1
|
Anchan MM, Kalthur G, Datta R, Majumdar K, P K, Dutta R. Unveiling the fibrotic puzzle of endometriosis: An overlooked concern calling for prompt action. F1000Res 2024; 13:721. [PMID: 39669683 PMCID: PMC11635194 DOI: 10.12688/f1000research.152368.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Endometriosis is a benign, estrogen-dependent, persistent chronic inflammatory heterogeneous condition that features fibrotic adhesions caused by periodic bleeding. The characteristic ectopic lesions are marked by a widely spread dense fibrotic interstitium comprising of fibroblasts, myofibroblasts, collagen fibers, extracellular proteins, inflammatory cells, and active angiogenesis. Fibrosis is now recognized as a critical component of endometriosis because of which current treatments, such as hormonal therapy and surgical excision of lesions are largely ineffective with severe side effects, high recurrence rates, and significant morbidity. The symptoms include dysmenorrhea (cyclic or noncyclic), dyspareunia, abdominal discomfort, and infertility. The significant lack of knowledge regarding the underlying root causes, etiology, and complex pathogenesis of this debilitating condition, hinders early diagnosis and implement effective therapeutic approaches with minimal side effects presenting substantial hurdles in endometriosis management. Emerging research offer a close relationship between endometriosis and fibrosis, which is believed to be tightly linked to pain, a primary contributor to the deterioration of the patient's quality of life. However, the underlying pathophysiological cellular and molecular signaling pathways behind endometriosis-associated fibrosis are poorly addressed. The available experimental disease models have tremendous challenges in reproducing the human characteristics of the disease limiting the treatment effectiveness. Future translational research on the topic has been hindered by the lack of an adequate fibrotic model of endometriosis emphasizing the necessity of etiological exploration. This review article focuses on recent developments in the field and highlight the necessity for novel fibrotic models for early diagnosis, a better understanding the disease's etiology and develop effective anti-fibrotic treatments. By addressing these knowledge gaps, we want to open fresh avenues for a thorough investigation and extended research in the field of endometriosis.
Collapse
Affiliation(s)
- Megha M Anchan
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Kabita Majumdar
- Gauhati Medical College & Hospital IVF centre, Bhangagarh, Gauhati Medical College, Assam, 781032, India
| | - Karthikeyan P
- Department of General Surgery, Government Kallakurichi Medical College, Government Kallakurichi Medical College, Kallakurichi, Tamil Nadu, India
| | - Rahul Dutta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
2
|
Singh Y, Sodhi RK, Kumar H, Bishnoi M, Bhandari R, Kuhad A. Repurposing of niclosamide, an anthelmintic, by targeting ERK/MAPK signaling pathway in the experimental paradigm of autism spectrum disorders. Eur J Pharmacol 2024; 982:176902. [PMID: 39153648 DOI: 10.1016/j.ejphar.2024.176902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
AIM The current study explores niclosamide's neuroprotective potential in an animal model of autism spectrum disorder (ASD) and goes further to understand how the ERK/MAPK signaling pathway is thought to contribute to this activity. METHODS In order to create an autism-like phenotype in rats, 4 μl of 1 M PPA was infused intracerebroventricularly. The oral treatment with niclosamide (50 and 100 mg/kg) and risperidone (1 mg/kg) (used as standard) was given from 3rd to 30th day. Between the 14th and 28th day, behavioral assessments were made for sociability, stereotypy, anxiety, depression, novelty preference, repetitive behavior, and perseverative behavior. The animals were euthanized on the 29th day, and oxidative stress markers were assessed in the brain homogenate. The levels of neuroinflammatory cytokines such as TNF-α, IL-6, NF-κB, IFN-γ and glutamate were estimated using ELISA kits. To assess the involvement of the ERK/MAPK signaling pathway, levels of Nrf2 and ERK2 were also measured. KEY FINDINGS Niclosamide therapy significantly restored behavioral, biochemical, neurological, and molecular impairments. Hence, niclosamide could be a potential neurotherapeutic candidate for further studies for use in ASD.
Collapse
Affiliation(s)
- Yuvraj Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh-160014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh-160014, India
| | - Hemant Kumar
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh-160014, India
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, Sahibzada Ajit Singh Nagar (SAS Nagar), Punjab, India
| | - Ranjana Bhandari
- Pharmaceutics Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh-160014, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
3
|
Zhang H, Guo R, Li Z, Ma R, Xu S, Yin L, Zhu H, Huang Z, Xing C, Yang Y, Pu Y, Cheng Z, Liu J, Peng H, Sheng Y. MSI2 mediates WNT/β-Catenin pathway function in hematopoietic stem cells. Leukemia 2024:10.1038/s41375-024-02447-9. [PMID: 39438589 DOI: 10.1038/s41375-024-02447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Huifang Zhang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China.
| | - Ruixue Guo
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Zhenfen Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Rui Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Shina Xu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Yunlong Yang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Yulin Pu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China.
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center of Targeted therapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, PR China.
| |
Collapse
|
4
|
Pasternack N, Doucet-O'Hare T, Johnson K, Paulsen O, Nath A. Endogenous retroviruses are dysregulated in ALS. iScience 2024; 27:110147. [PMID: 38989463 PMCID: PMC11233923 DOI: 10.1016/j.isci.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease with no cure. Human endogenous retroviruses (HERVs) have been implicated in its pathogenesis but their relevance to ALS is not fully understood. We examined bulk RNA-seq data from almost 2,000 ALS and unaffected control samples derived from the cortex and spinal cord. Using different methods of feature selection, including differential expression analysis and machine learning, we discovered that transcription of HERV-K loci 1q22 and 8p23.1 were significantly upregulated in the spinal cord of individuals with ALS. Additionally, we identified a subset of ALS patients with upregulated HERV-K expression in the cortex and spinal cord. We also found the expression of HERV-K loci 19q11 and 8p23.1 was correlated with protein coding genes previously implicated in ALS and dysregulated in ALS patients in this study. These results clarify the association of HERV-K and ALS and highlight specific genes in the pathobiology of late-stage ALS.
Collapse
Affiliation(s)
- Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tara Doucet-O'Hare
- Neuro-Oncology Branch Stem Cell Team, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kory Johnson
- Bioinformatics Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
5
|
Milani M, Della Valle I, Rossi S, Fabbrizio P, Margotta C, Nardo G, Cozzolino M, D'Ambrosi N, Apolloni S. Neuroprotective effects of niclosamide on disease progression via inflammatory pathways modulation in SOD1-G93A and FUS-associated amyotrophic lateral sclerosis models. Neurotherapeutics 2024; 21:e00346. [PMID: 38493058 PMCID: PMC11070272 DOI: 10.1016/j.neurot.2024.e00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease influenced by genetic, epigenetic, and environmental factors, resulting in dysfunction in cellular and molecular pathways. The limited efficacy of current treatments highlights the need for combination therapies targeting multiple aspects of the disease. Niclosamide, an anthelminthic drug listed as an essential medicine, has been repurposed in clinical trials for different diseases due to its anti-inflammatory and anti-fibrotic properties. Niclosamide can inhibit various molecular pathways (e.g., STAT3, mTOR) that are dysregulated in ALS, suggesting its potential to disrupt these altered mechanisms associated with the pathology. We administered niclosamide intraperitoneally to two transgenic murine models, SOD1-G93A and FUS mice, mimicking key pathological processes of ALS. The treatment was initiated at the onset of symptoms, and we assessed disease progression by neurological scores, rotarod and wire tests, and monitored survival. Furthermore, we investigated cellular and molecular mechanisms affected by niclosamide in the spinal cord and muscle of ALS mice. In both models, the administration of niclosamide resulted in a slowdown of disease progression, an increase in survival rates, and an improvement in tissue pathology. This was characterised by reduced gliosis, motor neuron loss, muscle atrophy, and inflammatory pathways. Based on these results, our findings demonstrate that niclosamide can impact multiple pathways involved in ALS. This multi-targeted approach leads to a slowdown in the progression of the disease, positioning niclosamide as a promising candidate for repurposing in the treatment of ALS.
Collapse
Affiliation(s)
- Martina Milani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Program in Cellular and Molecular Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Della Valle
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Program in Cellular and Molecular Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Paola Fabbrizio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Cassandra Margotta
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giovanni Nardo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Savina Apolloni
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy.
| |
Collapse
|
6
|
Yang L, Liu J, Yin J, Li Y, Liu J, Liu D, Wang Z, DiSanto ME, Zhang W, Zhang X. S100A4 modulates cell proliferation, apoptosis and fibrosis in the hyperplastic prostate. Int J Biochem Cell Biol 2024; 169:106551. [PMID: 38360265 DOI: 10.1016/j.biocel.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/30/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men worldwide that may result in lower urinary tract symptoms (LUTS). At present, the specific pathophysiological mechanism for BPH/LUTS LUTS remains unclear. S100 calcium binding protein A4 (S100A4), a member of the calcium binding protein family, regulates a variety of biological processes including cell proliferation, apoptosis and fibrosis. The aim of the current study was to explore and clarify the possible role of S100A4 in BPH/LUTS. The human prostate stromal cell line (WPMY-1), rat prostate epithelial cells, human prostate tissues and two BPH rat models were employed in this study. The expression and localization of S100A4 were detected by quantitative real time PCR (qRT-PCR), immunofluorescence microscopy, Western blotting and immunohistochemistry analysis. Also, S100A4 knockdown or overexpression cell models were constructed and a BPH rat model was induced with testosterone propionate (T) or phenylephrine (PE). The BPH animals were treated with Niclosamide, a S100A4 transcription inhibitor. Results demonstrated that S100A4 was mainly localized in human prostatic stroma and rat prostatic epithelium, and showed a higher expression in BPH. Knockdown of S100A4 induced cell apoptosis, cell proliferation arrest and a reduction of tissue fibrosis markers. Overexpression of S100A4 reversed the aforementioned changes. We also demonstrated that S100A4 regulated proliferation and apoptosis mainly through the ERK pathway and modulated fibrosis via Wnt/β-catenin signaling. In conclusion, our novel data demonstrate that S100A4 could play a crucial role in BPH development and may be explored as a new therapeutic target of BPH.
Collapse
Affiliation(s)
- Liang Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Weibing Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Litvinov VV, Freynd GG. [Clinical and morphologic characterization of Pick's dementia: case report and review of the literature]. Arkh Patol 2024; 86:51-57. [PMID: 39073543 DOI: 10.17116/patol20248604151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Diseases morphologically characterized by frontotemporal lobar degeneration have relatively recently been considered as a group of frontotemporal dementias. This group is characterized by a tendency to early clinical onset of dementia, common genetic and morphological features, as well as a possible association with diseases such as amyotrophic lateral sclerosis and atypical parkinsonism syndrome. Historically, Pick's dementia (Pick's disease) was described as the first of the frontotemporal dementias, which is morphologically characterized by the presence of argyrophilic Pick's bodies represented by 3R-tau protein in the neurons of the cerebral cortex. Despite the characteristic clinical and morphological picture due to the relative rarity, the diagnosis of Pick's dementia is infrequently made by both clinicians and pathologists. The article presents current data on frontotemporal dementia. A case of Pick's dementia with characteristic clinical manifestations in the form of early onset of behavioral and personality disorders, as well as specific morphological changes in the brain, is described.
Collapse
Affiliation(s)
- V V Litvinov
- Perm State Medical University named after academician E.A. Wagner, Perm, Russia
| | - G G Freynd
- Perm State Medical University named after academician E.A. Wagner, Perm, Russia
| |
Collapse
|
8
|
Apolloni S, D'Ambrosi N. Repurposing niclosamide for the treatment of neurological disorders. Neural Regen Res 2023; 18:2705-2706. [PMID: 37449632 DOI: 10.4103/1673-5374.373705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Savina Apolloni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Li M, Liu Y, Nie X, Ma B, Ma Y, Hou Y, Yang Y, Xu J, Wang Y. S100A4 Promotes BCG-Induced Pyroptosis of Macrophages by Activating the NF-κB/NLRP3 Inflammasome Signaling Pathway. Int J Mol Sci 2023; 24:12709. [PMID: 37628889 PMCID: PMC10454862 DOI: 10.3390/ijms241612709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pyroptosis is a host immune strategy to defend against Mycobacterium tuberculosis (Mtb) infection. S100A4, a calcium-binding protein that plays an important role in promoting cancer progression as well as the pathophysiological development of various non-tumor diseases, has not been explored in Mtb-infected hosts. In this study, transcriptome analysis of the peripheral blood of patients with pulmonary tuberculosis (PTB) revealed that S100A4 and GSDMD were significantly up-regulated in PTB patients' peripheral blood. Furthermore, there was a positive correlation between the expression of GSDMD and S100A4. KEGG pathway enrichment analysis showed that differentially expressed genes between PTB patients and healthy controls were significantly related to inflammation, such as the NOD-like receptor signaling pathway and NF-κB signaling pathway. To investigate the regulatory effects of S100A4 on macrophage pyroptosis, THP-1 macrophages infected with Bacillus Calmette-Guérin (BCG) were pre-treated with exogenous S100A4, S100A4 inhibitor or si-S100A4. This research study has shown that S100A4 promotes the pyroptosis of THP-1 macrophages caused by BCG infection and activates NLRP3 inflammasome and NF-κB signaling pathways, which can be inhibited by knockdown or inhibition of S100A4. In addition, inhibition of NF-κB or NLRP3 blocks the promotion effect of S100A4 on BCG-induced pyroptosis of THP-1 macrophages. In conclusion, S100A4 activates the NF-κB/NLRP3 inflammasome signaling pathway to promote macrophage pyroptosis induced by Mtb infection. These data provide new insights into how S100A4 affects Mtb-induced macrophage pyroptosis.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.L.); (Y.L.); (X.N.); (B.M.); (Y.M.); (Y.H.); (Y.Y.)
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yueyang Liu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.L.); (Y.L.); (X.N.); (B.M.); (Y.M.); (Y.H.); (Y.Y.)
| | - Xueyi Nie
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.L.); (Y.L.); (X.N.); (B.M.); (Y.M.); (Y.H.); (Y.Y.)
| | - Boli Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.L.); (Y.L.); (X.N.); (B.M.); (Y.M.); (Y.H.); (Y.Y.)
| | - Yabo Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.L.); (Y.L.); (X.N.); (B.M.); (Y.M.); (Y.H.); (Y.Y.)
| | - Yuxin Hou
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.L.); (Y.L.); (X.N.); (B.M.); (Y.M.); (Y.H.); (Y.Y.)
| | - Yi Yang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.L.); (Y.L.); (X.N.); (B.M.); (Y.M.); (Y.H.); (Y.Y.)
| | - Jinrui Xu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.L.); (Y.L.); (X.N.); (B.M.); (Y.M.); (Y.H.); (Y.Y.)
| | - Yujiong Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (M.L.); (Y.L.); (X.N.); (B.M.); (Y.M.); (Y.H.); (Y.Y.)
| |
Collapse
|
10
|
Zhuang J, Cao Y, Guo G, Li M, Zhang T, He D, Chen J, Zhang K, Zhang Z. Inhibition of BACE1 attenuates microglia-induced neuroinflammation after intracerebral hemorrhage by suppressing STAT3 activation. Aging (Albany NY) 2023; 15:7709-7726. [PMID: 37552127 PMCID: PMC10457076 DOI: 10.18632/aging.204935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Hematoma-induced neuroinflammation is the cause of poor prognosis in intracerebral hemorrhage (ICH); therefore, promoting blood clearance and blocking overactivated inflammation are rational approaches for ICH treatment. β-site amyloid precursor protein (APP) lyase-1 (BACE1) is a key molecule regulating the microglial phenotype transition in neurodegenerative diseases. Therefore, the aim of this study was to investigate the role of BACE1 in microglial phagocytosis and inflammatory features in ICH. Here, we demonstrated the unique advantages of targeting BACE1 in microglia using an autologous blood model and primary microglia hemoglobin stimulation. When BACE1 was inhibited early in ICH, fewer residual hematomas remained, consistent with an increase in genetic features that favor phagocytosis and anti-inflammation. In addition, inhibition of BACE1 enhanced the secretion of anti-inflammatory cytokines and substantially reduced the expression of proinflammatory genes, which was regulated by signal transduction and phosphorylation of activator of transcription 3 (STAT3). Further pharmacological inhibition of STAT3 phosphorylation effectively blocked the proinflammatory and weak phagocytic phenotype of microglia due to BACE1 induction. In summary, BACE1 is the critical molecule regulating the inflammatory and phagocytic phenotypes of microglia after ICH, and targeted inhibition of the BACE1/STAT3 pathway is an important strategy for the future treatment of ICH-induced neurological injury.
Collapse
Affiliation(s)
- Jianfeng Zhuang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yang Cao
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Gengyin Guo
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Maogui Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Tongfu Zhang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jinyan Chen
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Keke Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhen Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
11
|
Spathakis M, Tarapatzi G, Filidou E, Kandilogiannakis L, Karatzas E, Steiropoulos P, Mikroulis D, Spyrou GM, Manolopoulos VG, Kolios G, Arvanitidis K. Niclosamide Attenuates Inflammation-Associated Profibrotic Responses in Human Subepithelial Lung Myofibroblasts. Biomedicines 2023; 11:2032. [PMID: 37509671 PMCID: PMC10377180 DOI: 10.3390/biomedicines11072032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Niclosamide is a commonly used helminthicidic drug for the treatment of human parasitosis by helminths. Recently, efforts have been focusing on repurposing this drug for the treatment of other diseases, such as idiopathic pulmonary fibrosis. Subepithelial lung myofibroblasts (SELMs) isolated from tissue biopsies of patients undergoing surgery for lung cancer were stimulated with TNF-α (50 ng/mL), IL-1α (5 ng/mL), added alone or in combination, and TGF-β1 (5 ng/mL). After treatment with niclosamide at 30 nM and 100 nM concentrations, expression of collagen type I, collagen type III, and fibronectin was studied by total RNA isolation and qRT-PCR and protein collagen secretion with the use of Sircol collagen assay. The migration of SELMs was assessed by a wound-healing assay. Niclosamide had no effect on baseline SELM fibrotic factor expression. When stimulated with TGF-β1, IL-1α, and/or TNF-α, SELM expression of collagen type I, type III, and fibronectin were upregulated, as was the secretion of total collagen in the culture medium. Treatment with niclosamide attenuated the effects of cytokine stimulation leading to a notable decrease in the mRNA expression of collagen type I, type III, and fibronectin in a concentration-dependent manner. SELM collagen secretion was also reduced by niclosamide at 100 nM concentration when examined at the protein level. Migration of both TGF-β1 stimulated and unstimulated SELMs was also inhibited by niclosamide. In this study, we highlight the anti-fibrotic properties of niclosamide on SELMs under stimulation with pro-fibrotic and pro-inflammatory cytokines, thus proposing this compound as a possible new therapeutic agent against lung fibrosis.
Collapse
Affiliation(s)
- Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", 16672 Vari, Greece
| | - Paschalis Steiropoulos
- Department of Pneumonology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Dimitrios Mikroulis
- Department of Cardiothoracic Surgery, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| |
Collapse
|
12
|
Lin KH, Hsieh KL, Jiang X, Kim Y. Integrating Comorbidity Knowledge for Alzheimer's Disease Drug Repurposing using Multi-task Graph Neural Network. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2023; 2023:378-387. [PMID: 37350918 PMCID: PMC10283123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Alzheimer's Disease (AD) is a multifactorial disease that shares common etiologies with its multiple comorbidities, especially vascular diseases. To predict repurposable drugs for AD utilizing the relatively well-investigated comorbidities' knowledge, we proposed a multi-task graph neural network (GNN)-based pipeline that incorporates the corresponding biomedical interactome of these diseases with their genetic markers and effective therapeutics. Our pipeline can accurately capture the interactions and disease classification in the network. Next, we predicted drugs that might interact with the AD module by the node embedding similarity. Our candidates are mostly BBB permeable, and literature evidence showed their potential for treating AD pathologies, accompanying symptoms, or cotreating AD pathology and its common comorbidities. Our pipeline demonstrated a workable strategy that predicts drug candidates with current knowledge of biological interplays between AD and several vascular diseases.
Collapse
Affiliation(s)
- Ko-Hong Lin
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Kang-Lin Hsieh
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Yejin Kim
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
13
|
Ji H, Dong H, Lan Y, Bi Y, Gu X, Han Y, Yang C, Cheng M, Gao J. Metformin attenuates fibroblast activation during pulmonary fibrosis by targeting S100A4 via AMPK-STAT3 axis. Front Pharmacol 2023; 14:1089812. [PMID: 36817136 PMCID: PMC9936158 DOI: 10.3389/fphar.2023.1089812] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Fibroblasts activation is a crucial process for development of fibrosis during idiopathic pulmonary fibrosis pathogenesis, and transforming growth factor (TGF)-β1 plays a key regulatory role in fibroblast activation. It has been reported that metformin (MET) alleviated bleomycin (BLM)-induced pulmonary fibrosis (PF) by regulating TGF-β1-induced fibroblasts activation, but the underlying mechanisms still deserve further investigations. In this study, MET blocked α-smooth muscle actin (α-SMA) accumulation in vivo accompanied with S100A4 expression and STAT3 phosphorylation inhibition, resulting in attenuating the progression of lung fibrosis after BLM administration. We determined that S100A4 plays critical roles in fibroblasts activation in vitro, evidenced by siRNA knockdown of S100A4 expression downregulated TGF-β1 induced α-SMA production in Human fetal lung fibroblast (HFL1) cells. Importantly, we found for the first time that the expression of S100A4 in fibroblasts was regulated by STAT3. Stattic, an effective small molecule inhibitor of STAT3 phosphorylation, reduced S100A4 level in TGF-β1- treated HFL1 cells accompanied with less α-SMA production. We further found that MET, which inhibits STAT3 phosphorylation by AMPK activation, also inhibits fibroblasts activation by targeting S100A4 in vitro. Together all these results, we conclude that S100A4 contributes to TGF-β1- induced pro-fibrogenic function in fibroblasts activation, and MET was able to protect against TGF-β1-induced fibroblasts activation and BLM-induced PF by down-regulating S100A4 expression through AMPK-STAT3 axis. These results provide a useful clue for a clinical strategy to prevent PF.
Collapse
Affiliation(s)
- Huimin Ji
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Hongliang Dong
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuejiao Lan
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Jilin Province People's Hospital, Changchun, Jilin, China
| | - Yuqian Bi
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Gu
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,3201 Hospital, Hanzhong, Shaanxi, China
| | - Yongyue Han
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chongyang Yang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minghan Cheng
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Jian Gao, ; Minghan Cheng,
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Jian Gao, ; Minghan Cheng,
| |
Collapse
|
14
|
Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022; 19:1061-1084. [PMID: 35790708 PMCID: PMC9587158 DOI: 10.1007/s13311-022-01260-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Johns Hopkins School of Medicine, Dept. of Neurology, Baltimore, MD, USA.
| | - Petr Kalab
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Tarantino N, Canfora I, Camerino GM, Pierno S. Therapeutic Targets in Amyotrophic Lateral Sclerosis: Focus on Ion Channels and Skeletal Muscle. Cells 2022; 11:cells11030415. [PMID: 35159225 PMCID: PMC8834084 DOI: 10.3390/cells11030415] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is a neurodegenerative disease caused by progressive loss of motor neurons, which severely compromises skeletal muscle function. Evidence shows that muscle may act as a molecular powerhouse, whose final signals generate in patients a progressive loss of voluntary muscle function and weakness leading to paralysis. This pathology is the result of a complex cascade of events that involves a crosstalk among motor neurons, glia, and muscles, and evolves through the action of converging toxic mechanisms. In fact, mitochondrial dysfunction, which leads to oxidative stress, is one of the mechanisms causing cell death. It is a common denominator for the two existing forms of the disease: sporadic and familial. Other factors include excitotoxicity, inflammation, and protein aggregation. Currently, there are limited cures. The only approved drug for therapy is riluzole, that modestly prolongs survival, with edaravone now waiting for new clinical trial aimed to clarify its efficacy. Thus, there is a need of effective treatments to reverse the damage in this devastating pathology. Many drugs have been already tested in clinical trials and are currently under investigation. This review summarizes the already tested drugs aimed at restoring muscle-nerve cross-talk and on new treatment options targeting this tissue.
Collapse
|