molecule 1 in the hippocampal CA1 region. Furthermore, CORMs + hv treatment diminished Evans blue extravasation, augmented the expression of tight junction proteins zonula occludens-1 and occludin, enhanced neurocognitive functions, and fostered fracture healing. Bioinformatics analysis and experimental validation has identified Htr1b and Trhr as potential key regulators in the neuroactive ligand-receptor interaction signaling pathway implicated in POCD. This work offers new perspectives on the mechanisms driving POCD and avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingde Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ruilin He
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Ke Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China; Ambulatory Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
2
|
Mu Y, Yang X, Xie Y, Luo J, Wu S, Yang J, Zhao W, Chen J, Weng Y. Carbon monoxide-releasing Vehicle CO@TPyP-FeMOFs modulating macrophages phenotype in inflammatory wound healing. Nitric Oxide 2024; 149:49-59. [PMID: 38889652 DOI: 10.1016/j.niox.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
Healing of chronic wounds has been critically limited by prolonged inflammation. Carbon monoxide (CO) is a biologically active molecule with high potential based on its efficacy in modulating inflammation, promoting wound healing and tissue remodeling. Strategies to use CO as a gaseous drug to chronic wounds have emerged, but controlling the sustained release of CO at the wound site remains a major challenge. In this work, a porphyrin-Fe based metal organic frameworks, TPyP-FeMOFs was prepared. The synthesized TPyP-FeMOFs was high-temperature vacuum activated (AcTPyP-FeMOFs) and AcTPyP-FeMOFs had a relatively high Fe (II) content. CO sorption isotherms showed that AcTPyP-FeMOFs chemisorbed CO and thus CO release was sustained and prolonged. In vitro evaluation results showed that CO@TPyP-FeMOFs reduced the inflammatory level of lipopolysaccharide (LPS) activated macrophages, polarized macrophages to M2 anti-inflammatory phenotype, and promoted the proliferation of fibroblasts by altering the pathological microenvironment. In vivo study confirmed CO@TPyP-FeMOFs promoted healing in a LPS model of delayed cutaneous wound repair and reduced macrophages and neutrophils recruitment. Both in vitro and in vivo studies verified that CO@TPyP-FeMOFs acted on macrophages by modulating phenotype and inflammatory factor expression. Thus, CO release targeting macrophages and pathological microenvironment modulation presented a promising strategy for wound healing.
Collapse
Affiliation(s)
- Yixian Mu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xinlei Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yinhong Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sui Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - JinMing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wei Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
3
|
Chen G, Yu J, Wu L, Ji X, Xu J, Wang C, Ma S, Miao Q, Wang L, Wang C, Lewis SE, Yue Y, Sun Z, Liu Y, Tang B, James TD. Fluorescent small molecule donors. Chem Soc Rev 2024; 53:6345-6398. [PMID: 38742651 PMCID: PMC11181996 DOI: 10.1039/d3cs00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 05/16/2024]
Abstract
Small molecule donors (SMDs) play subtle roles in the signaling mechanism and disease treatments. While many excellent SMDs have been developed, dosage control, targeted delivery, spatiotemporal feedback, as well as the efficiency evaluation of small molecules are still key challenges. Accordingly, fluorescent small molecule donors (FSMDs) have emerged to meet these challenges. FSMDs enable controllable release and non-invasive real-time monitoring, providing significant advantages for drug development and clinical diagnosis. Integration of FSMDs with chemotherapeutic, photodynamic or photothermal properties can take full advantage of each mode to enhance therapeutic efficacy. Given the remarkable properties and the thriving development of FSMDs, we believe a review is needed to summarize the design, triggering strategies and tracking mechanisms of FSMDs. With this review, we compiled FSMDs for most small molecules (nitric oxide, carbon monoxide, hydrogen sulfide, sulfur dioxide, reactive oxygen species and formaldehyde), and discuss recent progress concerning their molecular design, structural classification, mechanisms of generation, triggered release, structure-activity relationships, and the fluorescence response mechanism. Firstly, from the large number of fluorescent small molecular donors available, we have organized the common structures for producing different types of small molecules, providing a general strategy for the development of FSMDs. Secondly, we have classified FSMDs in terms of the respective donor types and fluorophore structures. Thirdly, we discuss the mechanisms and factors associated with the controlled release of small molecules and the regulation of the fluorescence responses, from which universal guidelines for optical properties and structure rearrangement were established, mainly involving light-controlled, enzyme-activated, reactive oxygen species-triggered, biothiol-triggered, single-electron reduction, click chemistry, and other triggering mechanisms. Fourthly, representative applications of FSMDs for trackable release, and evaluation monitoring, as well as for visible in vivo treatment are outlined, to illustrate the potential of FSMDs in drug screening and precision medicine. Finally, we discuss the opportunities and remaining challenges for the development of FSMDs for practical and clinical applications, which we anticipate will stimulate the attention of researchers in the diverse fields of chemistry, pharmacology, chemical biology and clinical chemistry. With this review, we hope to impart new understanding thereby enabling the rapid development of the next generation of FSMDs.
Collapse
Affiliation(s)
- Guang Chen
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Jing Yu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Xinrui Ji
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jie Xu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chao Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Siyue Ma
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Qing Miao
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Linlin Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chen Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Yanfeng Yue
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA.
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Yuxia Liu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Wei D, Qu C, Zhao N, Li S, Pu N, Song Z, Tao Y. The significance of precisely regulating heme oxygenase-1 expression: Another avenue for treating age-related ocular disease? Ageing Res Rev 2024; 97:102308. [PMID: 38615894 DOI: 10.1016/j.arr.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Aging entails the deterioration of the body's organs, including overall damages at both the genetic and cellular levels. The prevalence of age-related ocular disease such as macular degeneration, dry eye diseases, glaucoma and cataracts is increasing as the world's population ages, imposing a considerable economic burden on individuals and society. The development of age-related ocular disease is predominantly triggered by oxidative stress and chronic inflammatory reaction. Heme oxygenase-1 (HO-1) is a crucial antioxidant that mediates the degradative process of endogenous iron protoporphyrin heme. It catalyzes the rate-limiting step of the heme degradation reaction, and releases the metabolites such as carbon monoxide (CO), ferrous, and biliverdin (BV). The potent scavenging activity of these metabolites can help to defend against peroxides, peroxynitrite, hydroxyl, and superoxide radicals. Other than directly decomposing endogenous oxidizing substances (hemoglobin), HO-1 is also a critical regulator of inflammatory cells and tissue damage, exerting its anti-inflammation activity through regulating complex inflammatory networks. Therefore, promoting HO-1 expression may act as a promising therapeutic strategy for the age-related ocular disease. However, emerging evidences suggest that the overexpression of HO-1 significantly contributes to ferroptosis due to its dual nature. Surplus HO-1 leads to excessive Fe2+ and reactive oxygen species, thereby causing lipid peroxidation and ferroptosis. In this review, we elucidate the role of HO-1 in countering age-related disease, and summarize recent pharmacological trials that targeting HO-1 for disease management. Further refinements of the knowledge would position HO-1 as a novel therapeutic target for age-related ocular disease.
Collapse
Affiliation(s)
- Dong Wei
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Chengkang Qu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, China
| | - Ning Pu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Zongming Song
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Ye Tao
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
5
|
Scheid S, Goebel U, Ulbrich F. Neuroprotection Is in the Air-Inhaled Gases on Their Way to the Neurons. Cells 2023; 12:2480. [PMID: 37887324 PMCID: PMC10605176 DOI: 10.3390/cells12202480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cerebral injury is a leading cause of long-term disability and mortality. Common causes include major cardiovascular events, such as cardiac arrest, ischemic stroke, and subarachnoid hemorrhage, traumatic brain injury, and neurodegenerative as well as neuroinflammatory disorders. Despite improvements in pharmacological and interventional treatment options, due to the brain's limited regeneration potential, survival is often associated with the impairment of crucial functions that lead to occupational inability and enormous economic burden. For decades, researchers have therefore been investigating adjuvant therapeutic options to alleviate neuronal cell death. Although promising in preclinical studies, a huge variety of drugs thought to provide neuroprotective effects failed in clinical trials. However, utilizing medical gases, noble gases, and gaseous molecules as supportive treatment options may offer new perspectives for patients suffering neuronal damage. This review provides an overview of current research, potentials and mechanisms of these substances as a promising therapeutic alternative for the treatment of cerebral injury.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, 48145 Muenster, Germany;
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
6
|
Xu W, Huang X, Li W, Qian G, Zhou B, Wang X, Wang H. Carbon monoxide ameliorates lipopolysaccharide-induced acute lung injury via inhibition of alveolar macrophage pyroptosis. Exp Anim 2023; 72:77-87. [PMID: 36184484 PMCID: PMC9978127 DOI: 10.1538/expanim.22-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Carbon monoxide (CO) has been reported to exhibit a therapeutic effect in lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the precise mechanism by which CO confers protection against ALI remains unclear. Pyroptosis has been recently proposed to play an essential role in the initiation and progression of ALI. Thus, we investigated whether pyroptosis is involved in the protection of CO against ALI and its underlying mechanism. First, an LPS-induced ALI mouse model was established. To determine the role of pyroptosis, we evaluated histological changes and the expression levels of cleaved caspase-11, N-gasdermin D (GSDMD), and IL-1β in lung tissues, which are the indicators of pyroptosis. Inhalation of CO exhibited protective effects on LPS-induced ALI by decreasing TNF-α and IL-10 expression and ameliorating pathological changes in lung tissue. In vitro, CO significantly reduced the expression of cleaved caspase-11, N-GSDMD, IL-1β, and IL-18. In addition, it increased nuclear factor E2-related factor 2 (NRF-2) expression in a time-dependent manner in RAW 264.7 cells and decreased N-GSDMD expression. The expression of cleaved GSDMD and release of LDH were increased after treatment with a specific NRF-2 inhibitor, ML385, indicating that NRF-2 mediates the inhibition of pyroptosis by CO. Taken together, these results demonstrated that CO upregulated NRF-2 to inhibit pyroptosis and subsequently ameliorated LPS-induced ALI.
Collapse
Affiliation(s)
- Weijie Xu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| | - Xiang Huang
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai,
200433, P.R. China
| | - Wei Li
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| | - Gang Qian
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| | - Beiye Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| | - Xiaofei Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| | - Hongxiu Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Yangpu District, Shanghai
200433, P.R. China
| |
Collapse
|
7
|
Li J, Han Q, Chen H, Liu T, Song J, Hou M, Wei L, Song H. Carbon Monoxide-Releasing Molecule-3 Enhances Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells via miR-195-5p/Wnt3a Pathway. Drug Des Devel Ther 2022; 16:2101-2117. [PMID: 35812136 PMCID: PMC9259429 DOI: 10.2147/dddt.s367277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Bone marrow-derived mesenchymal stem cells (BMSCs) are hopeful in promoting bone regeneration as their pluripotency in differentiation. Our previous study showed that carbon monoxide-releasing molecule-3 (CORM-3) increased the osteogenic differentiation of rat BMSCs in vitro. However, the mechanism remained unclear. MicroRNAs (miRNAs) play a very important role in modulating the osteogenic differentiation of BMSCs. Therefore, we researched the miRNAs involved in CORM-3-stimulated osteogenic differentiation. Methods The CORM-3-stimulated osteogenic differentiation of rat BMSCs was further studied in vivo. Based on the gene sequencing experiment, the rat BMSCs were transfected with miR-195-5p mimics and inhibitor, pcDNA3.1-Wnt3a and Wnt3a siRNA. The osteogenic differentiation of rat BMSCs was measured by quantitative real-time polymerase chain reaction, Western blot and alizarin red staining. Additionally, the targeting relationship between miR-195-5p and Wnt3a was confirmed by the dual-luciferase assay. Results MiR-195-5p was down-expressed during the CORM-3-stimulated osteogenic differentiation of rat BMSCs. CORM-3-stimulated osteogenic differentiation of rat BMSCs was inhibited with miR-195-5p overexpression, evidenced by significantly reduced mRNA and protein expressions of runt-related transcription factor 2 and osteopontin, and matrix mineralization demonstrated. On the contrary, the osteogenic differentiation was enhanced with inhibition of miR-195-5p. CORM-3-stimulated osteogenic differentiation of rat BMSCs was increased by overexpression of Wnt3a, while the opposite was observed in the Wnt3a-deficient cells. Moreover, the decreased osteogenic differentiation capacity by increased expression of miR-195-5p was rescued by Wnt3a overexpression, showing miR-195-5p directly targeted Wnt3a. Conclusion These results demonstrate that CORM-3 promoted osteogenic differentiation of rat BMSCs via miR-195-5p/Wnt3a, which bodes well for the application of CORM-3 in the treatment of periodontal disease and other bone-defect diseases.
Collapse
Affiliation(s)
- Jingyuan Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
| | - Qingbin Han
- Department of Oral and Maxillofacial Surgery, Shandong Linyi People’s Hospital, Linyi, People’s Republic of China
| | - Hui Chen
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Tingting Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
| | - Jiahui Song
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
| | - Meng Hou
- School of Stomatology, Jining Medical College, Jining, People’s Republic of China
| | - Lingling Wei
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
| | - Hui Song
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Correspondence: Hui Song, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, People’s Republic of China, Tel +86-531-88382912, Fax +86-531-88382923, Email
| |
Collapse
|
8
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
9
|
Lu W, Yang X, Wang B. Carbon monoxide signaling and soluble guanylyl cyclase: Facts, myths, and intriguing possibilities. Biochem Pharmacol 2022; 200:115041. [PMID: 35447132 DOI: 10.1016/j.bcp.2022.115041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
The endogenous signaling roles of carbon monoxide (CO) have been firmly established at the pathway level. For CO's molecular mechanism(s) of actions, hemoproteins are generally considered as possible targets. Importantly, soluble guanylyl cyclase (sGC) is among the most widely referenced molecular targets. However, the affinity of CO for sGC (Kd: 240 μM) is much lower than for other highly abundant hemoproteins in the body, such as myoglobin (Kd: 29 nM) and hemoglobin (Kd: 0.7 nM-4.5 μM), which serve as CO reservoirs. Further, most of the mechanistic studies involving sGC activation by CO were based on in-vitro or ex-vivo studies using CO concentrations not readily attenable in vivo and in the absence of hemoglobin as a competitor in binding. As such, whether such in-vitro/ex-vivo results can be directly extrapolated to in-vivo studies is not clear because of the need for CO to be transferred from a high-affinity binder (e.g., hemoglobin) to a low-affinity target if sGC is to be activated in vivo. In this review, we discuss literature findings of sGC activation by CO and the experimental conditions; examine the myths in the disconnect between the low affinity of sGC for CO and the reported activation of sGC by CO; and finally present several possibilities that may lead to additional studies to improve our understanding of this direct CO-sGC axis, which is yet to be convincingly established as playing generally critical roles in CO signaling in vivo.
Collapse
Affiliation(s)
- Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
10
|
Ou YC, Li JR, Wu CC, Yu TM, Chen WY, Liao SL, Kuan YH, Chen YF, Chen CJ. Cadmium induces the expression of Interleukin-6 through Heme Oxygenase-1 in HK-2 cells and Sprague-Dawley rats. Food Chem Toxicol 2022; 161:112846. [PMID: 35122928 DOI: 10.1016/j.fct.2022.112846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/06/2022] [Accepted: 01/29/2022] [Indexed: 11/15/2022]
Abstract
Cadmium is toxic to the kidney through mechanisms involving oxidative stress and inflammation. We studied reciprocal crosstalk among the oxidative stress, inflammation, and the nuclear Nrf2 pathway in cadmium-induced nephrotoxicity on HK-2 human renal proximal tubular epithelial cells. Cadmium chloride (CdCl2) caused cell viability loss, Reactive Oxygen Species (ROS) generation, glutathione reduction, and Interleukin-6 (IL-6) expression, accompanied by Nrf2 activation and Heme Oxygenase-1 (HO-1) expression. Pharmacological treatments demonstrated cytotprotective and anti-inflammatory effects of Nrf2 activation. Intriguingly, inhibition of HO-1 activity mitigated cell viability loss and IL-6 expression in CdCl2-treated cells. Parallel attenuation by HO-1 inhibitor was demonstrated in cadmium-induced ROS generation and glutathione reduction. CdCl2-treated cells also increased levels of ferrous iron, cGMP, Mitogen-Activated Protein Kinases phosphorylation, as well as NF-κB DNA-binding activity. These increments were mitigated by antioxidant N-Acetyl Cysteine, HO-1 inhibitor SnPP, and PKG inhibitor KT5823, and were mimicked by the Carbon Monoxide-releasing compound. In the kidney cortex of CdCl2-exposed Sprague-Dawley rats, we found similar renal injury, histological changes, ROS generation, IL-6 expression, and accompanied pro-oxidant and pro-inflammatory changes. These observations indicated that cadmium-induced nephrotoxicity was associated with oxidative stress and inflammation, and HO-1 likely acts as a linking molecule to induce nephrotoxicity-associated IL-6 expression upon cadmium exposure.
Collapse
Affiliation(s)
- Yen-Chuan Ou
- Department of Urology, Tungs' Taichung MetroHarbor Hospital, Taichung City, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung City, Taiwan; Department of Nursing, HungKuang University, Taichung City, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung City, Taiwan; Department of Financial Engineering, Providence University, Taichung City, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung City, Taiwan
| | - Tung-Min Yu
- Division of Nephrology, Taichung City, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City, Taiwan
| | - Yu-Fan Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
11
|
Conti F, Lazzara F, Romano GL, Platania CBM, Drago F, Bucolo C. Caffeine Protects Against Retinal Inflammation. Front Pharmacol 2022; 12:824885. [PMID: 35069225 PMCID: PMC8773454 DOI: 10.3389/fphar.2021.824885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Caffeine, one of the most consumed central nervous system (CNS) stimulants, is an antagonist of A1 and A2A adenosine receptors. In this study, we investigated the potential protective effects of this methylxanthine in the retinal tissue. We tested caffeine by using in vitro and in vivo paradigms of retinal inflammation. Human retinal pigment epithelial cells (ARPE-19) were exposed to lipopolysaccharide (LPS) with or without caffeine. This latter was able to reduce the inflammatory response in ARPE-19 cells exposed to LPS, attenuating the release of IL-1β, IL-6, and TNF-α and the nuclear translocation of p-NFκB. Additionally, caffeine treatment restored the integrity of the ARPE-19 monolayer assessed by transepithelial electrical resistance (TEER) and the sodium fluorescein permeability test. Finally, the ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to induce retinal inflammation and investigate the effects of caffeine treatment. Mouse eyes were treated topically with caffeine, and a pattern electroretinogram (PERG) was used to assess the retinal ganglion cell (RGC) function; furthermore, we evaluated the levels of IL-6 and BDNF in the retina. Retinal BDNF dropped significantly (p < 0.05) in the I/R group compared to the control group (normal mice); on the contrary, caffeine treatment maintained physiological levels of BDNF in the retina of I/R eyes. Caffeine was also able to reduce IL-6 mRNA levels in the retina of I/R eyes. In conclusion, these findings suggest that caffeine is a good candidate to counteract inflammation in retinal diseases.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Luo Y, Ullah R, Wang J, Du Y, Huang S, Meng L, Gao Y, Gong M, Galaj E, Yin X, Shi H. Exogenous Carbon Monoxide Produces Rapid Antidepressant- and Anxiolytic-Like Effects. Front Pharmacol 2021; 12:757417. [PMID: 34867375 PMCID: PMC8637155 DOI: 10.3389/fphar.2021.757417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Carbon monoxide (CO), a byproduct of heme catalyzed by heme oxygenase (HO), has been reported to exert antioxidant and anti-inflammatory actions, and to produce significant neuroprotective effects. The potential effects of CO and even HO on depressive-like behaviors are still poorly understood. Utilizing several approaches including adeno-associated virus (AAV)-mediated overexpression of HO-1, systemic CO-releasing molecules (CO-RMs), CO-rich saline or CO gas treatment procedures in combination with hydrogen peroxide (H2O2)-induced PC12 cell injury model, and lipopolysaccharide (LPS)-induced depression mouse model, the present study aimed to investigate the potential antidepressant- and anxiolytic-like effects of endogenous and exogenous CO administration in vivo and in vitro. The results of in vitro experiments showed that both CO-RM-3 and CO-RM-A1 pretreatment blocked H2O2-induced cellular injuries by increasing cell survival and decreasing cell apoptosis and necrosis. Similar to the effects of CO-RM-3 and CO-RM-A1 pretreatment, AAV-mediated HO-1 overexpression in the dorsal hippocampus produced significant antidepressant-like activities in mice under normal conditions. Further investigation showed that the CO gas treatment significantly blocked LPS-induced depressive- and anxiety-like behaviors in mice. Taken together, our results suggest that the activation of HO-1 and/or exogenous CO administration produces protective effects and exerts antidepressant- and anxiolytic-like effects. These data uncover a novel function of the HO-1/CO system that appears to be a promising therapeutic target for the treatment of depression and anxiety.
Collapse
Affiliation(s)
- Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Rafi Ullah
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Wang
- Department of Obstetrics and Gynecology, The No.1 Hospital of Yongnian District Handan City, Handan, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China
| | - Ewa Galaj
- Neuroscience Program, Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, United States
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China.,Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Conti F, Romano GL, Eandi CM, Toro MD, Rejdak R, Di Benedetto G, Lazzara F, Bernardini R, Drago F, Cantarella G, Bucolo C. Brimonidine is Neuroprotective in Animal Paradigm of Retinal Ganglion Cell Damage. Front Pharmacol 2021; 12:705405. [PMID: 34366858 PMCID: PMC8333612 DOI: 10.3389/fphar.2021.705405] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
To investigate the neuroprotective effect of brimonidine after retinal ischemia damage on mouse eye. Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible peripheral and central visual field loss, and high intraocular pressure. Ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mouse eyes were treated topically with brimonidine and pattern electroretinogram were used to assess the retinal ganglion cells (RGCs) function. A wide range of inflammatory markers, as well as anti-inflammatory and neurotrophic molecules, were investigated to figure out the potential protective effects of brimonidine in mouse retina. In particular, brain-derived neurotrophic factor (BDNF), IL-6, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptor DR-5, TNF-α, GFAP, Iba-1, NOS, IL-1β and IL-10 were assessed in mouse retina that underwent to I/R insult with or without brimonidine treatment. Brimonidine provided remarkable RGCs protection in our paradigm. PERG amplitude values were significantly (p < 0.05) higher in brimonidine-treated eyes in comparison to I/R retinas. Retinal BDNF mRNA levels in the I/R group dropped significantly (p < 0.05) compared to the control group (normal mice); brimonidine treatment counteracted the downregulation of retinal BDNF mRNA in I/R eyes. Retinal inflammatory markers increased significantly (p < 0.05) in the I/R group and brimonidine treatment was able to revert that. The anti-inflammatory IL-10 decreased significantly (p < 0.05) after retinal I/R insult and increased significantly (p < 0.05) in the group treated with brimonidine. In conclusion, brimonidine was effective in preventing loss of function of RGCs and in regulating inflammatory biomarkers elicited by retinal I/R injury.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Maria Eandi
- Department of Ophthalmology, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Mario Damiano Toro
- Department of Ophthalmology, University of Zurich, Zurich, Switzerland.,Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
14
|
N-acetylserotonin alleviated the expression of interleukin-1β in retinal ischemia-reperfusion rats via the TLR4/NF-κB/NLRP3 pathway. Exp Eye Res 2021; 208:108595. [PMID: 34000276 DOI: 10.1016/j.exer.2021.108595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 11/20/2022]
Abstract
This study aimed to explore the effects of N-acetylserotonin (NAS) on the expression of interleukin-1β (IL-1β) in the retina of retinal ischemia-reperfusion injury (RIRI) rats via the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/nod-like receptor pyrin domain containing 3 (NLRP3) signaling pathway. In this study, adult male Sprague Dawley rats were randomly divided into the sham, RIRI, RIRI + NAS and RIRI + TAK-242 + NAS groups. The rats in the RIRI + NAS and RIRI + TAK-242 + NAS groups were intraperitoneally injected with NAS 30 min before and after modeling. TAK-242, a selective TLR4 inhibitor, was administered by intraperitoneal injection in RIRI + TAK-242 + NAS group. The RIRI rat model was established by elevating the intraocular pressure to 110 mmHg for 60 min. The retinal structure and edema were assessed by H&E staining. The expression levels of TLR4, phosphorylated NF-κB (p-NF-κB), NLRP3, cleaved Caspase-1, and IL-1β in the retina of each group were detected using immunohistochemistry and Western blot. The correlations of the differences of TLR4+ and cleaved Caspase-1+ with IL-1β+ cells (between the NAS and the RIRI groups) were analyzed, using linear regression in the RIRI + NAS group. Results showed that thinner retina, more RGCs, and less TLR4+, p-NF-κB+, NLRP3+, cleaved Caspase-1+, and IL-1β+ cells in the retina were observed in the RIRI + NAS and RIRI + TAK-242 + NAS groups compared with the RIRI group 12 h after RIRI (all P < 0.01). Western blot analysis results showed that the expression of IL-1β in the RIRI + NAS group began to increase 6 h after RIRI, and it reached a high level 12 h after RIRI, and then decreased. And it was lower at each time point in the RIRI + NAS group than in the RIRI group, and there existed significant difference (all P < 0.01). Besides, the expression levels of TLR4, p-NF-κB, NLRP3, and cleaved Caspase-1 proteins in the RIRI + NAS and RIRI + TAK-242 + NAS groups decreased 12 h after RIRI compared with those in the RIRI group (all P < 0.01). The difference in IL-1β+ cells was significantly correlated with those of TLR4+ and cleaved Caspase-1+ cells in the RIRI + NAS group (r2 = 0.9054 or 0.7431, P < 0.01). In conclusion, NAS could attenuate the expression of IL-1β by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway, reduce the retina edema, and promote the survival of RGCs, thereby alleviating the retinal injury and exert its neuroprotective effect.
Collapse
|
15
|
Choi YK, Kim YM. Regulation of Endothelial and Vascular Functions by Carbon Monoxide via Crosstalk With Nitric Oxide. Front Cardiovasc Med 2021; 8:649630. [PMID: 33912601 PMCID: PMC8071856 DOI: 10.3389/fcvm.2021.649630] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Carbon monoxide (CO), generated by heme oxygenase (HO), has been considered a signaling molecule in both the cardiovascular and central nervous systems. The biological function of the HO/CO axis is mostly related to other gaseous molecules, including nitric oxide (NO), which is synthesized by nitric oxide synthase (NOS). Healthy blood vessels are essential for the maintenance of tissue homeostasis and whole-body metabolism; however, decreased or impaired vascular function is a high-risk factor of cardiovascular and neuronal diseases. Accumulating evidence supports that the interplay between CO and NO plays a crucial role in vascular homeostasis and regeneration by improving endothelial function. Moreover, endothelial cells communicate with neighboring cells, such as, smooth muscle cells, immune cells, pericytes, and astrocytes in the periphery and neuronal vascular systems. Endogenous CO could mediate the cell-cell communication and improve the physiological functions of the cardiovascular and neurovascular systems via crosstalk with NO. Thus, a forward, positive feedback circuit between HO/CO and NOS/NO pathways can maintain cardiovascular and neurovascular homeostasis and prevent various human diseases. We discussed the crucial role of CO-NO crosstalk in the cardiovascular and neurovascular systems.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
16
|
|
17
|
Wollborn J, Steiger C, Doostkam S, Schallner N, Schroeter N, Kari FA, Meinel L, Buerkle H, Schick MA, Goebel U. Carbon Monoxide Exerts Functional Neuroprotection After Cardiac Arrest Using Extracorporeal Resuscitation in Pigs. Crit Care Med 2020; 48:e299-e307. [PMID: 32205620 DOI: 10.1097/ccm.0000000000004242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Neurologic damage following cardiac arrest remains a major burden for modern resuscitation medicine. Cardiopulmonary resuscitation with extracorporeal circulatory support holds the potential to reduce morbidity and mortality. Furthermore, the endogenous gasotransmitter carbon monoxide attracts attention in reducing cerebral injury. We hypothesize that extracorporeal resuscitation with additional carbon monoxide application reduces neurologic damage. DESIGN Randomized, controlled animal study. SETTING University research laboratory. SUBJECTS Landrace-hybrid pigs. INTERVENTIONS In a porcine model, carbon monoxide was added using a novel extracorporeal releasing system after resuscitation from cardiac arrest. MEASUREMENTS AND MAIN RESULTS As markers of cerebral function, neuromonitoring modalities (somatosensory-evoked potentials, cerebral oximetry, and transcranial Doppler ultrasound) were used. Histopathologic damage and molecular markers (caspase-3 activity and heme oxygenase-1 expression) were analyzed. Cerebral oximetry showed fast rise in regional oxygen saturation after carbon monoxide treatment at 0.5 hours compared with extracorporeal resuscitation alone (regional cerebral oxygen saturation, 73% ± 3% vs 52% ± 8%; p < 0.05). Median nerve somatosensory-evoked potentials showed improved activity upon carbon monoxide treatment, whereas post-cardiac arrest cerebral perfusion differences were diminished. Histopathologic damage scores were reduced compared with customary resuscitation strategies (hippocampus: sham, 0.4 ± 0.2; cardiopulmonary resuscitation, 1.7 ± 0.4; extracorporeal cardiopulmonary resuscitation, 2.3 ± 0.2; extracorporeal cardiopulmonary resuscitation with carbon monoxide application [CO-E-CPR], 0.9 ± 0.3; p < 0.05). Furthermore, ionized calcium-binding adaptor molecule 1 staining revealed reduced damage patterns upon carbon monoxide treatment. Caspase-3 activity (cardiopulmonary resuscitation, 426 ± 169 pg/mL; extracorporeal cardiopulmonary resuscitation, 240 ± 61 pg/mL; CO-E-CPR, 89 ± 26 pg/mL; p < 0.05) and heme oxygenase-1 (sham, 1 ± 0.1; cardiopulmonary resuscitation, 2.5 ± 0.4; extracorporeal cardiopulmonary resuscitation, 2.4 ± 0.2; CO-E-CPR, 1.4 ± 0.2; p < 0.05) expression were reduced after carbon monoxide exposure. CONCLUSIONS Carbon monoxide application during extracorporeal resuscitation reduces injury patterns in neuromonitoring and decreases histopathologic cerebral damage by reducing apoptosis. This may lay the basis for further clinical translation of this highly salutary substance.
Collapse
Affiliation(s)
- Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Steiger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Soroush Doostkam
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neuropathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schroeter
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Fabian A Kari
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiovascular Surgery, University Heart Center Freiburg, Freiburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin A Schick
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Regenerative Potential of Carbon Monoxide in Adult Neural Circuits of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21072273. [PMID: 32218342 PMCID: PMC7177523 DOI: 10.3390/ijms21072273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
Regeneration of adult neural circuits after an injury is limited in the central nervous system (CNS). Heme oxygenase (HO) is an enzyme that produces HO metabolites, such as carbon monoxide (CO), biliverdin and iron by heme degradation. CO may act as a biological signal transduction effector in CNS regeneration by stimulating neuronal intrinsic and extrinsic mechanisms as well as mitochondrial biogenesis. CO may give directions by which the injured neurovascular system switches into regeneration mode by stimulating endogenous neural stem cells and endothelial cells to produce neurons and vessels capable of replacing injured neurons and vessels in the CNS. The present review discusses the regenerative potential of CO in acute and chronic neuroinflammatory diseases of the CNS, such as stroke, traumatic brain injury, multiple sclerosis and Alzheimer’s disease and the role of signaling pathways and neurotrophic factors. CO-mediated facilitation of cellular communications may boost regeneration, consequently forming functional adult neural circuits in CNS injury.
Collapse
|
19
|
Goebel U, Wollborn J. Carbon monoxide in intensive care medicine-time to start the therapeutic application?! Intensive Care Med Exp 2020; 8:2. [PMID: 31919605 PMCID: PMC6952485 DOI: 10.1186/s40635-020-0292-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/05/2020] [Indexed: 12/18/2022] Open
Abstract
Carbon monoxide (CO) is not only known as a toxic gas due to its characteristics as an odorless molecule and its rapid binding to haem-containing molecules, thus inhibiting the respiratory chain in cells resulting in hypoxia. For decades, scientists established evidence about its endogenously production in the breakdown of haem via haem-oxygenase (HO-1) and its physiological effects. Among these, the modulation of various systems inside the body are well described (e.g., anti-inflammatory, anti-oxidative, anti-apoptotic, and anti-proliferative). Carbon monoxide is able to modulate several extra- and intra-cellular signaling molecules leading to differentiated response according to the specific stimulus. With our growing understanding in the way CO exerts its effects, especially in the mitochondria and its intracellular pathways, it is tempting to speculate about a clinical application of this substance. Since HO-1 is not easy to induce, research focused on the application of the gaseous molecule CO by itself or the implementation of carbon monoxide releasing molecules (CO-RM) to deliver the molecule at a time- and dose dependently safe way to any target organ. After years of research in cellular systems and animal models, summing up data about safety issues as well as possible target to treat in various diseases, the first feasibility trials in humans were established. Up-to-date, safety issues have been cleared for low-dose carbon monoxide inhalation (up to 500 ppm), while there is no clinical data regarding the injection or intake of any kind of CO-RM so far. Current models of human research include sepsis, acute lung injury, and acute respiratory distress syndrome as well as acute kidney injury. Carbon monoxide is a most promising candidate in terms of a therapeutic agent to improve outbalanced organ conditions. In this paper, we summarized the current understanding of carbon monoxide’s biology and its possible organ targets to treating the critically ill patients in tomorrow’s ICU.
Collapse
Affiliation(s)
- Ulrich Goebel
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital, Hohenzollernring 70, 48145, Münster, Germany.
| | - Jakob Wollborn
- Department of Anaesthesiology and Critical Care, Medical Centre - University of Freiburg, Faculty of Medicine, Freiburg im Breisgau, Germany
| |
Collapse
|
20
|
Wollborn J, Schlueter B, Steiger C, Hermann C, Wunder C, Schmidt J, Diel P, Meinel L, Buerkle H, Goebel U, Schick MA. Extracorporeal resuscitation with carbon monoxide improves renal function by targeting inflammatory pathways in cardiac arrest in pigs. Am J Physiol Renal Physiol 2019; 317:F1572-F1581. [PMID: 31482730 DOI: 10.1152/ajprenal.00241.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Deleterious consequences like acute kidney injury frequently occur upon successful resuscitation from cardiac arrest. Extracorporeal life support is increasingly used to overcome high cardiac arrest mortality. Carbon monoxide (CO) is an endogenous gasotransmitter, capable of reducing renal injury. In our study, we hypothesized that addition of CO to extracorporeal resuscitation hampers severity of renal injury in a porcine model of cardiac arrest. Hypoxic cardiac arrest was induced in pigs. Animals were resuscitated using a conventional [cardiopulmonary resuscitation (CPR)], an extracorporeal (E-CPR), or a CO-assisted extracorporeal (CO-E-CPR) protocol. CO was applied using a membrane-controlled releasing system. Markers of renal injury were measured, and histopathological analyses were carried out. We investigated renal pathways involving inflammation as well as apoptotic cell death. No differences in serum neutrophil gelatinase-associated lipocalin (NGAL) were detected after CO treatment compared with Sham animals (Sham 71 ± 7 and CO-E-CPR 95 ± 6 ng/mL), while NGAL was increased in CPR and E-CPR groups (CPR 135 ± 11 and E-CPR 124 ± 5 ng/mL; P < 0.05). Evidence for histopathological damage was abrogated after CO application. CO increased renal heat shock protein 70 expression and reduced inducible cyclooxygenase 2 (CPR: 60 ± 8; E-CPR 56 ± 8; CO-E-CPR 31 ± 3 µg/mL; P < 0.05). Caspase 3 activity was decreased (CPR 1,469 ± 276; E-CPR 1,670 ± 225; CO-E-CPR 755 ± 83 pg/mL; P < 0.05). Furthermore, we found a reduction in renal inflammatory signaling upon CO treatment. Our data demonstrate improved renal function by extracorporeal CO treatment in a porcine model of cardiac arrest. CO reduced proinflammatory and proapoptotic signaling, characterizing beneficial aspects of a novel treatment option to overcome high mortality.
Collapse
Affiliation(s)
- Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bjoern Schlueter
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Steiger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Cornelius Hermann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Wunder
- Department of Anesthesiology and Critical Care, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Johannes Schmidt
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patric Diel
- Department of Cardiovascular Surgery, University Heart Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin A Schick
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1643. [PMID: 31137526 PMCID: PMC6566563 DOI: 10.3390/ma12101643] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The CO-releasing materials (CORMats) are used as substances for producing CO molecules for therapeutic purposes. Carbon monoxide (CO) imparts toxic effects to biological organisms at higher concentration. If this characteristic is utilized in a controlled manner, it can act as a cell-signaling agent for important pathological and pharmacokinetic functions; hence offering many new applications and treatments. Recently, research on therapeutic applications using the CO treatment has gained much attention due to its nontoxic nature, and its injection into the human body using several conjugate systems. Mainly, there are two types of CO insertion techniques into the human body, i.e., direct and indirect CO insertion. Indirect CO insertion offers an advantage of avoiding toxicity as compared to direct CO insertion. For the indirect CO inhalation method, developers are facing certain problems, such as its inability to achieve the specific cellular targets and how to control the dosage of CO. To address these issues, researchers have adopted alternative strategies regarded as CO-releasing molecules (CORMs). CO is covalently attached with metal carbonyl complexes (MCCs), which generate various CORMs such as CORM-1, CORM-2, CORM-3, ALF492, CORM-A1 and ALF186. When these molecules are inserted into the human body, CO is released from these compounds at a controlled rate under certain conditions or/and triggers. Such reactions are helpful in achieving cellular level targets with a controlled release of the CO amount. However on the other hand, CORMs also produce a metal residue (termed as i-CORMs) upon degradation that can initiate harmful toxic activity inside the body. To improve the performance of the CO precursor with the restricted development of i-CORMs, several new CORMats have been developed such as micellization, peptide, vitamins, MOFs, polymerization, nanoparticles, protein, metallodendrimer, nanosheet and nanodiamond, etc. In this review article, we shall describe modern ways of CO administration; focusing primarily on exclusive features of CORM's tissue accumulations and their toxicities. This report also elaborates on the kinetic profile of the CO gas. The comprehension of developmental phases of CORMats shall be useful for exploring the ideal CO therapeutic drugs in the future of medical sciences.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ya Wu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ruixia Liu
- Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China.
| | - Wensheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
22
|
Li C, Chen T, Zhou H, Feng Y, Hoi MPM, Ma D, Zhao C, Zheng Y, Lee SMY. BHDPC Is a Novel Neuroprotectant That Provides Anti-neuroinflammatory and Neuroprotective Effects by Inactivating NF-κB and Activating PKA/CREB. Front Pharmacol 2018; 9:614. [PMID: 29988625 PMCID: PMC6027181 DOI: 10.3389/fphar.2018.00614] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
Microglia-mediated neuroinflammatory responses are inevitable and important pathological processes in several kinds of disorder of the central nervous system (CNS). Therefore, alleviating activated microglia-induced inflammatory process might be a valuable therapeutic approach to neuroinflammation-related diseases. In the present study, we investigated BHDPC, a novel neuroprotectant discovered in our previous study that had anti-inflammatory effects under neuroinflammatory conditions. First, we found that BHDPC could inhibit neuroinflammatory responses and promote microglial M2 phenotype polarization in both lipopolysaccharide (LPS)-activated BV-2 microglia l cells. Furthermore, BHDPC provided protective actions against neuroinflammation-induced neurotoxicity in HT22 mouse hippocampal cells co-cultured with activated BV-2 microglia. Further experiments demonstrated that BHDPC could suppress LPS-induced activation of transcription factor nuclear factor kappa B (NF-κB) via interfering with the degradation of the inhibitor of kappa B (IκB) and phosphorylation of IκB, the IκB kinase (IKK). Moreover, we also found that BHDPC could induce phosphorylation of cAMP-dependent protein kinase A (PKA) and cAMP-response element-binding protein (CREB) in BV-2 microglial cells. Also, using the PKA-specific inhibitor, we found that BHDPC-induced CREB phosphorylation was dependent on PKA, which also contributed to BHDPC-mediated anti-inflammation and neuroprotection.
Collapse
Affiliation(s)
- Chuwen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tongkai Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yu Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Maggie P M Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dan Ma
- Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Chao Zhao
- Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
23
|
Zhang YL, Wang RB, Li WY, Xia FZ, Liu L. Pioglitazone ameliorates retinal ischemia/reperfusion injury via suppressing NLRP3 inflammasome activities. Int J Ophthalmol 2017; 10:1812-1818. [PMID: 29259897 DOI: 10.18240/ijo.2017.12.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/25/2017] [Indexed: 01/16/2023] Open
Abstract
AIM To explore the role of Pioglitazone (Pio) on a mouse model of retinal ischemia/reperfusion (I/R) injury and to elucidate the potential mechanism. METHODS Retinal ischemia was induced in mice by increasing the intraocular pressure, and Pio was administered 4h though periocular injection before I/R. The number of cells in the ganglion cell layer (GCL) was counted 7d after retinal I/R injury. Glial fibrillary acidic protein (GFAP), nuclear factor-kappa B (NF-κB), p38, phosphorylated-p38, PPAR-γ, interleukin-1β (IL-1β), Toll-like receptor 4 (TLR4), NLRP3, cleaved caspase-1, caspase-1 were determined by real-time polymerase chain reaction and Western blotting. RESULTS Pio promoted the survival of retinal cells in GCL following retinal I/R injury (P<0.05). Besides, retinal I/R injury stimulated the expression of GFAP and TLR4, which were partially reversed by Pio treatment (P<0.05). Retinal I/R injury-upregulated expression of NLRP3, cleaved caspase-1, IL-1β was attenuated after Pio treatment (P<0.05). Moreover, I/R injury induced activation of NF-κB and p38 were inhibited by Pio treatment (P<0.05). CONCLUSION Pio promotes retinal ganglion cells survival by suppressing I/R-induced activation of TLR4/NLRP3 inflammasomes via inhibiting NF-κB and p38 phosphorylation.
Collapse
Affiliation(s)
- Yue-Lu Zhang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ruo-Bing Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Yi Li
- Department of Ophthalmology, Shandong University Qilu Hospital (Qingdao), Qingdao 266035, Shandong Province, China
| | - Fang-Zhou Xia
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
24
|
Stifter J, Ulbrich F, Goebel U, Böhringer D, Lagrèze WA, Biermann J. Neuroprotection and neuroregeneration of retinal ganglion cells after intravitreal carbon monoxide release. PLoS One 2017; 12:e0188444. [PMID: 29176876 PMCID: PMC5703485 DOI: 10.1371/journal.pone.0188444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/07/2017] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Retinal ischemia induces apoptosis leading to neurodegeneration and vision impairment. Carbon monoxide (CO) in gaseous form showed cell-protective and anti-inflammatory effects after retinal ischemia-reperfusion-injury (IRI). These effects were also demonstrated for the intravenously administered CO-releasing molecule (CORM) ALF-186. This article summarizes the results of intravitreally released CO to assess its suitability as a neuroprotective and neuroregenerative agent. METHODS Water-soluble CORM ALF-186 (25 μg), PBS, or inactivated ALF (iALF) (all 5 μl) were intravitreally applied into the left eyes of rats directly after retinal IRI for 1 h. Their right eyes remained unaffected and were used for comparison. Retinal tissue was harvested 24 h after intervention to analyze mRNA or protein expression of Caspase-3, pERK1/2, p38, HSP70/90, NF-kappaB, AIF-1 (allograft inflammatory factor), TNF-α, and GAP-43. Densities of fluorogold-prelabeled retinal ganglion cells (RGC) were examined in flat-mounted retinae seven days after IRI and were expressed as mean/mm2. The ability of RGC to regenerate their axon was evaluated two and seven days after IRI using retinal explants in laminin-1-coated cultures. Immunohistochemistry was used to analyze the different cell types growing out of the retinal explants. RESULTS Compared to the RGC-density in the contralateral right eyes (2804±214 RGC/mm2; data are mean±SD), IRI+PBS injection resulted in a remarkable loss of RGC (1554±159 RGC/mm2), p<0.001. Intravitreally injected ALF-186 immediately after IRI provided RGC protection and reduced the extent of RGC-damage (IRI+PBS 1554±159 vs. IRI+ALF 2179±286, p<0.001). ALF-186 increased the IRI-mediated phosphorylation of MAP-kinase p38. Anti-apoptotic and anti-inflammatory effects were detectable as Caspase-3, NF-kappaB, TNF-α, and AIF-1 expression were significantly reduced after IRI+ALF in comparison to IRI+PBS or IRI+iALF. Gap-43 expression was significantly increased after IRI+ALF. iALF showed effects similar to PBS. The intrinsic regenerative potential of RGC-axons was induced to nearly identical levels after IRI and ALF or iALF-treatment under growth-permissive conditions, although RGC viability differed significantly in both groups. Intravitreal CO further increased the IRI-induced migration of GFAP-positive cells out of retinal explants and their transdifferentiation, which was detected by re-expression of beta-III tubulin and nestin. CONCLUSION Intravitreal CORM ALF-186 protected RGC after IRI and stimulated their axons to regenerate in vitro. ALF conveyed anti-apoptotic, anti-inflammatory, and growth-associated signaling after IRI. CO's role in neuroregeneration and its effect on retinal glial cells needs further investigation.
Collapse
Affiliation(s)
- Julia Stifter
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Ulbrich
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Intensive Care, Medical Center—University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| | - Ulrich Goebel
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Intensive Care, Medical Center—University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf Alexander Lagrèze
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Biermann
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Ophthalmology, University of Muenster Medical Center, Domagkstrasse 15, Muenster, Germany
| |
Collapse
|