1
|
Kumar NG, Grosser MR, Wan S, Schator D, Ahn E, Jedel E, Nieto V, Evans DJ, Fleiszig SMJ. Contact Lens Wear Alters Transcriptional Responses to Pseudomonas aeruginosa in Both the Corneal Epithelium and the Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626720. [PMID: 39677621 PMCID: PMC11643048 DOI: 10.1101/2024.12.03.626720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Purpose Healthy corneas resist colonization by virtually all microbes yet contact lens wear can predispose the cornea to sight-threatening infection with Pseudomonas aeruginosa. Here, we explored how lens wear changes corneal epithelium transcriptional responses to P. aeruginosa and its impact on bacterial gene expression. Methods Male and female C57BL/6J mice were fitted with a contact lens on one eye for 24 h. After lens removal, corneas were immediately challenged for 4 h with P. aeruginosa. A separate group of naïve mice were similarly challenged with bacteria. Bacteria-challenged eyes were compared to uninoculated naive controls as was lens wear alone. Total RNA-sequencing determined corneal epithelium and bacterial gene expression. Results Prior lens wear profoundly altered the corneal response to P. aeruginosa, including: upregulated pattern-recognition receptors (tlr3, nod1), downregulated lectin pathway of complement activation (masp1), amplified upregulation of tcf7, gpr55, ifi205, wfdc2 (immune defense) and further suppression of efemp1 (corneal stromal integrity). Without lens wear, P. aeruginosa upregulated mitochondrial and ubiquinone metabolism genes. Lens wear alone upregulated axl, grn, tcf7, gpr55 (immune defense) and downregulated Ca2+-dependent genes necab1, snx31 and npr3. P. aeruginosa exposure to prior lens wearing vs. naïve corneas upregulated bacterial genes of virulence (popD), its regulation (rsmY, PA1226) and antimicrobial resistance (arnB, oprR). Conclusion Prior lens wear impacts corneal epithelium gene expression altering its responses to P. aeruginosa and how P. aeruginosa responds to it favoring virulence, survival and adaptation. Impacted genes and associated networks provide avenues for research to better understand infection pathogenesis.
Collapse
Affiliation(s)
- Naren G. Kumar
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Melinda R Grosser
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Stephanie Wan
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Daniel Schator
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Eugene Ahn
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Eric Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Graduate Program in Infectious Diseases and Immunity, University of California, Berkeley, CA USA
| | - Vincent Nieto
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - David J. Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- College of Pharmacy, Touro University California, Vallejo, CA USA
| | - Suzanne M. J. Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Graduate Groups in Vision Science and Microbiology, University of California, Berkeley, CA USA
| |
Collapse
|
2
|
Li M, Wang P, Huo ST, Qiu H, Li C, Lin S, Guo L, Ji Y, Zhu Y, Liu J, Guo J, Na J, Hu Y. Human Pluripotent Stem Cells Derived Endothelial Cells Repair Choroidal Ischemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302940. [PMID: 38115754 PMCID: PMC10916649 DOI: 10.1002/advs.202302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/12/2023] [Indexed: 12/21/2023]
Abstract
Choroidal atrophy is a common fundus pathological change closely related to the development of age-related macular degeneration (AMD), retinitis pigmentosa, and pathological myopia. Studies suggest that choroidal endothelial cells (CECs) that form the choriocapillaris vessels are the first cells lost in choroidal atrophy. It is found that endothelial cells derived from human pluripotent stem cells (hPSC-ECs) through the MESP1+ mesodermal progenitor stage express CECs-specific markers and can integrate into choriocapillaris. Single-cell RNA-seq (scRNA-seq) studies show that hPSC-ECs upregulate angiogenesis and immune-modulatory and neural protective genes after interacting with ex vivo ischemic choroid. In a rat model of choroidal ischemia (CI), transplantation of hPSC-ECs into the suprachoroidal space increases choroid thickness and vasculature density. Close-up examination shows that engrafted hPSC-ECs integrate with all layers of rat choroidal vessels and last 90 days. Remarkably, EC transplantation improves the visual function of CI rats. The work demonstrates that hPSC-ECs can be used to repair choroidal ischemia in the animal model, which may lead to a new therapy to alleviate choroidal atrophy implicated in dry AMD, pathological myopia, and other ocular diseases.
Collapse
Affiliation(s)
- Mengda Li
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Peiliang Wang
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineSchool of MedicineTsinghua UniversityBeijing100084China
- State Key Laboratory for Complex, Severe, and Rare DiseasesTsinghua UniversityBeijing100084China
- Center for Stem Cell Biology and Regenerative MedicineSchool of MedicineTsinghua UniversityBeijing100084China
| | - Si Tong Huo
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Hui Qiu
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineSchool of MedicineTsinghua UniversityBeijing100084China
- State Key Laboratory for Complex, Severe, and Rare DiseasesTsinghua UniversityBeijing100084China
- Center for Stem Cell Biology and Regenerative MedicineSchool of MedicineTsinghua UniversityBeijing100084China
- School of Life SciencesTsinghua UniversityBeijing100084China
| | - Chendi Li
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Siyong Lin
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Libin Guo
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Yicong Ji
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| | - Yonglin Zhu
- Center for Stem Cell Biology and Regenerative MedicineSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jinyang Liu
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineSchool of MedicineTsinghua UniversityBeijing100084China
- State Key Laboratory for Complex, Severe, and Rare DiseasesTsinghua UniversityBeijing100084China
- Center for Stem Cell Biology and Regenerative MedicineSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jianying Guo
- Center for Reproductive MedicineDepartment of Obstetrics and GynaecologyPeking University Third HospitalBeijing100191China
| | - Jie Na
- SXMU‐Tsinghua Collaborative Innovation Center for Frontier MedicineSchool of MedicineTsinghua UniversityBeijing100084China
- State Key Laboratory for Complex, Severe, and Rare DiseasesTsinghua UniversityBeijing100084China
- Center for Stem Cell Biology and Regenerative MedicineSchool of MedicineTsinghua UniversityBeijing100084China
| | - Yuntao Hu
- Eye CenterBeijing Tsinghua Changgung HospitalBeijing102218China
- Institute for Precision MedicineTsinghua UniversityBeijing100084China
- School of Clinical MedicineTsinghua UniversityBeijing100084China
| |
Collapse
|
3
|
Sasaki T, Kuse Y, Nakamura S, Shimazawa M. Progranulin-deficient macrophages cause cardiotoxicity under hypoxic conditions. Biochem Biophys Res Commun 2024; 691:149341. [PMID: 38039836 DOI: 10.1016/j.bbrc.2023.149341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Myocardial infarction (MI) induces structural and electrical cardiac remodeling in response to ischemic insult, causing lethal arrhythmias and sudden death. Progranulin (PGRN) is a glycoprotein mainly expressed in macrophages that modulates the immune responses. In this study, we investigated the direct influence of PGRN knockout (Grn-/-) macrophages on post-MI pathophysiology. An MI mouse model was established by ligating the left coronary artery for RNA sequencing and electrocardiographic analysis. Bone marrow-derived macrophages (BMDMs) were injected into mice and supernatant was collected for the measurement of reactive oxygen species (ROS) levels and extracellular flux analysis. Administration of Grn-/- BMDMs prolonged the QT intervals in the MI mouse model. Moreover, genes highly expressed in macrophages were upregulated in Grn-/- heart after MI. Post-hypoxic supernatant of Grn-/- BMDMs increased the oxygen-glucose deprivation-induced cardiomyocyte death. Grn-/- BMDMs exhibited increased ROS production, oxygen consumption, and extracellular acidification under hypoxia and inflammatory conditions. These findings suggest that PGRN deficiency causes cardiotoxicity via secretory components of macrophages that exhibit metabolic abnormalities under hypoxia.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshiki Kuse
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
4
|
Gillett DA, Wallings RL, Uriarte Huarte O, Tansey MG. Progranulin and GPNMB: interactions in endo-lysosome function and inflammation in neurodegenerative disease. J Neuroinflammation 2023; 20:286. [PMID: 38037070 PMCID: PMC10688479 DOI: 10.1186/s12974-023-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB). MAIN BODY It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs. SHORT CONCLUSION PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.
Collapse
Affiliation(s)
- Drew A Gillett
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wallings
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Pollalis D, Nanda AV, Nair GKG, Lee SY. Fiji-Assisted Automatic Quantitative Volumetric Analysis of Choroidal Neovascularization in a Laser-Induced Choroidal Neovascularization Mouse Model. Transl Vis Sci Technol 2023; 12:10. [PMID: 37043336 PMCID: PMC10103716 DOI: 10.1167/tvst.12.4.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Purpose The laser-induced choroidal neovascularization (CNV) mouse model is the most frequently used animal model of CNV. To test new therapeutic agents that suppress CNV, CNV measurement in an accurate, precise, and efficient manner is important. We present the utility of Fiji-assisted automatic volumetric quantification of CNV in comparison with two-dimensional CNV analyses. Methods Laser-induced CNV was induced in C57BL/6J mice according to the established protocol. After CNV induction, mice were treated with intravitreal injection of either phosphate-buffered saline solution (PBS) or Aflibercept, an anti- vascular endothelial growth factor agent. One week after intravitreal injection treatment, retina pigment epithelium/choroid flat mounts were stained with rhodamine-conjugated Griffonia simplicifolia lectin B4. Z-stacks of the entire CNV lesion obtained using laser confocal microscopy were converted to binary stacks using Fiji for volumetric analysis. Data from volumetric analysis and multiple area analyses from z-stack projection, the maximum, blindly selected, and mean area were compared using Fiji. Results Fiji-assisted automatic quantitative volumetric analysis of CNV was useful in detecting experimental outliers in laser-induced CNV genesis and provided accurate and precise measurements of total areas of CNV with a lower coefficient of variance (63%) than in multiple area analyses, including the z-stack projection, maximum, blindly selected, and mean areas (67%, 67%, 76%, and 69%, respectively). A lower coefficient of variance in volumetric analysis than in multiple area analyses resulted in increased statistical significance when comparing CNV lesions in PBS, and Aflibercept-treated groups; P = 0.004 in volumetric analysis versus P value range between 0.03 and 0.05 in multiple area analyses. Conclusions Fiji-assisted automatic quantitative volumetric analysis can be useful for accurate, precise, and efficient measurements of total areas of CNV. Translational Relevance Volumetric measurement for CNV lesions can be advantageous in verifying the efficacy of therapeutic agents in the laser-induced CNV mouse model.
Collapse
Affiliation(s)
- Dimitrios Pollalis
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| | - Arjun V. Nanda
- College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Gopa Kumar Gopinadhan Nair
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| | - Sun Young Lee
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Deptartment of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Li H, Zhang Y, Li C, Ning P, Sun H, Wei F. Tandem mass tag-based quantitative proteomics analysis reveals the new regulatory mechanism of progranulin in influenza virus infection. Front Microbiol 2023; 13:1090851. [PMID: 36713155 PMCID: PMC9877624 DOI: 10.3389/fmicb.2022.1090851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Progranulin (PGRN) plays an important role in influenza virus infection. To gain insight into the potential molecular mechanisms by which PGRN regulates influenza viral replication, proteomic analyzes of whole mouse lung tissue from wild-type (WT) versus (vs) PGRN knockout (KO) mice were performed to identify proteins regulated by the absence vs. presence of PGRN. Our results revealed that PGRN regulated the differential expression of ALOX15, CD14, CD5L, and FCER1g, etc., and also affected the lysosomal activity in influenza virus infection. Collectively these findings provide a panoramic view of proteomic changes resulting from loss of PGRN and thereby shedding light on the functions of PGRN in influenza virus infection.
Collapse
Affiliation(s)
- Haoning Li
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chengye Li
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Peng Ning
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fanhua Wei
- College of Agriculture, Ningxia University, Yinchuan, China,*Correspondence: Fanhua Wei, ✉
| |
Collapse
|
7
|
Progranulin Promotes Functional Recovery in Rats with Acute Spinal Cord Injury via Autophagy-Induced Anti-inflammatory Microglial Polarization. Mol Neurobiol 2022; 59:4304-4314. [PMID: 35505051 DOI: 10.1007/s12035-022-02836-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Since microglia-associated neuroinflammation plays a critical role in the progression of acute spinal cord injury, modulation of microglial activation has been suggested as a potential therapeutic strategy. Progranulin has been reported to exert neuroprotective effects by attenuating neuroinflammation, but whether these effects are due to the modulation of microglial polarization and the underlying mechanism remain unclear. Here, we investigated the effect of progranulin on microglial polarization and analyzed the crosstalk between microglial autophagy and polarization. We found that progranulin could reduce proinflammatory cytokine production at the lesion site and promote locomotor functional recovery after acute spinal cord injury. In vitro, we found that progranulin could activate microglia to acquire an anti-inflammatory phenotype and express IL-10. Moreover, progranulin-mediated enhancement of anti-inflammatory microglial polarization was attributed to the protection of lysosomal function and the enhancement of autophagic flux. Above all, progranulin exerts anti-inflammatory effects by protecting lysosomal function to enhance microglial autophagy, induce M2 microglial polarization, and ultimately improve neurological function after acute spinal cord injury. These results suggest that targeting the autophagy-lysosomal pathway to modulate microglial polarization and reduce neuroinflammation is a potential treatment for spinal cord injury.
Collapse
|
8
|
Retinal Degeneration and Microglial Dynamics in Mature Progranulin-Deficient Mice. Int J Mol Sci 2021; 22:ijms222111557. [PMID: 34768987 PMCID: PMC8584076 DOI: 10.3390/ijms222111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Progranulin (PGRN) is a secreted glycoprotein that regulates numerous cellular processes. The role of PGRN as a regulator of lysosomes has recently received attention. The purpose of this study was to characterize the retinal phenotype in mature PGRN knockout (Grn−/−) mice. The a-wave amplitude of scotopic electroretinogram and outer nuclear thickness were significantly reduced at 6 months of age in Grn−/− mice compared to wild-type (Grn+/+) mice. In Grn−/− mice, retinal microglial cells accumulated on the retinal pigment epithelium (RPE) apical layer, and the number of infiltrated microglia and white fundus lesions between 2 and 6 months of age showed a close affinity. In Grn+/+ mice, PGRN was located in the retina, while the strongest PGRN signals were detected in the RPE-choroid. The different effects of PGRN deficiency on the expression of lysosomal proteins between the retina and RPE-choroid were demonstrated. Our data suggest that the subretinal translocation of microglia is a characteristic phenotype in the retina of mature PGRN knockout mice. The different effects of PGRN deficiency on the expression of lysosomal proteins between the retina and RPE-choroid might modulate microglial dynamics in PGRN knockout mice.
Collapse
|