1
|
Sun S, Lu W, Zhang C, Wang G, Hou Y, Zhou J, Wang Y. Folic acid and S-adenosylmethionine reverse Homocysteine-induced Alzheimer's disease-like pathological changes in rat hippocampus by modulating PS1 and PP2A methylation levels. Brain Res 2024; 1841:149095. [PMID: 38917878 DOI: 10.1016/j.brainres.2024.149095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Abnormally elevated homocysteine (Hcy) is recognized as a biomarker and risk factor for Alzheimer's disease (AD). However, the underlying mechanisms by which Hcy affects AD are still unclear. OBJECTIVES This study aimed to elucidate the effects and mechanisms by which Hcy affects AD-like pathological changes in the hippocampus through in vivo and in vitro experiments, and to investigate whether folic acid (FA) and S-adenosylmethionine (SAM) supplementation could improve neurodegenerative injuries. METHODS In vitro experiments hippocampal neurons of rat were treated with Hcy, FA or SAM for 24 h; while the hyperhomocysteinemia (HHcy) in Wistar rats was established by intraperitoneal injection of Hcy, and FA was added to feed. The expression of β-amyloid (Aβ), phosphorylated tau protein, presenilin 1 (PS1) at the protein level and the activity of protein phosphatase 2A (PP2A) were detected, the immunopositive cells for Aβ and phosphorylated tau protein in the rat hippocampus were also evaluated by immunohistochemical staining. RESULTS FA and SAM significantly repressed Hcy-induced AD-like pathological changes in the hippocampus, including the increased tau protein phosphorylation at Ser214, Ser396 and the expression of Aβ42. In addition, Hcy-induced PS1 expression increased at the protein level and PP2A activity decreased, while FA and SAM were able to retard that. CONCLUSIONS The increase in PS1 expression and decrease in PP2A activity may be the mechanisms underlying the Hcy-induced AD-like pathology. FA and SAM significantly repressed the Hcy-induced neurodegenerative injury by modulating PS1 and PP2A methylation levels.
Collapse
Affiliation(s)
- Shoudan Sun
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Wei Lu
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Chunhong Zhang
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Guanyu Wang
- Institute of Environmental and Operational Medicine, Tianjin 30050, China
| | - Yue Hou
- Institute of Environmental and Operational Medicine, Tianjin 30050, China
| | - Jian Zhou
- School of Public Health, Weifang Medical College, Weifang 261053, China.
| | - Yonghui Wang
- Institute of Environmental and Operational Medicine, Tianjin 30050, China.
| |
Collapse
|
2
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Braun DJ, Frazier HN, Davis VA, Coleman MJ, Rogers CB, Van Eldik LJ. Early chronic suppression of microglial p38α in a model of Alzheimer's disease does not significantly alter amyloid-associated neuropathology. PLoS One 2023; 18:e0286495. [PMID: 37256881 PMCID: PMC10231773 DOI: 10.1371/journal.pone.0286495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
The p38 alpha mitogen-activated protein kinase (p38α) is linked to both innate and adaptive immune responses and is under investigation as a target for drug development in the context of Alzheimer's disease (AD) and other conditions with neuroinflammatory dysfunction. While preclinical data has shown that p38α inhibition can protect against AD-associated neuropathology, the underlying mechanisms are not fully elucidated. Inhibitors of p38α may provide benefit via modulation of microglial-associated neuroinflammatory responses that contribute to AD pathology. The present study tests this hypothesis by knocking out microglial p38α and assessing early-stage pathological changes. Conditional knockout of microglial p38α was accomplished in 5-month-old C57BL/6J wild-type and amyloidogenic AD model (APPswe/PS1dE9) mice using a tamoxifen-inducible Cre/loxP system under control of the Cx3cr1 promoter. Beginning at 7.5 months of age, animals underwent behavioral assessment on the open field, followed by a later radial arm water maze test and collection of cortical and hippocampal tissues at 11 months. Additional endpoint measures included quantification of proinflammatory cytokines, assessment of amyloid burden and plaque deposition, and characterization of microglia-plaque dynamics. Loss of microglial p38α did not alter behavioral outcomes, proinflammatory cytokine levels, or overall amyloid plaque burden. However, this manipulation did significantly increase hippocampal levels of soluble Aβ42 and reduce colocalization of Iba1 and 6E10 in a subset of microglia in close proximity to plaques. The data presented here suggest that rather than reducing inflammation per se, the net effect of microglial p38α inhibition in the context of early AD-type amyloid pathology is a subtle alteration of microglia-plaque interactions. Encouragingly from a therapeutic standpoint, these data suggest no detrimental effect of even substantial decreases in microglial p38α in this context. Additionally, these results support future investigations of microglial p38α signaling at different stages of disease, as well as its relationship to phagocytic processes in this particular cell-type.
Collapse
Affiliation(s)
- David J. Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hilaree N. Frazier
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Verda A. Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Meggie J. Coleman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
4
|
Zajac DJ, Shaw BC, Braun DJ, Green SJ, Morganti JM, Estus S. Exogenous Short Chain Fatty Acid Effects in APP/PS1 Mice. Front Neurosci 2022; 16:873549. [PMID: 35860296 PMCID: PMC9289923 DOI: 10.3389/fnins.2022.873549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Elucidating the impact of the gut microbiome on Alzheimer’s Disease (AD) is an area of intense interest. Short chain fatty acids (SCFAs) are major microbiota metabolites that have been implicated as a mediator of gut microbiome effects in the brain. Here, we tested the effects of SCFA-treated water vs. saline-treated water on APPswe/PSEN1dE9 mice maintained under standard laboratory conditions. Mice were treated with SCFAs from five months of age until ten months of age, when they were evaluated for microbiome profile, impaired spatial memory as evaluated with the radial arm water maze, astrocyte activation as measured by Gfap expression and amyloid burden as assessed by histochemistry and MSD ELISA. We report that SCFA treatment increased alpha-diversity and impacted the gut microbiome profile by increasing, in part, the relative abundance of several bacteria that typically produce SCFAs. However, SCFA treatment did not significantly affect behavior. Similarly, SCFAs did not affect cortical or hippocampal astrocyte activation observed in the APP/PS1 mice. Lastly, although robust levels of soluble and insoluble amyloid were present in the APP/PS1 mice, SCFA treatment had no effect on these indices. Overall, our findings are that SCFA treatment modifies the microbiome in a fashion that may increase further SCFA production. However, SCFA treatment did not alter behavior, astrocyte activation, nor amyloid neuropathology in APP/PS1 mice maintained with a conventional microbiome.
Collapse
Affiliation(s)
- Diana J. Zajac
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Benjamin C. Shaw
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - David J. Braun
- Department of Neuroscience and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Stefan J. Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Joshua M. Morganti
- Department of Neuroscience and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- *Correspondence: Steven Estus,
| |
Collapse
|
5
|
Rivastigmine Reverses the Decrease in Synapsin and Memory Caused by Homocysteine: Is There Relation to Inflammation? Mol Neurobiol 2022; 59:4517-4534. [PMID: 35578101 DOI: 10.1007/s12035-022-02871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/05/2022] [Indexed: 12/28/2022]
Abstract
Elevated levels of homocysteine (Hcy) in the blood, called hyperhomocysteinemia (HHcy), is a prevalent risk factor for it has been shown that Hcy induces oxidative stress and increases microglial activation and neuroinflammation, as well as causes cognitive impairment, which have been linked to the neurodegenerative process. This study aimed to evaluate the effect of mild hyperhomocysteinemia with or without ibuprofen and rivastigmine treatments on the behavior and neurochemical parameters in male rats. The chronic mild HHcy model was chemically induced in Wistar rats by subcutaneous administration of Hcy (4055 mg/kg body weight) twice daily for 30 days. Ibuprofen (40 mg/kg) and rivastigmine (0.5 mg/kg) were administered intraperitoneally once daily. Motor damage (open field, balance beam, rotarod, and vertical pole test), cognitive deficits (Y-maze), neurochemical parameters (oxidative status/antioxidant enzymatic defenses, presynaptic protein synapsin 1, inflammatory profile parameters, calcium binding adapter molecule 1 (Iba1), iNOS gene expression), and cholinergic anti-inflammatory pathway were investigated. Results showed that mild HHcy caused cognitive deficits in working memory, and impaired motor coordination reduced the amount of synapsin 1 protein, altered the neuroinflammatory picture, and caused changes in the activity of catalase and acetylcholinesterase enzymes. Both rivastigmine and ibuprofen treatments were able to mitigate this damage caused by mild HHcy. Together, these neurochemical changes may be associated with the mechanisms by which Hcy has been linked to a risk factor for AD. Treatments with rivastigmine and ibuprofen can effectively reduce the damage caused by increased Hcy levels.
Collapse
|
6
|
Nieraad H, de Bruin N, Arne O, Hofmann MCJ, Pannwitz N, Resch E, Luckhardt S, Schneider AK, Trautmann S, Schreiber Y, Gurke R, Parnham MJ, Till U, Geisslinger G. The Roles of Long-Term Hyperhomocysteinemia and Micronutrient Supplementation in the AppNL–G–F Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:876826. [PMID: 35572151 PMCID: PMC9094364 DOI: 10.3389/fnagi.2022.876826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
A causal contribution of hyperhomocysteinemia to cognitive decline and Alzheimer’s disease (AD), as well as potential prevention or mitigation of the pathology by dietary intervention, have frequently been subjects of controversy. In the present in vivo study, we attempted to further elucidate the impact of elevated homocysteine (HCys) and homocysteic acid (HCA) levels, induced by dietary B-vitamin deficiency, and micronutrient supplementation on AD-like pathology, which was simulated using the amyloid-based AppNL–G–F knock-in mouse model. For this purpose, cognitive assessment was complemented by analyses of ex vivo parameters in whole blood, serum, CSF, and brain tissues from the mice. Furthermore, neurotoxicity of HCys and HCA was assessed in a separate in vitro assay. In confirmation of our previous study, older AppNL–G–F mice also exhibited subtle phenotypic impairment and extensive cerebral amyloidosis, whereas dietary manipulations did not result in significant effects. As revealed by proximity extension assay-based proteome analysis, the AppNL–G–F genotype led to an upregulation of AD-characteristic neuronal markers. Hyperhomocysteinemia, in contrast, indicated mainly vascular effects. Overall, since there was an absence of a distinct phenotype despite both a significant amyloid-β burden and serum HCys elevation, the results in this study did not corroborate the pathological role of amyloid-β according to the “amyloid hypothesis,” nor of hyperhomocysteinemia on cognitive performance. Nevertheless, this study aided in further characterizing the AppNL–G–F model and in elucidating the role of HCys in diverse biological processes. The idea of AD prevention with the investigated micronutrients, however, was not supported, at least in this mouse model of the disease.
Collapse
Affiliation(s)
- Hendrik Nieraad
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- *Correspondence: Natasja de Bruin,
| | - Olga Arne
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Martine C. J. Hofmann
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Nina Pannwitz
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Eduard Resch
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Sonja Luckhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Ann-Kathrin Schneider
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals, Reykjavík, Iceland
| | - Uwe Till
- Former Institute of Pathobiochemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Therapeutic treatment with the anti-inflammatory drug candidate MW151 may partially reduce memory impairment and normalizes hippocampal metabolic markers in a mouse model of comorbid amyloid and vascular pathology. PLoS One 2022; 17:e0262474. [PMID: 35081152 PMCID: PMC8791470 DOI: 10.1371/journal.pone.0262474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/24/2021] [Indexed: 12/03/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia in the elderly, but therapeutic options are lacking. Despite long being able to effectively treat the ill-effects of pathology present in various rodent models of AD, translation of these strategies to the clinic has so far been disappointing. One potential contributor to this situation is the fact that the vast majority of AD patients have other dementia-contributing comorbid pathologies, the most common of which are vascular in nature. This situation is modeled relatively infrequently in basic AD research, and almost never in preclinical studies. As part of our efforts to develop small molecule, anti-inflammatory therapeutics for neurological injury and disease, we have recently been exploring potentially promising treatments in preclinical multi-morbidity contexts. In the present study, we generated a mouse model of mixed amyloid and hyperhomocysteinemia (HHcy) pathology in which to test the efficacy of one of our anti-inflammatory compounds, MW151. HHcy can cause cerebrovascular damage and is an independent risk factor for both AD dementia and vascular contributions to cognitive impairment and dementia. We found that MW151 was able to partially rescue hippocampal-dependent spatial memory and learning deficits in this comorbidity context, and further, that the benefit is associated with a normalization of hippocampal metabolites detectable via magnetic resonance spectroscopy. These findings provide evidence that MW151 in particular, and potentially anti-inflammatory treatment more generally, may be beneficial in AD patients with comorbid vascular pathology.
Collapse
|
8
|
Czapski GA, Strosznajder JB. Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111677. [PMID: 34769106 PMCID: PMC8584169 DOI: 10.3390/ijms222111677] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
The physiological balance between excitation and inhibition in the brain is significantly affected in Alzheimer’s disease (AD). Several neuroactive compounds and their signaling pathways through various types of receptors are crucial in brain homeostasis, among them glutamate and γ-aminobutyric acid (GABA). Activation of microglial receptors regulates the immunological response of these cells, which in AD could be neuroprotective or neurotoxic. The novel research approaches revealed the complexity of microglial function, including the interplay with other cells during neuroinflammation and in the AD brain. The purpose of this review is to describe the role of several proteins and multiple receptors on microglia and neurons, and their involvement in a communication network between cells that could lead to different metabolic loops and cell death/survival. Our review is focused on the role of glutamatergic, GABAergic signaling in microglia–neuronal cross-talk in AD and neuroinflammation. Moreover, the significance of AD-related neurotoxic proteins in glutamate/GABA-mediated dialogue between microglia and neurons was analyzed in search of novel targets in neuroprotection, and advanced pharmacological approaches.
Collapse
|
9
|
Nieraad H, Pannwitz N, de Bruin N, Geisslinger G, Till U. Hyperhomocysteinemia: Metabolic Role and Animal Studies with a Focus on Cognitive Performance and Decline-A Review. Biomolecules 2021; 11:1546. [PMID: 34680179 PMCID: PMC8533891 DOI: 10.3390/biom11101546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Disturbances in the one-carbon metabolism are often indicated by altered levels of the endogenous amino acid homocysteine (HCys), which is additionally discussed to causally contribute to diverse pathologies. In the first part of the present review, we profoundly and critically discuss the metabolic role and pathomechanisms of HCys, as well as its potential impact on different human disorders. The use of adequate animal models can aid in unravelling the complex pathological processes underlying the role of hyperhomocysteinemia (HHCys). Therefore, in the second part, we systematically searched PubMed/Medline for animal studies regarding HHCys and focused on the potential impact on cognitive performance and decline. The majority of reviewed studies reported a significant effect of HHCys on the investigated behavioral outcomes. Despite of persistent controversial discussions about equivocal findings, especially in clinical studies, the present evaluation of preclinical evidence indicates a causal link between HHCys and cognition-related- especially dementia-like disorders, and points out the further urge for large-scale, well-designed clinical studies in order to elucidate the normalization of HCys levels as a potential preventative or therapeutic approach in human pathologies.
Collapse
Affiliation(s)
- Hendrik Nieraad
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
| | - Nina Pannwitz
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Uwe Till
- Former Institute of Pathobiochemistry, Friedrich-Schiller-University Jena, Nonnenplan 2, 07743 Jena, Germany;
| |
Collapse
|
10
|
Fung ITH, Zhang Y, Shin DS, Sankar P, Sun X, D'Souza SS, Song R, Kuentzel ML, Chittur SV, Zuloaga KL, Yang Q. Group 2 innate lymphoid cells are numerically and functionally deficient in the triple transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2021; 18:152. [PMID: 34229727 PMCID: PMC8261980 DOI: 10.1186/s12974-021-02202-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/23/2021] [Indexed: 01/02/2023] Open
Abstract
Background The immune pathways in Alzheimer’s disease (AD) remain incompletely understood. Our recent study indicates that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the brain barriers of aged mice and that their activation alleviates aging-associated cognitive decline. The regulation and function of ILC2 in AD, however, remain unknown. Methods In this study, we examined the numbers and functional capability of ILC2 from the triple transgenic AD mice (3xTg-AD) and control wild-type mice. We investigated the effects of treatment with IL-5, a cytokine produced by ILC2, on the cognitive function of 3xTg-AD mice. Results We demonstrate that brain-associated ILC2 are numerically and functionally defective in the triple transgenic AD mouse model (3xTg-AD). The numbers of brain-associated ILC2 were greatly reduced in 7-month-old 3xTg-AD mice of both sexes, compared to those in age- and sex-matched control wild-type mice. The remaining ILC2 in 3xTg-AD mice failed to efficiently produce the type 2 cytokine IL-5 but gained the capability to express a number of proinflammatory genes. Administration of IL-5, a cytokine produced by ILC2, transiently improved spatial recognition and learning in 3xTg-AD mice. Conclusion Our results collectively indicate that numerical and functional deficiency of ILC2 might contribute to the cognitive impairment of 3xTg-AD mice. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02202-2.
Collapse
Affiliation(s)
- Ivan Ting Hin Fung
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Yuanyue Zhang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Xiangwan Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Shanti S D'Souza
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Renjie Song
- Biochemistry & Immunology Core Facility at Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Marcy L Kuentzel
- Center for Functional Genomics, University at Albany-SUNY, Rensselaer, NY, 12144, USA
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-SUNY, Rensselaer, NY, 12144, USA
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Qi Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
11
|
Tawfik A, Elsherbiny NM, Zaidi Y, Rajpurohit P. Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. Int J Mol Sci 2021; 22:ijms22126259. [PMID: 34200792 PMCID: PMC8230490 DOI: 10.3390/ijms22126259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is remarkably common among the aging population. The relation between HHcy and the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and eye diseases, and age-related macular degeneration (AMD) and diabetic retinopathy (DR) in elderly people, has been established. Disruption of the blood barrier function of the brain and retina is one of the most important underlying mechanisms associated with HHcy-induced neurodegenerative and retinal disorders. Impairment of the barrier function triggers inflammatory events that worsen disease pathology. Studies have shown that AD patients also suffer from visual impairments. As an extension of the central nervous system, the retina has been suggested as a prominent site of AD pathology. This review highlights inflammation as a possible underlying mechanism of HHcy-induced barrier dysfunction and neurovascular injury in aging diseases accompanied by HHcy, focusing on AD.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Eye Research Institue, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-706-721-2582; Fax: +1-706-721-9415
| | - Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
12
|
Wu J, Gao G, Shi F, Xie H, Yang Q, Liu D, Qu S, Qin H, Zhang C, Xu GT, Liu F, Zhang J. Activated microglia-induced neuroinflammatory cytokines lead to photoreceptor apoptosis in Aβ-injected mice. J Mol Med (Berl) 2021; 99:713-728. [PMID: 33575853 DOI: 10.1007/s00109-021-02046-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is mainly characterized by the progressive accumulation of drusen deposits and loss of photoreceptors and retinal pigment epithelial (RPE) cells. Because amyloid β (Aβ) is the main component of drusen, Aβ-induced activated microglia most likely lead to neuroinflammation and play a critical role in the pathogenesis of AMD. However, the relationship between activated microglia-mediated neuroinflammatory cytokines and photoreceptor death has not been clarified. By subretinal injection of Aβ42 in mice, we mimicked an inflammatory milieu of AMD to better understand how activated microglia-induced neuroinflammatory cytokines lead to photoreceptor apoptosis in the AMD progression. We demonstrated that subretinal injection of Aβ42 induces microglial activation and increases inflammatory cytokine release, which gives rise to photoreceptor apoptosis in mice. Our results were verified in vitro by co-culture of Aβ42 activated primary microglia and the photoreceptor cell line 661W. We also demonstrated that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was involved in Aβ42-induced microglial activation and inflammatory cytokine release. Overall, our findings indicate that activated microglia-derived neuroinflammatory cytokines could contribute to photoreceptor apoptosis under the stimulation of Aβ42. Moreover, this study may provide a potential therapeutic approach for AMD. KEY MESSAGES: Further explore the association between activated microglia-derived neuroinflammatory cytokine secretion and photoreceptor apoptosis under the stimulation of Aβ42. Subretinal injection of Aβ42 induces the activation of microglia and increases proinflammatory cytokines IL-1β and COX-2 expression in the retina, which could give rise to the deterioration of visual function and aggravate photoreceptor apoptosis in mice. Primary microglial are activated and the levels of proinflammatory cytokines are increased by Aβ42 stimulation, which could increase the apoptosis of photoreceptor cell line 661W in vitro. The p38 MAPK signaling pathway is involved in microglial activation and photoreceptor apoptosis under Aβ42 treatment.
Collapse
Affiliation(s)
- Jing Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ge Gao
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fanjun Shi
- Department of Ophthalmology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai Xie
- Department of Regenerative Medicine and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Qian Yang
- Department of Regenerative Medicine and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liu
- Department of Regenerative Medicine and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Sichang Qu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haifeng Qin
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Regenerative Medicine and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China. .,Department of Regenerative Medicine and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China. .,Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China. .,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
13
|
Effects of Alzheimer-Like Pathology on Homocysteine and Homocysteic Acid Levels-An Exploratory In Vivo Kinetic Study. Int J Mol Sci 2021; 22:ijms22020927. [PMID: 33477684 PMCID: PMC7831937 DOI: 10.3390/ijms22020927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 01/20/2023] Open
Abstract
Hyperhomocysteinemia has been suggested potentially to contribute to a variety of pathologies, such as Alzheimer’s disease (AD). While the impact of hyperhomocysteinemia on AD has been investigated extensively, there are scarce data on the effect of AD on hyperhomocysteinemia. The aim of this in vivo study was to investigate the kinetics of homocysteine (HCys) and homocysteic acid (HCA) and effects of AD-like pathology on the endogenous levels. The mice received a B-vitamin deficient diet for eight weeks, followed by the return to a balanced control diet for another eight weeks. Serum, urine, and brain tissues of AppNL-G-F knock-in and C57BL/6J wild type mice were analyzed for HCys and HCA using LC-MS/MS methods. Hyperhomocysteinemic levels were found in wild type and knock-in mice due to the consumption of the deficient diet for eight weeks, followed by a rapid normalization of the levels after the return to control chow. Hyperhomocysteinemic AppNL-G-F mice had significantly higher HCys in all matrices, but not HCA, compared to wild type control. Higher serum concentrations were associated with elevated levels in both the brain and in urine. Our findings confirm a significant impact of AD-like pathology on hyperhomocysteinemia in the AppNL-G-F mouse model. The immediate normalization of HCys and HCA after the supply of B-vitamins strengthens the idea of a B-vitamin intervention as a potentially preventive treatment option for HCys-related disorders such as AD.
Collapse
|