1
|
Li A, Fang B, Li M, Koay YC, Malecki C, Hunter B, Harney D, dos Remedios CG, Larance M, O’Sullivan JF, Lal S. Myocardial Posttranscriptional Landscape in Peripartum Cardiomyopathy. Circ Heart Fail 2024; 17:e011725. [PMID: 39513265 PMCID: PMC11643137 DOI: 10.1161/circheartfailure.124.011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Pregnancy imposes significant cardiovascular adaptations, including progressive increases in plasma volume and cardiac output. For most women, this physiological adaptation resolves at the end of pregnancy, but some women develop pathological dilatation and ultimately heart failure late in pregnancy or in the postpartum period, manifesting as peripartum cardiomyopathy (PPCM). Despite the mortality risk of this form of heart failure, the molecular mechanisms underlying PPCM have not been extensively examined in human hearts. METHODS Protein and metabolite profiles from left ventricular tissue of end-stage PPCM patients (N=6-7) were compared with dilated cardiomyopathy (DCM; N=5-6) and nonfailing donors (N=7-18) using unbiased quantitative mass spectrometry. All samples were derived from the Sydney Heart Bank. Data are available via ProteomeXchange with identifier PXD055986. Differential protein expression and metabolite abundance and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. RESULTS Proteomic analysis identified 2 proteins, SBSPON (somatomedin B and thrombospondin type 1 domain-containing protein precursor) and TNS3 (tensin 3), that were uniquely downregulated in PPCM. SBSPON, an extracellular matrix protein, and TNS3, involved in actin remodeling and cell signaling, may contribute to impaired tissue remodeling and fibrosis in PPCM. Metabolomic analysis revealed elevated levels of homogentisate and deoxycholate and reduced levels of lactate and alanine in PPCM, indicating disrupted metabolic pathways and glucose utilization. Both PPCM and DCM shared pathways related to inflammation, immune responses, and signal transduction. However, thyroid hormone signaling was notably reduced in PPCM, affecting contractility and calcium handling through altered expression of PLN (phospholamban) and Sarcoendoplasmic Reticulum Calcium ATPase (SERCA). Enhanced endoplasmic reticulum stress and altered endocytosis pathways in PPCM suggested additional mechanisms of energy metabolism disruption. CONCLUSIONS The present study reveals unique posttranslational molecular features of the PPCM myocardium, which mediates cellular and metabolic remodeling, and holds promise as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Li
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia (A.L., B.F., Y.C.K., C.M., B.H., D.H., C.G.d.R., M. Larance, J.F.O., S.L.)
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia (A.L.)
- Centre for Healthy Futures, Torrens University Australia, Surry Hills, NSW (A.L.)
| | - Bernard Fang
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia (A.L., B.F., Y.C.K., C.M., B.H., D.H., C.G.d.R., M. Larance, J.F.O., S.L.)
| | - Mengbo Li
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia (M. Li)
| | - Yen Chin Koay
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia (A.L., B.F., Y.C.K., C.M., B.H., D.H., C.G.d.R., M. Larance, J.F.O., S.L.)
| | - Cassandra Malecki
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia (A.L., B.F., Y.C.K., C.M., B.H., D.H., C.G.d.R., M. Larance, J.F.O., S.L.)
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, NSW, Australia (C.M, J.F.O, S.L)
| | - Benjamin Hunter
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia (A.L., B.F., Y.C.K., C.M., B.H., D.H., C.G.d.R., M. Larance, J.F.O., S.L.)
| | - Dylan Harney
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia (A.L., B.F., Y.C.K., C.M., B.H., D.H., C.G.d.R., M. Larance, J.F.O., S.L.)
| | - Cristobal G. dos Remedios
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia (A.L., B.F., Y.C.K., C.M., B.H., D.H., C.G.d.R., M. Larance, J.F.O., S.L.)
| | - Mark Larance
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia (A.L., B.F., Y.C.K., C.M., B.H., D.H., C.G.d.R., M. Larance, J.F.O., S.L.)
| | - John F. O’Sullivan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia (A.L., B.F., Y.C.K., C.M., B.H., D.H., C.G.d.R., M. Larance, J.F.O., S.L.)
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, NSW, Australia (C.M, J.F.O, S.L)
| | - Sean Lal
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia (A.L., B.F., Y.C.K., C.M., B.H., D.H., C.G.d.R., M. Larance, J.F.O., S.L.)
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, NSW, Australia (C.M, J.F.O, S.L)
| |
Collapse
|
2
|
Dai R, Xu W, Zhu X, Sun R, Cheng L, Cui L, Qiu X, Wang Y, Sun Y. Acupuncture improves neuroendocrine defects in a preclinical rat model of reproductive aging. Life Sci 2024; 357:123102. [PMID: 39366551 DOI: 10.1016/j.lfs.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
AIMS Clinical data supports electroacupuncture (EA) as an effective treatment for female reproductive disorders especially gonadotropin abnormalities. This study aims to detect the mechanism of EA that improves the neuroendocrine defects particularly the luteinizing hormone (LH) surge failure in early reproductive aging females. MATERIALS AND METHODS Middle-aged ovariectomized rats primed with hormone were treated by EA at acupoints CV4 and SP6 and undergone LH assay. Morphological experiments detected the activation of Kiss1 cells in the anteroventral periventricular nucleus (AVPV). Using targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) and RNA-sequencing, we determined the concentrations of neurotransmitter metabolites and transcriptomics in AVPV. KEY FINDINGS EA significantly increased c-Fos and c-Fos-positive Kiss1 cells in the middle-aged AVPV as well as the total and peak LH release. Targeted LC-MS/MS and RNA-sequencing of AVPV identified differential neurotransmitters in the middle-aged females including Acetylcholine chloride, 5-Hydroxyindole-3-aceticacid, Kynurenine, Histamine, L-Histidine and L-Glycine, while EA decreased the concentration of Acetylcholine chloride. Totally 1255 differentially expressed genes modulated by EA were strongly implicated in neurotransmitter transport and KEGG pathways involved neuroactive ligand-receptor interaction, glutamatergic and gamma-aminobutyric acid-mediated synapse. Specifically, the mRNAs associated with the LH surge such as hormone receptor Pgr, adrenoceptor Adra1a, neurotransmitter transporters Slc17a6 and Slc32a1, glutamate decarboxylase Gad2 and Kiss1 were markedly altered by EA. SIGNIFICANCE These findings showed that the age-related reduction of LH surge occurred via differential neurotransmitter metabolisms and altered transcriptions in AVPV, which proposed EA-based therapy for improving responsiveness of the hypothalamus to hormone in women with advanced age.
Collapse
Affiliation(s)
- Ruoxi Dai
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Wen Xu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Xiaojuan Zhu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Ruiqi Sun
- Department of Clinical Medicine, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Lin Cheng
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Liyuan Cui
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Xuemin Qiu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Yan Wang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Yan Sun
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China; The Academy of Integrative Medicine, Fudan University, Shanghai 200081, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease, Shanghai 200081, China.
| |
Collapse
|
3
|
Salis Torres A, Lee JE, Caporali A, Semple RK, Horrocks MH, MacRae VE. Mitochondrial Dysfunction as a Potential Mechanism Mediating Cardiac Comorbidities in Parkinson's Disease. Int J Mol Sci 2024; 25:10973. [PMID: 39456761 PMCID: PMC11507255 DOI: 10.3390/ijms252010973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Individuals diagnosed with Parkinson's disease (PD) often exhibit heightened susceptibility to cardiac dysfunction, reflecting a complex interaction between these conditions. The involvement of mitochondrial dysfunction in the development and progression of cardiac dysfunction and PD suggests a plausible commonality in some aspects of their molecular pathogenesis, potentially contributing to the prevalence of cardiac issues in PD. Mitochondria, crucial organelles responsible for energy production and cellular regulation, play important roles in tissues with high energetic demands, such as neurons and cardiac cells. Mitochondrial dysfunction can occur in different and non-mutually exclusive ways; however, some mechanisms include alterations in mitochondrial dynamics, compromised bioenergetics, biogenesis deficits, oxidative stress, impaired mitophagy, and disrupted calcium balance. It is plausible that these factors contribute to the increased prevalence of cardiac dysfunction in PD, suggesting mitochondrial health as a potential target for therapeutic intervention. This review provides an overview of the physiological mechanisms underlying mitochondrial quality control systems. It summarises the diverse roles of mitochondria in brain and heart function, highlighting shared pathways potentially exhibiting dysfunction and driving cardiac comorbidities in PD. By highlighting strategies to mitigate dysfunction associated with mitochondrial impairment in cardiac and neural tissues, our review aims to provide new perspectives on therapeutic approaches.
Collapse
Affiliation(s)
- Agustina Salis Torres
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Ji-Eun Lee
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Vicky E. MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
| |
Collapse
|
4
|
Sánchez-Ramírez E, Ung TPL, Stringari C, Aguilar-Arnal L. Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation. Mol Neurobiol 2024; 61:6688-6707. [PMID: 38340204 PMCID: PMC11339152 DOI: 10.1007/s12035-024-04006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Stem cells possess extraordinary capacities for self-renewal and differentiation, making them highly valuable in regenerative medicine. Among these, neural stem cells (NSCs) play a fundamental role in neural development and repair processes. NSC characteristics and fate are intricately regulated by the microenvironment and intracellular signaling. Interestingly, metabolism plays a pivotal role in orchestrating the epigenome dynamics during neural differentiation, facilitating the transition from undifferentiated NSC to specialized neuronal and glial cell types. This intricate interplay between metabolism and the epigenome is essential for precisely regulating gene expression patterns and ensuring proper neural development. This review highlights the mechanisms behind metabolic regulation of NSC fate and their connections with epigenetic regulation to shape transcriptional programs of stemness and neural differentiation. A comprehensive understanding of these molecular gears appears fundamental for translational applications in regenerative medicine and personalized therapies for neurological conditions.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Albadawi EA. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024; 16:e67378. [PMID: 39310519 PMCID: PMC11413839 DOI: 10.7759/cureus.67378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The corpus callosum, the largest white matter structure in the brain, plays a crucial role in interhemispheric communication and cognitive function. This review examines the microstructural changes observed in the corpus callosum across various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). New neuroimaging studies, mainly those that use diffusion tensor imaging (DTI) and advanced tractography methods, were put together to show how changes have happened in the organization of white matter and the connections between them. Some of the most common ways the corpus callosum breaks down are discussed, including less fractional anisotropy, higher mean diffusivity, and atrophy in certain regions. The relationship between these microstructural changes and cognitive decline, motor dysfunction, and disease progression is explored. Additionally, we consider the potential of corpus callosum imaging as a biomarker for early disease detection and monitoring. Studies show that people with these disorders have lower fractional anisotropy and higher mean diffusivity in the corpus callosum, often in ways that are specific to the disease. These changes often happen before gray matter atrophy and are linked to symptoms, which suggests that the corpus callosum could be used as an early sign of neurodegeneration. The review also highlights the implications of these findings for understanding disease mechanisms and developing therapeutic strategies. Future directions, including the application of advanced imaging techniques and longitudinal studies, are discussed to elucidate the role of corpus callosum degeneration in neurodegenerative processes. This review underscores the importance of the corpus callosum in understanding the pathophysiology of neurodegenerative diseases and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah Univeristy, Madinah, SAU
| |
Collapse
|
7
|
Altay O, Yang H, Yildirim S, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Hacimuftuoglu A, Shoaie S, Zhang C, Borén J, Uhlén M, Turkez H, Mardinoglu A. Combined Metabolic Activators with Different NAD+ Precursors Improve Metabolic Functions in the Animal Models of Neurodegenerative Diseases. Biomedicines 2024; 12:927. [PMID: 38672280 PMCID: PMC11048203 DOI: 10.3390/biomedicines12040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. METHODS Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. FINDINGS Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. INTERPRETATION Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.
Collapse
Affiliation(s)
- Ozlem Altay
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Hong Yang
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240, Turkey; (S.Y.); (I.B.)
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240, Turkey; (S.Y.); (I.B.)
| | - Sena Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25240, Turkey; (S.O.); (O.O.T.); (M.E.A.)
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25240, Turkey; (S.O.); (O.O.T.); (M.E.A.)
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25240, Turkey; (S.O.); (O.O.T.); (M.E.A.)
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
| | - Cheng Zhang
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - Mathias Uhlén
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
| |
Collapse
|
8
|
Cleland NRW, Potter GJ, Buck C, Quang D, Oldham D, Neal M, Saviola A, Niemeyer CS, Dobrinskikh E, Bruce KD. Altered metabolism and DAM-signatures in female brains and microglia with aging. Brain Res 2024; 1829:148772. [PMID: 38244754 DOI: 10.1016/j.brainres.2024.148772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Despite Alzheimer's disease (AD) disproportionately affecting women, the mechanisms remain elusive. In AD, microglia undergo 'metabolic reprogramming', which contributes to microglial dysfunction and AD pathology. However, how sex and age contribute to metabolic reprogramming in microglia is understudied. Here, we use metabolic imaging, transcriptomics, and metabolic assays to probe age- and sex-associated changes in brain and microglial metabolism. Glycolytic and oxidative metabolism in the whole brain was determined using Fluorescence Lifetime Imaging Microscopy (FLIM). Young female brains appeared less glycolytic than male brains, but with aging, the female brain became 'male-like.' Transcriptomic analysis revealed increased expression of disease-associated microglia (DAM) genes (e.g., ApoE, Trem2, LPL), and genes involved in glycolysis and oxidative metabolism in microglia from aged females compared to males. To determine whether estrogen can alter the expression of these genes, BV-2 microglia-like cell lines, which abundantly express DAM genes, were supplemented with 17β-estradiol (E2). E2 supplementation resulted in reduced expression of DAM genes, reduced lipid and cholesterol transport, and substrate-dependent changes in glycolysis and oxidative metabolism. Consistent with the notion that E2 may suppress DAM-associated factors, LPL activity was elevated in the brains of aged female mice. Similarly, DAM gene and protein expression was higher in monocyte-derived microglia-like (MDMi) cells derived from middle-aged females compared to age-matched males and was responsive to E2 supplementation. FLIM analysis of MDMi from young and middle-aged females revealed reduced oxidative metabolism and FAD+ with age. Overall, our findings show that altered metabolism defines age-associated changes in female microglia and suggest that estrogen may inhibit the expression and activity of DAM-associated factors, which may contribute to increased AD risk, especially in post-menopausal women.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Garrett J Potter
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Courtney Buck
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daphne Quang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dean Oldham
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mikaela Neal
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christy S Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
9
|
Cottam NC, Harrington MA, Schork PM, Sun J. No significant sex differences in incidence or phenotype for the SMNΔ7 mouse model of spinal muscular atrophy. Neuromuscul Disord 2024; 37:13-22. [PMID: 38493520 PMCID: PMC11031329 DOI: 10.1016/j.nmd.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease that affects 1 out of every 6,000-10,000 individuals at birth, making it the leading genetic cause of infant mortality. In recent years, reports of sex differences in SMA patients have become noticeable. The SMNΔ7 mouse model is commonly used to investigate pathologies and treatments in SMA. However, studies on sex as a contributing biological variable are few and dated. Here, we rigorously investigated the effect of sex on a series of characteristics in SMA mice of the SMNΔ7 model. Incidence and lifespan of 23 mouse litters were tracked and phenotypic assessments were performed at 2-day intervals starting at postnatal day 6 for every pup until the death of the SMA pup(s) in each litter. Brain weights were also collected post-mortem. We found that male and female SMA incidence does not differ significantly, survival periods are the same across sexes, and there was no phenotypic difference between male and female SMA pups, other than for females exhibiting lesser body weights at early ages. Overall, this study ensures that sex is not a biological variable that contributes to the incidence ratio or disease severity in the SMNΔ7 mouse model.
Collapse
Affiliation(s)
- Nicholas C Cottam
- Delaware State University, Department of Biological Sciences, 1200 N Dupont Highway, Dover, DE, USA
| | - Melissa A Harrington
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
| | - Pamela M Schork
- Delaware State University, Department of Biological Sciences, 1200 N Dupont Highway, Dover, DE, USA
| | - Jianli Sun
- Delaware State University, Department of Biological Sciences, 1200 N Dupont Highway, Dover, DE, USA; Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
10
|
Galli R, Uckermann O. Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration. Biophys Rev 2024; 16:219-235. [PMID: 38737209 PMCID: PMC11078905 DOI: 10.1007/s12551-023-01158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/22/2023] [Indexed: 05/14/2024] Open
Abstract
Neurological disorders, including spinal cord injury, peripheral nerve injury, traumatic brain injury, and neurodegenerative diseases, pose significant challenges in terms of diagnosis, treatment, and understanding the underlying pathophysiological processes. Label-free multiphoton microscopy techniques, such as coherent Raman scattering, two-photon excited autofluorescence, and second and third harmonic generation microscopy, have emerged as powerful tools for visualizing nervous tissue with high resolution and without the need for exogenous labels. Coherent Raman scattering processes as well as third harmonic generation enable label-free visualization of myelin sheaths, while their combination with two-photon excited autofluorescence and second harmonic generation allows for a more comprehensive tissue visualization. They have shown promise in assessing the efficacy of therapeutic interventions and may have future applications in clinical diagnostics. In addition to multiphoton microscopy, vibrational spectroscopy methods such as infrared and Raman spectroscopy offer insights into the molecular signatures of injured nervous tissues and hold potential as diagnostic markers. This review summarizes the application of these label-free optical techniques in preclinical models and illustrates their potential in the diagnosis and treatment of neurological disorders with a special focus on injury, degeneration, and regeneration. Furthermore, it addresses current advancements and challenges for bridging the gap between research findings and their practical applications in a clinical setting.
Collapse
Affiliation(s)
- Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Luu P, Fraser SE, Schneider F. More than double the fun with two-photon excitation microscopy. Commun Biol 2024; 7:364. [PMID: 38531976 PMCID: PMC10966063 DOI: 10.1038/s42003-024-06057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
For generations researchers have been observing the dynamic processes of life through the lens of a microscope. This has offered tremendous insights into biological phenomena that span multiple orders of time- and length-scales ranging from the pure magic of molecular reorganization at the membrane of immune cells, to cell migration and differentiation during development or wound healing. Standard fluorescence microscopy techniques offer glimpses at such processes in vitro, however, when applied in intact systems, they are challenged by reduced signal strengths and signal-to-noise ratios that result from deeper imaging. As a remedy, two-photon excitation (TPE) microscopy takes a special place, because it allows us to investigate processes in vivo, in their natural environment, even in a living animal. Here, we review the fundamental principles underlying TPE aimed at basic and advanced microscopy users interested in adopting TPE for intravital imaging. We focus on applications in neurobiology, present current trends towards faster, wider and deeper imaging, discuss the combination with photon counting technologies for metabolic imaging and spectroscopy, as well as highlight outstanding issues and drawbacks in development and application of these methodologies.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Falk Schneider
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
12
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
13
|
Cleland NRW, Potter GJ, Buck C, Quang D, Oldham D, Neal M, Saviola A, Niemeyer CS, Dobrinskikh E, Bruce KD. Altered Metabolism and DAM-signatures in Female Brains and Microglia with Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569104. [PMID: 38076915 PMCID: PMC10705419 DOI: 10.1101/2023.11.28.569104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Despite Alzheimer's disease (AD) disproportionately affecting women, the mechanisms remain elusive. In AD, microglia undergo 'metabolic reprogramming', which contributes to microglial dysfunction and AD pathology. However, how sex and age contribute to metabolic reprogramming in microglia is understudied. Here, we use metabolic imaging, transcriptomics, and metabolic assays to probe age-and sex-associated changes in brain and microglial metabolism. Glycolytic and oxidative metabolism in the whole brain was determined using Fluorescence Lifetime Imaging Microscopy (FLIM). Young female brains appeared less glycolytic than male brains, but with aging, the female brain became 'male-like.' Transcriptomic analysis revealed increased expression of disease-associated microglia (DAM) genes (e.g., ApoE, Trem2, LPL), and genes involved in glycolysis and oxidative metabolism in microglia from aged females compared to males. To determine whether estrogen can alter the expression of these genes, BV-2 microglia-like cell lines, which abundantly express DAM genes, were supplemented with 17β-estradiol (E2). E2 supplementation resulted in reduced expression of DAM genes, reduced lipid and cholesterol transport, and substrate-dependent changes in glycolysis and oxidative metabolism. Consistent with the notion that E2 may suppress DAM-associated factors, LPL activity was elevated in the brains of aged female mice. Similarly, DAM gene and protein expression was higher in monocyte-derived microglia-like (MDMi) cells derived from middle-aged females compared to age-matched males and was responsive to E2 supplementation. FLIM analysis of MDMi from young and middle-aged females revealed reduced oxidative metabolism and FAD+ with age. Overall, our findings show that altered metabolism defines age-associated changes in female microglia and suggest that estrogen may inhibit the expression and activity of DAM-associated factors, which may contribute to increased AD risk, especially in post-menopausal women.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Garrett J Potter
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Courtney Buck
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Daphne Quang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Dean Oldham
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Mikaela Neal
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Anthony Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Christy S. Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
14
|
Le LNN, Wheeler GJ, Holy EN, Donnay CA, Blockley NP, Yee AH, Ng KL, Fan AP. Cortical oxygen extraction fraction using quantitative BOLD MRI and cerebral blood flow during vasodilation. Front Physiol 2023; 14:1231793. [PMID: 37869717 PMCID: PMC10588655 DOI: 10.3389/fphys.2023.1231793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: We aimed to demonstrate non-invasive measurements of regional oxygen extraction fraction (OEF) from quantitative BOLD MRI modeling at baseline and after pharmacological vasodilation. We hypothesized that OEF decreases in response to vasodilation with acetazolamide (ACZ) in healthy conditions, reflecting compensation in regions with increased cerebral blood flow (CBF), while cerebral metabolic rate of oxygen (CMRO2) remained unchanged. We also aimed to assess the relationship between OEF and perfusion in the default mode network (DMN) regions that have shown associations with vascular risk factors and cerebrovascular reactivity in different neurological conditions. Material and methods: Eight healthy subjects (47 ± 13 years, 6 female) were scanned on a 3 T scanner with a 32-channel head coil before and after administration of 15 mg/kg ACZ as a pharmacological vasodilator. The MR imaging acquisition protocols included: 1) A Gradient Echo Slice Excitation Profile Imaging Asymmetric Spin Echo scan to quantify OEF, deoxygenated blood volume, and reversible transverse relaxation rate (R2 ') and 2) a multi-post labeling delay arterial spin labeling scan to measure CBF. To assess changes in each parameter due to vasodilation, two-way t-tests were performed for all pairs (baseline versus vasodilation) in the DMN brain regions with Bonferroni correction for multiple comparisons. The relationships between CBF versus OEF and CBF versus R2' were analyzed and compared across DMN regions using linear, mixed-effect models. Results: During vasodilation, CBF significantly increased in the medial frontal cortex (P = 0.004 ), posterior cingulate gyrus (pCG) (P = 0.004 ), precuneus cortex (PCun) (P = 0.004 ), and occipital pole (P = 0.001 ). Concurrently, a significant decrease in OEF was observed only in the pCG (8.8%, P = 0.003 ) and PCun (8.7 % , P = 0.001 ). CMRO2 showed a trend of increased values after vasodilation, but these differences were not significant after correction for multiple comparisons. Although R2' showed a slightly decreasing trend, no statistically significant changes were found in any regions in response to ACZ. The CBF response to ACZ exhibited a stronger negative correlation with OEF (β = - 0.104 ± 0.027 ; t = - 3.852 , P < 0.001 ), than with R2' (β = - 0.016 ± 0.006 ; t = - 2.692 , P = 0.008 ). Conclusion: Quantitative BOLD modeling can reliably measure OEF across multiple physiological conditions and captures vascular changes with higher sensitivity than R2' values. The inverse correlation between OEF and CBF across regions in DMN, suggests that these two measurements, in response to ACZ vasodilation, are reliable indicators of tissue health in this healthy cohort.
Collapse
Affiliation(s)
- Linh N. N. Le
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Gregory J. Wheeler
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Emily N. Holy
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Corinne A. Donnay
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Nicholas P. Blockley
- School of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alan H. Yee
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Kwan L. Ng
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Audrey P. Fan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Kilwein MD, Dao TK, Welte MA. Drosophila embryos allocate lipid droplets to specific lineages to ensure punctual development and redox homeostasis. PLoS Genet 2023; 19:e1010875. [PMID: 37578970 PMCID: PMC10449164 DOI: 10.1371/journal.pgen.1010875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that facilitate neutral lipid storage in cells, including energy-dense triglycerides. They are found in all investigated metazoan embryos where they are thought to provide energy for development. Intriguingly, early embryos of diverse metazoan species asymmetrically allocate LDs amongst cellular lineages, a process which can involve massive intracellular redistribution of LDs. However, the biological reason for asymmetric lineage allocation is unknown. To address this issue, we utilize the Drosophila embryo where the cytoskeletal mechanisms that drive allocation are well characterized. We disrupt allocation by two different means: Loss of the LD protein Jabba results in LDs adhering inappropriately to glycogen granules; loss of Klar alters the activities of the microtubule motors that move LDs. Both mutants cause the same dramatic change in LD tissue inheritance, shifting allocation of the majority of LDs to the yolk cell instead of the incipient epithelium. Embryos with such mislocalized LDs do not fully consume their LDs and are delayed in hatching. Through use of a dPLIN2 mutant, which appropriately localizes a smaller pool of LDs, we find that failed LD transport and a smaller LD pool affect embryogenesis in a similar manner. Embryos of all three mutants display overlapping changes in their transcriptome and proteome, suggesting that lipid deprivation results in a shared embryonic response and a widespread change in metabolism. Excitingly, we find abundant changes related to redox homeostasis, with many proteins related to glutathione metabolism upregulated. LD deprived embryos have an increase in peroxidized lipids and rely on increased utilization of glutathione-related proteins for survival. Thus, embryos are apparently able to mount a beneficial response upon lipid stress, rewiring their metabolism to survive. In summary, we demonstrate that early embryos allocate LDs into specific lineages for subsequent optimal utilization, thus protecting against oxidative stress and ensuring punctual development.
Collapse
Affiliation(s)
- Marcus D. Kilwein
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - T. Kim Dao
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
16
|
Reveglia P, Paolillo C, Angiolillo A, Ferretti G, Angelico R, Sirabella R, Corso G, Matrone C, Di Costanzo A. A Targeted Mass Spectrometry Approach to Identify Peripheral Changes in Metabolic Pathways of Patients with Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119736. [PMID: 37298687 DOI: 10.3390/ijms24119736] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the most common cause of dementia in the elderly population. Since its original description, there has been intense debate regarding the factors that trigger its pathology. It is becoming apparent that AD is more than a brain disease and harms the whole-body metabolism. We analyzed 630 polar and apolar metabolites in the blood of 20 patients with AD and 20 healthy individuals, to determine whether the composition of plasma metabolites could offer additional indicators to evaluate any alterations in the metabolic pathways related to the illness. Multivariate statistical analysis showed that there were at least 25 significantly dysregulated metabolites in patients with AD compared with the controls. Two membrane lipid components, glycerophospholipids and ceramide, were upregulated, whereas glutamic acid, other phospholipids, and sphingolipids were downregulated. The data were analyzed using metabolite set enrichment analysis and pathway analysis using the KEGG library. The results showed that at least five pathways involved in the metabolism of polar compounds were dysregulated in patients with AD. Conversely, the lipid pathways did not show significant alterations. These results support the possibility of using metabolome analysis to understand alterations in the metabolic pathways related to AD pathophysiology.
Collapse
Affiliation(s)
- Pierluigi Reveglia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Carmela Paolillo
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Antonella Angiolillo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Gabriella Ferretti
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Ruggero Angelico
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Alfonso Di Costanzo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
17
|
Veeraiah P, Jansen JFA. Multinuclear Magnetic Resonance Spectroscopy at Ultra-High-Field: Assessing Human Cerebral Metabolism in Healthy and Diseased States. Metabolites 2023; 13:metabo13040577. [PMID: 37110235 PMCID: PMC10143499 DOI: 10.3390/metabo13040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a highly energetic organ. Although the brain can consume metabolic substrates, such as lactate, glycogen, and ketone bodies, the energy metabolism in a healthy adult brain mainly relies on glucose provided via blood. The cerebral metabolism of glucose produces energy and a wide variety of intermediate metabolites. Since cerebral metabolic alterations have been repeatedly implicated in several brain disorders, understanding changes in metabolite levels and corresponding cell-specific neurotransmitter fluxes through different substrate utilization may highlight the underlying mechanisms that can be exploited to diagnose or treat various brain disorders. Magnetic resonance spectroscopy (MRS) is a noninvasive tool to measure tissue metabolism in vivo. 1H-MRS is widely applied in research at clinical field strengths (≤3T) to measure mostly high abundant metabolites. In addition, X-nuclei MRS including, 13C, 2H, 17O, and 31P, are also very promising. Exploiting the higher sensitivity at ultra-high-field (>4T; UHF) strengths enables obtaining unique insights into different aspects of the substrate metabolism towards measuring cell-specific metabolic fluxes in vivo. This review provides an overview about the potential role of multinuclear MRS (1H, 13C, 2H, 17O, and 31P) at UHF to assess the cerebral metabolism and the metabolic insights obtained by applying these techniques in both healthy and diseased states.
Collapse
Affiliation(s)
- Pandichelvam Veeraiah
- Scannexus (Ultra-High-Field MRI Center), 6229 EV Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
18
|
Using Optogenetics to Model Cellular Effects of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054300. [PMID: 36901729 PMCID: PMC10001751 DOI: 10.3390/ijms24054300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Across the world a dementia case is diagnosed every three seconds. Alzheimer's disease (AD) causes 50-60% of these cases. The most prominent theory for AD correlates the deposition of amyloid beta (Aβ) with the onset of dementia. Whether Aβ is causative remains unclear due to findings such as the recently approved drug Aducanumab showing effective clearance of Aβ, but not improving cognition. New approaches for understanding Aβ function, are therefore necessary. Here we discuss the application of optogenetic techniques to gain insight into AD. Optogenetics, or genetically encoded, light-dependent on/off switches, provides precise spatiotemporal control to regulate cellular dynamics. This precise control over protein expression and oligomerization or aggregation could provide a better understanding of the etiology of AD.
Collapse
|
19
|
Turkez H, Altay O, Yildirim S, Li X, Yang H, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Arif M, Yulug B, Hanoglu L, Cankaya S, Lam S, Velioglu HA, Coskun E, Idil E, Nogaylar R, Ozsimsek A, Hacimuftuoglu A, Shoaie S, Zhang C, Nielsen J, Borén J, Uhlén M, Mardinoglu A. Combined metabolic activators improve metabolic functions in the animal models of neurodegenerative diseases. Life Sci 2023; 314:121325. [PMID: 36581096 DOI: 10.1016/j.lfs.2022.121325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), are associated with metabolic abnormalities. Integrative analysis of human clinical data and animal studies have contributed to a better understanding of the molecular and cellular pathways involved in the progression of NDDs. Previously, we have reported that the combined metabolic activators (CMA), which include the precursors of nicotinamide adenine dinucleotide and glutathione can be utilized to alleviate metabolic disorders by activating mitochondrial metabolism. METHODS We first analysed the brain transcriptomics data from AD patients and controls using a brain-specific genome-scale metabolic model (GEM). Then, we investigated the effect of CMA administration in animal models of AD and PD. We evaluated pathological and immunohistochemical findings of brain and liver tissues. Moreover, PD rats were tested for locomotor activity and apomorphine-induced rotation. FINDINGS Analysis of transcriptomics data with GEM revealed that mitochondrial dysfunction is involved in the underlying molecular pathways of AD. In animal models of AD and PD, we showed significant damage in the high-fat diet groups' brain and liver tissues compared to the chow diet. The histological analyses revealed that hyperemia, degeneration and necrosis in neurons were improved by CMA administration in both AD and PD animal models. These findings were supported by immunohistochemical evidence of decreased immunoreactivity in neurons. In parallel to the improvement in the brain, we also observed dramatic metabolic improvement in the liver tissue. CMA administration also showed a beneficial effect on behavioural functions in PD rats. INTERPRETATION Overall, we showed that CMA administration significantly improved behavioural scores in parallel with the neurohistological outcomes in the AD and PD animal models and is a promising treatment for improving the metabolic parameters and brain functions in NDDs.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Serkan Yildirim
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey.
| | - Xiangyu Li
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey.
| | - Sena Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Muhammad Arif
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Seyda Cankaya
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| | - Halil Aziz Velioglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab, Istanbul Medipol University, Istanbul, Turkey; Department of Women's and Children's Health, Karolinska Institute, Neuroimaging Lab, Stockholm, Sweden
| | - Ebru Coskun
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ezgi Idil
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Rahim Nogaylar
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ahmet Ozsimsek
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey.
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Saeed Shoaie
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| | - Cheng Zhang
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
20
|
Li Y, Lan X, Wang S, Cui Y, Song S, Zhou H, Li Q, Dai L, Zhang J. Serial five-membered lactone ring ions in the treatment of Alzheimer's diseases-comprehensive profiling of arctigenin metabolites and network analysis. Front Pharmacol 2022; 13:1065654. [PMID: 36605392 PMCID: PMC9807626 DOI: 10.3389/fphar.2022.1065654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Arctigenin is a phenylpropanoid dibenzylbutyro lactone lignan compound with multiple biological functions. Previous studies have shown that arctigenin have neuroprotective effects in Alzheimer's disease (AD) models both in vivo and in vitro; however, its metabolism in vivo has not been studied. Most traditional analytical methods only partially characterize drug metabolite prototypes, so there is an urgent need for a research strategy that can fully characterize drug metabolites. In the present study, ions fishing with a serial five-membered lactone ring as a fishhook strategy based on ultrahigh-performance liquid chromatography-Q-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS) was utilised to characterise the metabolism of arctigenin, and the establishment of this strategy also solved the challenge of creating a comprehensive metabolic profile of neolignan. Based on the proposed strategy, a total of 105 metabolites were detected and characterised, 76 metabolites of which were found in rats and 49 metabolites in liver microsomes. These metabolites were postulated to be produced through oxidation, reduction, hydrolysis, and complex reactions. Subsequently, network pharmacology was utilized to elucidate the mechanism of arctigenin and its main metabolites against Alzheimer's disease, screening 381 potential targets and 20 major signaling pathways. The study on the comprehensive metabolism of arctigenin provides a holistic metabolic profile, which will help to better understand the mechanism of arctigenin in the treatment of Alzheimer's disease (AD) and also provide a basis for the safe administration of arctigenin.
Collapse
Affiliation(s)
- Yanan Li
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianming Lan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yifang Cui
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuyi Song
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hongyan Zhou
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiyan Li
- Shandong Provincial Institute for Food and Drug Control, Jinan, China,*Correspondence: Jiayu Zhang, ; Long Dai, ; Qiyan Li,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Jiayu Zhang, ; Long Dai, ; Qiyan Li,
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Jiayu Zhang, ; Long Dai, ; Qiyan Li,
| |
Collapse
|
21
|
Carneiro TJ, Vojtek M, Gonçalves-Monteiro S, Batista de Carvalho ALM, Marques MPM, Diniz C, Gil AM. Effect of Pd 2Spermine on Mice Brain-Liver Axis Metabolism Assessed by NMR Metabolomics. Int J Mol Sci 2022; 23:13773. [PMID: 36430252 PMCID: PMC9693583 DOI: 10.3390/ijms232213773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martin Vojtek
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
22
|
Darvish Khadem M, Tabandeh MR, Haschemi A, Kheirollah A, Shahriari A. Dimethyl itaconate reprograms neurotoxic to neuroprotective primary astrocytes through the regulation of NLRP3 inflammasome and NRF2/HO-1 pathways. Mol Cell Neurosci 2022; 122:103758. [PMID: 35868484 DOI: 10.1016/j.mcn.2022.103758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
The activation of neurotoxic reactive astrocytes contributes to the pathogenesis of many neurodegenerative diseases. Itaconate, a product of cellular metabolism, is released from activated macrophage/microglia and has been shown to regulate inflammatory responses in several mammalian cells. This study was designed to investigate the impact of cell-permeable dimethyl itaconate (DI) on reactive astrocyte-dependent neurotoxicity. Primary murine astrocyte cells were isolated and stimulated with lipopolysaccharide (LPS) to generate reactive astrocytes. Treating these activated cells with DI was able to diminish the neurotoxic phenotype of reactive astrocytes, as we found reduced LPS-induced Nod-like receptor protein 3 (NLRP3) inflammasome activation and interleukin-1β (IL-1β) secretion. DI reduced the level of inflammasome components, attenuated inflammasome assembly and subsequently reduced caspase-1 cleavage and IL-1β levels. Additionally, DI attenuated nuclear factor-kappa B (NF-κB) phosphorylation in LPS-activated astrocytes and also protected astrocytes from LPS-induced cytotoxicity, including a lowering of Bax and caspase3. DI-treated reactive astrocytes showed an elevated GSH/GSSG ratio and improved antioxidant defense factors including catalase and superoxide dismutase, while lipid peroxidation was reduced. We found that DI activated the nuclear factor 2 (NRF2) and heme oxygenase-1 (HO-1) pathway in astrocytes and thereby potentially control redox-regulation and the inflammatory state of astrocytes. Collectively, these results indicate the neuroprotective role of DI by reprogramming astrocytes from neurotoxic A1 to neuroprotective A2 states and thereby reveal a novel potential strategy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Darvish Khadem
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran; Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Alireza Kheirollah
- Department of Biochemistry, Medical School, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Shahriari
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran.
| |
Collapse
|
23
|
Curcumae Radix Decreases Neurodegenerative Markers through Glycolysis Decrease and TCA Cycle Activation. Nutrients 2022; 14:nu14081587. [PMID: 35458149 PMCID: PMC9024545 DOI: 10.3390/nu14081587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (ND) are being increasingly studied owing to the increasing proportion of the aging population. Several potential compounds are examined to prevent neurodegenerative diseases, including Curcumae radix, which is known to be beneficial for inflammatory conditions, metabolic syndrome, and various types of pain. However, it is not well studied, and its influence on energy metabolism in ND is unclear. We focused on the relationship between ND and energy metabolism using Curcumae radix extract (CRE) in cells and animal models. We monitored neurodegenerative markers and metabolic indicators using Western blotting and qRT-PCR and then assessed cellular glycolysis and metabolic flux assays. The levels of Alzheimer’s disease-related markers in mouse brains were reduced after treatment with the CRE. We confirmed that neurodegenerative markers decreased in the cerebrum and brain tumor cells following low endoplasmic reticulum (ER) stress markers. Furthermore, glycolysis related genes and the extracellular acidification rate decreased after treatment with the CRE. Interestingly, we found that the CRE exposed mouse brain and cells had increased mitochondrial Tricarboxylic acid (TCA) cycle and Oxidative phosphorylation (OXPHOS) related genes in the CRE group. Curcumae radix may act as a metabolic modulator of brain health and help treat and prevent ND involving mitochondrial dysfunction.
Collapse
|
24
|
Carvalho da Silva AM, Lemos C, Silva HB, Ferreira IL, Tomé AR, Rego AC, Cunha RA. Simultaneous Alteration of the Circadian Variation of Memory, Hippocampal Synaptic Plasticity, and Metabolism in a Triple Transgenic Mouse Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:835885. [PMID: 35431906 PMCID: PMC9009366 DOI: 10.3389/fnagi.2022.835885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by progressive memory deficits accompanied by synaptic and metabolic deficits, namely of mitochondrial function. AD patients also display a disrupted circadian pattern. Thus, we now compared memory performance, synaptic plasticity, and mitochondria function in 24-week-old non-transgenic (non-Tg) and triple transgenic male mice modeling AD (3xTg-AD) at Zeitgeber 04 (ZT-4, inactive phase) and ZT-16 (active phase). Using the Morris water maze test to minimize the influence of circadian-associated locomotor activity, we observed a circadian variation in hippocampus-dependent learning performance in non-Tg mice, which was impaired in 3xTg-AD mice. 3xTg-AD mice also displayed a lack of circadian variation of their performance in the reversal spatial learning task. Additionally, the amplitude of hippocampal long-term potentiation also exhibited a circadian profile in non-Tg mice, which was not observed in 3xTg-AD mice. Moreover, cerebral cortical synaptosomes of non-Tg mice also displayed a circadian variation of FCCP-stimulated oxygen consumption as well as in mitochondrial calcium retention that were blunted in 3xTg-AD mice. In sum, this multidimensional study shows that the ability to maintain a circadian oscillation in brain behavior, synaptic plasticity, and synaptic mitochondria function are simultaneously impaired in 3xTg-AD mice, highlighting the effects of circadian misalignment in AD.
Collapse
Affiliation(s)
- António M. Carvalho da Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- *Correspondence: António M. Carvalho da Silva,
| | - Cristina Lemos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Henrique B. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ildete L. Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Angelo R. Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - A. Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- A. Cristina Rego,
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Rodrigo A. Cunha,
| |
Collapse
|
25
|
Kirvalidze M, Hodkinson A, Storman D, Fairchild TJ, Bała M, Beridze G, Zuriaga A, Brudasc NI, Brini S. The role of glucose on cognition, risk of dementia, and related biomarkers in individuals without type 2 diabetes mellitus or the metabolic syndrome: a systematic review of observational studies. Neurosci Biobehav Rev 2022; 135:104551. [DOI: 10.1016/j.neubiorev.2022.104551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 01/14/2023]
|