1
|
Wang L, Lv Z, Ning X, Yue Z, Wang P, Liu C, Jin S, Li X, Yin Q, Zhu Q, Chang J. The effects of compound probiotics on production performance, rumen fermentation and microbiota of Hu sheep. Front Vet Sci 2024; 11:1440432. [PMID: 39545259 PMCID: PMC11560882 DOI: 10.3389/fvets.2024.1440432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal probiotics have the potential as feed additives, but less has been explored in ruminant feed up to date. This study aimed to determine the effect of compound probiotics (CPs) with Aspergillus oryzae 1, Aspergillus oryzae 2 and Candida utilis on Hu sheep's growth performance, rumen fermentation and microbiota. A total of 120 male Hu sheep, aged 2 months and with the body weight of 16.95 ± 0.65 kg were divided into 4 groups. Each group consisted of 5 replicates, with 6 sheep per replicate. Group A was the control group fed with the basal diet. Group B, C and D was supplemented with the basal diet by adding 400, 800 and 1,200 grams per ton (g/t) CPs, respectively. The feeding trial lasted for 60 days after a 10-day adaptation period. The results showed that the average daily gain (ADG) of sheep in the CPs groups were significantly higher, the feed/gain were significantly lower than those in group A in the later stage and the overall period. The addition of CPs increased the economic benefit. The levels of CD4+ and the CD4+/CD8+ ratio in the CPs groups were higher than those in Group A. The levels of GSH, IgG, IL-2, IL-6, and IFN-γ in group C were significantly elevated compared with group A. Group B showed a significant increase in rumen NH3-N and cellulase activity. There was no difference in VFAs content between group A and group B, however, with the increasing addition of CPs, the butyric acid and isobutyric acid content tended to decrease. The rumen microbiota analysis indicated that the CPs addition increased the Firmicutes and Proteobacteria abundances, decreased the Bacteroidetes abundance. The correlation analysis showed that Prevotella was negatively correlated with ADG, and the addition of 400 CPs in group B reduced Prevotella's relative abundance, indicating CPs increased sheep growth by decreasing Prevotella abundance. The CPs addition reduced caspase-3, NF-κB and TNF-α expression in liver, jejunum and rumen tissues. In conclusion, the addition of CPs increased the sheep production performance, reduced inflammation, improved rumen and intestinal health. Considering the above points and economic benefits, the optimal addition of CPs as an additive for Hu sheep is 800 g/t.
Collapse
Affiliation(s)
- Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhanqi Lv
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | | | - Zhiguang Yue
- Henan Anjin Biotechnology Co., Ltd., Xinxiang, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sanjun Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinxin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Martinez-Feduchi P, Jin P, Yao B. Epigenetic modifications of DNA and RNA in Alzheimer's disease. Front Mol Neurosci 2024; 17:1398026. [PMID: 38726308 PMCID: PMC11079283 DOI: 10.3389/fnmol.2024.1398026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common form of dementia. There are two main types of AD: familial and sporadic. Familial AD is linked to mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2). On the other hand, sporadic AD is the more common form of the disease and has genetic, epigenetic, and environmental components that influence disease onset and progression. Investigating the epigenetic mechanisms associated with AD is essential for increasing understanding of pathology and identifying biomarkers for diagnosis and treatment. Chemical covalent modifications on DNA and RNA can epigenetically regulate gene expression at transcriptional and post-transcriptional levels and play protective or pathological roles in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Zhao J, Guo M, Yan Y, Wang Y, Zhao X, Yang J, Chen J, Chen C, Tang L, Zeng W, Liu Y, Qin M, Zhou Y, Xu L. The miR-7/EGFR axis controls the epithelial cell immunomodulation and regeneration and orchestrates the pathology in inflammatory bowel disease. J Adv Res 2024; 57:119-134. [PMID: 37094666 PMCID: PMC10918346 DOI: 10.1016/j.jare.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
INTRODUCTION The epithelial immunomodulation and regeneration are intrinsic critical events against inflammatory bowel disease (IBD). MiR-7 is well documented as a promising regulator in the development of various diseases including inflammatory diseases. OBJECTIVES This study aimed to assess the effect of miR-7 in intestinal epithelial cells (IECs) in IBD. METHODS MiR-7def mice were given dextran sulfate sodium (DSS) to induce enteritis model. The infiltration of inflammatory cells was measured by FCM and immunofluorescence assay. 5'deletion assay and EMSA assays were performed to study the regulatory mechanism of miR-7 expression in IECs. The inflammatory signals and the targets of miR-7 were analyzed by RNA-seq and FISH assay. IECs were isolated from miR-7def, miR-7oe and WT mice to identify the immunomodulation and regeneration capacity. IEC-specific miR-7 silencing expression vector was designed and administered by the tail vein into murine DSS-induced enteritis model to evaluate the pathological lesions of IBD. RESULTS We found miR-7 deficiency improved the pathological lesions of DSS-induced murine enteritis model, accompanied by elevated proliferation and enhanced transduction of NF-κB/AKT/ERK signals in colonic IECs, as well as decreased local infiltration of inflammatory cells. MiR-7 was dominantly upregulated in colonic IECs in colitis. Moreover, the transcription of pre-miR-7a-1, orchestrated by transcription factor C/EBPα, was a main resource of mature miR-7 in IECs. As for the mechanism, EGFR, a miR-7 target gene, was downregulated in colonic IECs in colitis model and Crohn's disease patients. Furthermore, miR-7 also controlled the proliferation and inflammatory-cytokine secretion of IECs in response to inflammatory-signals through EGFR/NF-κB/AKT/ERK pathway. Finally, IEC-specific miR-7 silencing promoted the proliferation and transduction of NF-κB pathway in IECs and alleviated the pathological damage of colitis. CONCLUSION Our results present the unknown role of miR-7/EGFR axis in IEC immunomodulation and regeneration in IBD and might provide clues for the application of miRNA-based therapeutic strategies in colonic diseases.
Collapse
Affiliation(s)
- Juanjuan Zhao
- School of Medicine, Guizhou University, Guiyang 550025, Guizhou, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Yaping Yan
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Ya Wang
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Xu Zhao
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Jing Yang
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Jing Chen
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Chao Chen
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Lin Tang
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Wenhuan Zeng
- Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Yiting Liu
- Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Lin Xu
- School of Medicine, Guizhou University, Guiyang 550025, Guizhou, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
4
|
Chang X, Zhao J, Zhou Y, Guo M, Yan Y, Wang Y, Zhao X, Yang J, Chen C, Tang L, Qin M, Xu L. MiR-7 deficiency promotes Th1 polarization of CD4 +T cells and enhances the antitumor effect in adoptive cell therapy for lung cancer. Immunol Res 2024; 72:134-146. [PMID: 37755574 DOI: 10.1007/s12026-023-09423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Adoptive-cell-therapy (ACT) is important therapeutic approach against cancer. We previously showed that miR-7 deficiency endowed CD4+T cells with hyperactivation status in liver injury. However, whether CD4+T cells with miR-7 deficiency could elicit antitumor effect in ACT is still unclear. Naïve CD4+CD62Lhi T cells were purified from CD45.2 WT or CD45.2 miR-7def mice and transferred into syngeneic CD45.1WT mice bearing with lung tumor cells. The infiltration and function of T cells were measured by FCM and immunofluorescence assay. And naïve CD4+CD62Lhi T cells were purified from CD45.2 WT or CD45.2 miR-7def mice, then the cells were activated with CD3 antibody plus CD28 antibody in vitro for 24 h. Then, the cultured supernatant of LLC tumor cells or cytokines IFN-γ and IL-12 was added to establish Th1 polarization. Under these conditions, Th1 polarization-related molecules in these cells were analyzed by flow cytometry. Our data demonstrated a significant reduction in the growth and metastasis of lung cancer cells in the miR-7def CD4+T cell-transferred group, accompanied by a significant enhancement in the infiltration, proliferation, activation, and Th1 polarization of CD4+ T cells. Moreover, we observed the proliferation; activation of tumor-infiltrating CD8+ T cells was significantly increased in the local tumor of the CD45.2 miR-7def CD4+ T cell-transferred group, compared to the CD45.2 WT CD4+ T cell-transferred group. It is noteworthy that MAPK4, a target molecule of miR-7, was upregulated in CD4+ T cells from lung tumor tissues, resulting in an altered transduction of phosphorylation of NF-κB as well as AKT and ERK in vivo and in vitro. miR-7 deficiency promoted Th1-polarization of CD4+ T cells and elicited effective antitumor immune responses in ACT.
Collapse
Affiliation(s)
- Xian Chang
- School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
| | - Juanjuan Zhao
- School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Ya Zhou
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Mengmeng Guo
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Medical physics, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yaping Yan
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ya Wang
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xu Zhao
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jing Yang
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Chao Chen
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lin Tang
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ming Qin
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lin Xu
- School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
5
|
Chen C, Guo M, Zhao X, Zhao J, Chen L, He Z, Xu L, Zha Y. MicroRNA-7: A New Intervention Target for Inflammation and Related Diseases. Biomolecules 2023; 13:1185. [PMID: 37627250 PMCID: PMC10452300 DOI: 10.3390/biom13081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA that can regulate physiological and pathological processes through post-transcriptional regulatory gene expression. As an important member of the miRNAs family, microRNA-7 (miR-7) was first discovered in 2001 to play an important regulatory role in tissue and organ development. Studies have shown that miR-7 participates in various tissue and organ development processes, tumorigenesis, aging, and other processes by regulating different target molecules. Notably, a series of recent studies have determined that miR-7 plays a key regulatory role in the occurrence of inflammation and related diseases. In particular, miR-7 can affect the immune response of the body by influencing T cell activation, macrophage function, dendritic cell (DC) maturation, inflammatory body activation, and other mechanisms, which has important potential application value in the intervention of related diseases. This article reviews the current regulatory role of miR-7 in inflammation and related diseases, including viral infection, autoimmune hepatitis, inflammatory bowel disease, and encephalitis. It expounds on the molecular mechanism by which miR-7 regulates the occurrence of inflammatory diseases. Finally, the existing problems and future development directions of miR-7-based intervention on inflammation and related diseases are discussed to provide new references and help strengthen the understanding of the pathogenesis of inflammation and related diseases, as well as the development of new strategies for clinical intervention.
Collapse
Affiliation(s)
- Chao Chen
- School of Medicine, Guizhou University, Guiyang 550025, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Xu Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Longqing Chen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Yan Zha
- School of Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
MicroRNA miR-7 Is Essential for Post-stroke Functional Recovery. Transl Stroke Res 2023; 14:111-115. [PMID: 35088373 PMCID: PMC9329483 DOI: 10.1007/s12975-021-00981-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
Transient focal ischemia induces a sustained downregulation of miR-7 leading to derepression of its target α-synuclein (α-Syn), which promotes neuronal death. We previously showed that treatment with miR-7 mimic prevents α-Syn induction and protects brain after stroke in rodents irrespective of age and sex. To further decipher the role of miR-7, we currently studied infarction and motor function in miR-7 double knockout mice (lack both miR-7a and miR-7b) subjected to focal ischemia. Adult miR-7-/- mice showed similar motor and cognitive functions to miR-7+/+ mice. However, when subjected to even a mild focal ischemia, the miR-7-/- mice showed exacerbated brain damage and worsened motor function compared with the miR-7+/+ mice. Replenishing miR-7 in miR-7-/- mice (IV injection of miR-7 mimic) restored miR-7 mediated neuroprotection and motor recovery, potentially by preventing α-Syn protein induction. Thus, we show that miR-7 is an essential miRNA in the brain that prevents α-Syn translation and the ensuing brain damage after stroke.
Collapse
|
7
|
The Role of microRNAs in Inflammation. Int J Mol Sci 2022; 23:ijms232415479. [PMID: 36555120 PMCID: PMC9779565 DOI: 10.3390/ijms232415479] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a biological response of the immune system to various insults, such as pathogens, toxic compounds, damaged cells, and radiation. The complex network of pro- and anti-inflammatory factors and their direction towards inflammation often leads to the development and progression of various inflammation-associated diseases. The role of small non-coding RNAs (small ncRNAs) in inflammation has gained much attention in the past two decades for their regulation of inflammatory gene expression at multiple levels and their potential to serve as biomarkers and therapeutic targets in various diseases. One group of small ncRNAs, microRNAs (miRNAs), has become a key regulator in various inflammatory disease conditions. Their fine-tuning of target gene regulation often turns out to be an important factor in controlling aberrant inflammatory reactions in the system. This review summarizes the biogenesis of miRNA and the mechanisms of miRNA-mediated gene regulation. The review also briefly discusses various pro- and anti-inflammatory miRNAs, their targets and functions, and provides a detailed discussion on the role of miR-10a in inflammation.
Collapse
|
8
|
Wang Y, Zhao J, Chen S, Li D, Yang J, Zhao X, Qin M, Guo M, Chen C, He Z, Zhou Y, Xu L. Let-7 as a Promising Target in Aging and Aging-Related Diseases: A Promise or a Pledge. Biomolecules 2022; 12:1070. [PMID: 36008964 PMCID: PMC9406090 DOI: 10.3390/biom12081070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
The abnormal regulation and expression of microRNA (miRNA) are closely related to the aging process and the occurrence and development of aging-related diseases. Lethal-7 (let-7) was discovered in Caenorhabditis elegans (C. elegans) and plays an important role in development by regulating cell fate regulators. Accumulating evidence has shown that let-7 is elevated in aging tissues and participates in multiple pathways that regulate the aging process, including affecting tissue stem cell function, body metabolism, and various aging-related diseases (ARDs). Moreover, recent studies have found that let-7 plays an important role in the senescence of B cells, suggesting that let-7 may also participate in the aging process by regulating immune function. Therefore, these studies show the diversity and complexity of let-7 expression and regulatory functions during aging. In this review, we provide a detailed overview of let-7 expression regulation as well as its role in different tissue aging and aging-related diseases, which may provide new ideas for enriching the complex expression regulation mechanism and pathobiological function of let-7 in aging and related diseases and ultimately provide help for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ya Wang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
9
|
Li T, Zhang S, Yang Y, Zhang L, Yuan Y, Zou J. Co-regulation of circadian clock genes and microRNAs in bone metabolism. J Zhejiang Univ Sci B 2022; 23:529-546. [PMID: 35794684 DOI: 10.1631/jzus.b2100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tingting Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China.,School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shihua Zhang
- College of Graduate Education, Jinan Sport University, Jinan 250102, China
| | - Yuxuan Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China. ,
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
10
|
Huang D, Zhang M, Tan Z. Bone Marrow Stem Cell-Exo-Derived TSG-6 Attenuates 1-Methyl-4-Phenylpyridinium+-Induced Neurotoxicity via the STAT3/miR-7/NEDD4/LRRK2 Axis. J Neuropathol Exp Neurol 2022; 81:621-634. [PMID: 35773961 DOI: 10.1093/jnen/nlac049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bone marrow mesenchymal stem cell-derived exosome (BMSCs-Exo)-derived TNF-stimulated gene-6 (TSG-6) has anti-inflammatory and antioxidative stress-related properties that may be beneficial in the treatment of Parkinson disease (PD) patients. To elucidate the mechanisms involved, we analyzed the effects of BMSCs-Exo-derived TSG-6 on in vitro models of PD induced with 1-methyl-4-phenylpyridinium (MPP+). TSG-6 was abundant in BMSCs-Exo and it attenuated MPP+-induced neurotoxicity. Moreover, BMSCs-Exo reversed the MPP+-induced toxicity accelerated by neural precursor cells expressed developmentally downregulated 4 (NEDD4) knockdown or miR-7 mimics. Further analysis indicated that NEDD4 combined with leucine-rich repeat kinase 2 (LRRK2) to accelerate ubiquitin degradation of LRRK2. Signal transducer and activator of transcription 3 (STAT3) bound to the miR-7 promoter and miR-7 targeted NEDD4. These data indicate that BMSCs-Exo-derived TSG-6 attenuated neurotoxicity via the STAT3-miR-7-NEDD4 axis. Our results define the specific mechanisms for BMSCs-Exo-derived TSG-6 regulation of MPP+-induced neurotoxicity that are relevant to understanding PD pathogenesis and developing therapies for PD patients.
Collapse
Affiliation(s)
- Dezhi Huang
- From the Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, P.R. China
| | - Mingming Zhang
- From the Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, P.R. China
| | - Zhigang Tan
- From the Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
11
|
Campbell LA, Mocchetti I. Extracellular Vesicles and HIV-Associated Neurocognitive Disorders: Implications in Neuropathogenesis and Disease Diagnosis. Neurotox Res 2021; 39:2098-2107. [PMID: 34618322 DOI: 10.1007/s12640-021-00425-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles are heterogeneous cell-derived membranous structures of nanometer size that carry diverse cargoes including nucleic acids, proteins, and lipids. Their secretion into the extracellular space and delivery of their cargo to recipient cells can alter cellular function and intracellular communication. In this review, we summarize the role of extracellular vesicles in the disease pathogenesis of HIV-associated neurocognitive disorder (HAND) by focusing on their role in viral entry, neuroinflammation, and neuronal degeneration. We also discuss the potential role of extracellular vesicles as biomarkers of HAND. Together, this review aims to convey the importance of extracellular vesicles in the pathogenesis of HAND and foster interest in their role in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Lee A Campbell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
12
|
Zhao J, Chu F, Xu H, Guo M, Shan S, Zheng W, Tao Y, Zhou Y, Hu Y, Chen C, Ren T, Xu L. C/EBPα/miR-7 Controls CD4 + T-Cell Activation and Function and Orchestrates Experimental Autoimmune Hepatitis in Mice. Hepatology 2021; 74:379-396. [PMID: 33125780 DOI: 10.1002/hep.31607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/01/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Increasing evidence in recent years has suggested that microRNA-7 (miR-7) is an important gene implicated in the development of various diseases including HCC. However, the role of miR-7 in autoimmune hepatitis (AIH) is unknown. APPROACH AND RESULTS Herein, we showed that miR-7 deficiency led to exacerbated pathology in Concanavalin-A-induced murine acute autoimmune liver injury (ALI) model, accompanied by hyperactivation state of CD4+ T cells. Depletion of CD4+ T cells reduced the effect of miR-7 deficiency on the pathology of ALI. Interestingly, miR-7 deficiency elevated CD4+ T-cell activation, proliferation, and cytokine production in vitro. Adoptive cell transfer experiments showed that miR-7def CD4+ T cells could exacerbate the pathology of ALI. Further analysis showed that miR-7 expression was up-regulated in activated CD4+ T cells. Importantly, the transcription of pre-miR-7b, a major resource of mature miR-7 in CD4+ T cells, was dominantly dependent on transcription factor CCAAT enhancer binding protein alpha (C/EBPα), which binds to the core promoter region of the miR-7b gene. Global gene analysis showed that mitogen-activated protein kinase 4 (MAPK4) is a target of miR-7 in CD4+ T cells. Finally, the loss of MAPK4 could ameliorate the activation state of CD4+ T cells with or without miR-7 deficiency. Our studies document the important role of miR-7 in the setting of AIH induced by Concanavalin-A. Specifically, we provide evidence that the C/EBPα/miR-7 axis negatively controls CD4+ T-cell activation and function through MAPK4, thereby orchestrating experimental AIH in mice. CONCLUSIONS This study expands on the important role of miR-7 in liver-related diseases and reveals the value of the C/EBPα/miR-7 axis in CD4+ T-cell biological function for the pathogenesis of immune-mediated liver diseases.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Fengyun Chu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Hualin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Shan Shan
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wen Zheng
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yijing Tao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Ya Zhou
- Department of Medical physics, Zunyi Medical University, Zunyi, China
| | - Yan Hu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Ma H, Kang J, Fan W, He H, Huang F. ROR: Nuclear Receptor for Melatonin or Not? Molecules 2021; 26:molecules26092693. [PMID: 34064466 PMCID: PMC8124216 DOI: 10.3390/molecules26092693] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Whether the retinoic acid-related orphan receptor (ROR) is a nuclear receptor of melatonin remains controversial. ROR is inextricably linked to melatonin in terms of its expression, function, and mechanism of action. Additionally, studies have illustrated that melatonin functions analogous to ROR ligands, thereby modulating the transcriptional activity of ROR. However, studies supporting these interactions have since been withdrawn. Furthermore, recent crystallographic evidence does not support the view that ROR is a nuclear receptor of melatonin. Some other studies have proposed that melatonin indirectly regulates ROR activity rather than directly binding to ROR. This review aims to delve into the complex relationship of the ROR receptor with melatonin in terms of its structure, expression, function, and mechanism. Thus, we provide the latest evidence and views on direct binding as well as indirect regulation of ROR by melatonin, dissecting both viewpoints in-depth to provide a more comprehensive perspective on this issue.
Collapse
Affiliation(s)
- Haozhen Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Jun Kang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| |
Collapse
|
14
|
Gajda E, Grzanka M, Godlewska M, Gawel D. The Role of miRNA-7 in the Biology of Cancer and Modulation of Drug Resistance. Pharmaceuticals (Basel) 2021; 14:149. [PMID: 33673265 PMCID: PMC7918072 DOI: 10.3390/ph14020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) are small non-coding RNA (ncRNA) molecules capable of regulating post-transcriptional gene expression. Imbalances in the miRNA network have been associated with the development of many pathological conditions and diseases, including cancer. Recently, miRNAs have also been linked to the phenomenon of multidrug resistance (MDR). MiR-7 is one of the extensively studied miRNAs and its role in cancer progression and MDR modulation has been highlighted. MiR-7 is engaged in multiple cellular pathways and acts as a tumor suppressor in the majority of human neoplasia. Its depletion limits the effectiveness of anti-cancer therapies, while its restoration sensitizes cells to the administered drugs. Therefore, miR-7 might be considered as a potential adjuvant agent, which can increase the efficiency of standard chemotherapeutics.
Collapse
Affiliation(s)
- Ewa Gajda
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Damian Gawel
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
15
|
Chen H, Guo M, Yue D, Zhao J, Zhou Y, Chen C, Liang G, Xu L. MicroRNA-7 negatively regulates Toll-like receptor 4 signaling pathway through FAM177A. Immunology 2020; 162:44-57. [PMID: 32852789 DOI: 10.1111/imm.13252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/08/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor (TLR) 4 signalling is critical for innate immunoinflammatory response and widely triggers the development of various types of clinical diseases. MicroRNA-7 (miR-7) is well documented to play an important regulatory role in various biological events. However, the exact role of miR-7 in TLR4 signalling pathway remains to be fully elucidated. In the present study, we found that miR-7 expression in TLR4 signalling-activated bone marrow-derived macrophages (BMDMs) stimulated by LPS was dramatically increased. Importantly, miR-7 deficiency significantly enhanced the production of related inflammatory cytokines including IL-1β, IL-6 and IL-12, as well as TNF-α, on LPS-activated BMDMs, accompanied by elevated transduction of TLR4 signalling including Myd88-dependent and Myd88-independent pathways, whereas miR-7 overexpression significantly decreased the transduction of TLR4 signalling and the production of related inflammatory cytokines. Mechanistically, we identified family with sequence similarity 177, member A (FAM177A) as a novel target molecule of miR-7. Furthermore, down-regulation of FAM177A using RNAi could impair the transduction of TLR4 signalling. Finally, down-regulation of FAM177A also reversed the effect of miR-7 deficiency on TLR4 signalling transduction and production of related inflammatory cytokines on BMDMs. Therefore, we provide the new evidence that miR-7 acts as a novel negative fine-tuner in regulating TLR4 signalling pathways by targeting FAM177A, which might throw light on the basal understanding on the regulatory mechanism of TLR4 signalling and benefit the development of therapeutic strategies against related clinical diseases.
Collapse
Affiliation(s)
- Huizi Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dongxu Yue
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Guiyou Liang
- Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Han S, Zhang T, Kusumanchi P, Huda N, Jiang Y, Liangpunsakul S, Yang Z. Role of microRNA-7 in liver diseases: a comprehensive review of the mechanisms and therapeutic applications. J Investig Med 2020; 68:1208-1216. [PMID: 32843369 DOI: 10.1136/jim-2020-001420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA-7 (miR-7) is a small non-coding RNA, which plays critical roles in regulating gene expression of multiple key cellular processes. MiR-7 exhibits a tissue-specific pattern of expression, with abundant levels found in the brain, spleen, and pancreas. Although it is expressed at lower levels in other tissues, including the liver, miR-7 is involved in both the development of organs and biological functions of cells. In this review, we focus on the mechanisms by which miR-7 controls cell growth, proliferation, invasion, metastasis, metabolism, and inflammation. We also summarize the specific roles of miR-7 in liver diseases. MiR-7 is considered as a tumor suppressor miRNA in hepatocellular carcinoma and is involved in the pathogenesis of hepatic steatosis and hepatitis. Future studies to further define miR-7 functions and its mechanism in association with other types of liver diseases should be explored. An improved understanding from these studies will provide us a useful perspective leading to mechanism-based intervention by targeting miR-7 for the treatment of liver diseases.
Collapse
Affiliation(s)
- Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, Beijing, China
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA .,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
MicroRNA-7: expression and function in brain physiological and pathological processes. Cell Biosci 2020; 10:77. [PMID: 32537124 PMCID: PMC7288475 DOI: 10.1186/s13578-020-00436-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level and play critical roles in regulating physiological function, and are becoming worldwide research hot spot in brain development and diseases. However, the exact value of miRNAs in brain physiological and pathological processes remain to be fully elucidated, which is vital for the application of miRNAs as diagnostic, prognostic, and therapeutic biomarkers for brain diseases. MicroRNA-7 (miR-7), as a highly expressed miRNA molecule in the mammalian brain, is well documented to play a critical role in development of various diseases. Importantly, accumulating evidence has shown that miR-7 is involved in a range of developmental and pathological processes of brain. Expressively, miR-7, encoded by three genes located different chromosomes, is dominantly expressed in neurons with sensory or neurosecretory. Moreover, the expression of miR-7 is regulated at three levels including gene transcription, process of primary and precursor sequence and formation of mature sequence. Physiologically, miR-7 principally governs the physiological development of Pituitary gland, Optic nervous system and Cerebral cortex. Pathologically, miR-7 can regulate multiple genes thereby manipulating the process of various brain diseases including neurodegenerative diseases, neuroinflammation, and mental disorders and so on. These emerging studies have shown that miR-7, a representative member of miRNA family, might be a novel intrinsic regulatory molecule involved in the physiological and pathological process of brain. Therefore, in-depth studies on the role of miR-7 in brain physiology and pathology undoubtedly not only provide a light on the roles of miRNAs in brain development and diseases, but also are much helpful for ultimate development of therapeutic strategies against brain diseases. In this review, we provide an overview of current scientific knowledge regarding the expression and function of miR-7 in development and disease of brain and raise many issues involved in the relationship between miR-7 and brain physiological and pathological processes.
Collapse
|