1
|
Gozlan E, Lewit-Cohen Y, Frenkel D. Sex Differences in Astrocyte Activity. Cells 2024; 13:1724. [PMID: 39451242 PMCID: PMC11506538 DOI: 10.3390/cells13201724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Astrocytes are essential for maintaining brain homeostasis. Alterations in their activity have been associated with various brain pathologies. Sex differences were reported to affect astrocyte development and activity, and even susceptibility to different neurodegenerative diseases. This review aims to summarize the current knowledge on the effects of sex on astrocyte activity in health and disease.
Collapse
Affiliation(s)
- Elisa Gozlan
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Yarden Lewit-Cohen
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Dan Frenkel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Medegan Fagla B, York J, Christensen A, Dela Rosa C, Balu D, Pike CJ, Tai LM, Buhimschi IA. Apolipoprotein E polymorphisms and female fertility in a transgenic mouse model of Alzheimer's disease. Sci Rep 2024; 14:15873. [PMID: 38982272 PMCID: PMC11233746 DOI: 10.1038/s41598-024-66489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Apolipoprotein E (APOE) is a major cholesterol carrier responsible for lipid transport and injury repair in the brain. The human APOE gene (h-APOE) has 3 naturally occurring alleles: ε3, the common allele; ε4, which increases Alzheimer's disease (AD) risk up to 15-fold; and ε2, the rare allele which protects against AD. Although APOE4 has negative effects on neurocognition in old age, its persistence in the population suggests a survival advantage. We investigated the relationship between APOE genotypes and fertility in EFAD mice, a transgenic mouse model expressing h-APOE. We show that APOE4 transgenic mice had the highest level of reproductive performance, followed by APOE3 and APOE2. Intriguingly, APOE3 pregnancies had more fetal resorptions and reduced fetal weights relative to APOE4 pregnancies. In conclusion, APOE genotypes impact fertility and pregnancy outcomes in female mice, in concordance with findings in human populations. These mouse models may help elucidate how h-APOE4 promotes reproductive fitness at the cost of AD in later life.
Collapse
Affiliation(s)
- Bani Medegan Fagla
- Department of Obstetrics Gynecology, University of Illinois at Chicago College of Medicine, 820 S. Wood Street, Chicago, IL, 60612, USA
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Amy Christensen
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Cielo Dela Rosa
- Department of Obstetrics Gynecology, University of Illinois at Chicago College of Medicine, 820 S. Wood Street, Chicago, IL, 60612, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Irina A Buhimschi
- Department of Obstetrics Gynecology, University of Illinois at Chicago College of Medicine, 820 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Lopez-Lee C, Torres ERS, Carling G, Gan L. Mechanisms of sex differences in Alzheimer's disease. Neuron 2024; 112:1208-1221. [PMID: 38402606 PMCID: PMC11076015 DOI: 10.1016/j.neuron.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Alzheimer's disease (AD) and the mechanisms underlying its etiology and progression are complex and multifactorial. The higher AD risk in women may serve as a clue to better understand these complicated processes. In this review, we examine aspects of AD that demonstrate sex-dependent effects and delve into the potential biological mechanisms responsible, compiling findings from advanced technologies such as single-cell RNA sequencing, metabolomics, and multi-omics analyses. We review evidence that sex hormones and sex chromosomes interact with various disease mechanisms during aging, encompassing inflammation, metabolism, and autophagy, leading to unique characteristics in disease progression between men and women.
Collapse
Affiliation(s)
- Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Eileen Ruth S Torres
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Lane RM, Darreh-Shori T, Junge C, Li D, Yang Q, Edwards AL, Graham DL, Moore K, Mummery CJ. Onset of Alzheimer disease in apolipoprotein ɛ4 carriers is earlier in butyrylcholinesterase K variant carriers. BMC Neurol 2024; 24:116. [PMID: 38594621 PMCID: PMC11003149 DOI: 10.1186/s12883-024-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION NCT03186989 since June 14, 2017.
Collapse
Affiliation(s)
- Roger M Lane
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatric, Karolinska Institutet, Stockholm, Sweden
| | - Candice Junge
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Dan Li
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Qingqing Yang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | | | | - Katrina Moore
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | |
Collapse
|
5
|
McGill CJ, Christensen A, Qian W, Thorwald MA, Lugo JG, Namvari S, White OS, Finch CE, Benayoun BA, Pike CJ. Protection against APOE4 -associated aging phenotypes with the longevity-promoting intervention 17α-estradiol in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584678. [PMID: 38559059 PMCID: PMC10980056 DOI: 10.1101/2024.03.12.584678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The apolipoprotein ε4 allele ( APOE4 ) is associated with decreased longevity, increased vulnerability to age-related declines, and disorders across multiple systems. Interventions that promote healthspan and lifespan represent a promising strategy to attenuate the development of APOE4 -associated aging phenotypes. Here we studied the ability of the longevity-promoting intervention 17α-estradiol (17αE2) to protect against age-related impairments in APOE4 versus the predominant APOE3 genotype using early middle-aged mice with knock-in of human APOE alleles. Beginning at age 10 months, male APOE3 or APOE4 mice were treated for 20 weeks with 17αE2 or vehicle then compared for indices of aging phenotypes body-wide. Across peripheral and neural measures, APOE4 was associated with poorer outcomes. Notably, 17αE2 treatment improved outcomes in a genotype-dependent manner favoring APOE4 mice. These data demonstrate a positive APOE4 bias in 17αE2-mediated healthspan actions, suggesting that longevity-promoting interventions may be useful in mitigating deleterious age-related risks associated with APOE4 genotype.
Collapse
|
6
|
Huang X, Zhao J, Wang Q, Yan T, Gou S, Zhu X, Yang L, Ye F, Zhang J, Wang Y, Yang S, Le W, Xiang Y. Association between plasma CTRPs with cognitive impairment and neurodegeneration of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14606. [PMID: 38334009 PMCID: PMC10853890 DOI: 10.1111/cns.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 02/10/2024] Open
Abstract
AIMS Recent evidence indicated the biological basis of complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) 3, 4, and 14 for affecting brain structure and cognitive function. Thus, we aimed to investigate the association between plasma CTRPs with Alzheimer's disease (AD). METHODS A multicenter, cross-sectional study recruited patients with AD (n = 137) and cognitively normal (CN) controls (n = 140). After the data collection of demographic characteristics, lifestyle risk factors, and medical history, plasma levels of tau phosphorylated at threonine 217 (pT217), pT181, neurofilament light (NfL), CTRP3, 4, and 14 were examined and compared. Multivariate logistic regression analysis was applied to determine associations of plasma CTPRs with the presence of AD. The correlation analysis was used to explore correlations between plasma CTPRs with scores of Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Activities of Daily Living (ADL) scale, and Clinical Dementia Rating Sum of Boxes (CDR-SB), and levels of plasma pT217, pT181, and NfL. Receiver-operating characteristic (ROC) analysis and Delong's test were used to determine the diagnostic power of plasma CTPRs. RESULTS Plasma levels of CTRP3, 4, and 14 were higher in AD group than those in CN group. After adjusting for conventional risk factors, CTRP3, CTRP4, and CTRP14 were associated with the presence of AD. In AD patients, CTRP3 was negatively correlated with scores of MMSE and MoCA, while positively correlated with ADL score, CDR-SB score, pT217, and pT181; CTRP4 was positively correlated with CDR-SB score, pT181, and NfL; CTRP14 was negatively correlated with MMSE score, while positively correlated with CDR-SB score, pT217, and NfL. An independent addition of CTRP3 and 4 to the basic model combining age, sex, years of education, APOE4 status, BMI, TG, and HDL-C led to a significant improvement in diagnostic power for AD, respectively. CONCLUSIONS All the findings preliminarily uncovered associations between plasma CTRPs and AD and suggested the potential of CTRPs as a blood-derived biomarker for AD.
Collapse
Affiliation(s)
- Xiao Huang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jialing Zhao
- Institute of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of NeurologyYunyang County People's HospitalChongqingChina
| | - Qinghua Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Tingqi Yan
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shu Gou
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xiaofeng Zhu
- Department of NeurologyChengdu Eighth People's HospitalChengduChina
| | - Liu Yang
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Fang Ye
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jie Zhang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yanjiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Shaojie Yang
- Department of NeurologyChengdu Eighth People's HospitalChengduChina
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yang Xiang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
7
|
Balu D, Valencia-Olvera AC, Islam Z, Mielczarek C, Hansen A, Perez Ramos TM, York J, LaDu MJ, Tai LM. APOE genotype and sex modulate Alzheimer's disease pathology in aged EFAD transgenic mice. Front Aging Neurosci 2023; 15:1279343. [PMID: 38020764 PMCID: PMC10644540 DOI: 10.3389/fnagi.2023.1279343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Increasing evidence supports that age, APOE and sex interact to modulate Alzheimer's disease (AD) risk, however the underlying pathways are unclear. One way that AD risk factors may modulate cognition is by impacting amyloid beta (Aβ) accumulation as plaques, and/or neuroinflammation Therefore, the goal of the present study was to evaluate the extent to which age, APOE and sex modulate Aβ pathology, neuroinflammation and behavior in vivo. To achieve this goal, we utilized the EFAD mice, which express human APOE3 or APOE4 and have five familial AD mutations (FAD) that result in Aβ42 overproduction. We assessed Aβ levels, reactive glia and Morris water maze performance in 6-, 10-, 14-, and 18-month-old EFAD mice. Female APOE4 mice had the highest Aβ deposition, fibrillar amyloid deposits and neuroinflammation as well as earlier behavior deficits. Interestingly, we found that female APOE3 mice and male APOE4 mice had similar levels of pathology. Collectively our data support that the combination of APOE4 and female sex is the most detrimental combination for AD, and that at older ages, female sex may be equivalent to APOE4 genotype.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Ana C. Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zarak Islam
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- University of Illinois College of Medicine, Chicago, IL, United States
| | - Clare Mielczarek
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Allison Hansen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- University of Illinois College of Medicine, Peoria, IL, United States
| | - Tamara M. Perez Ramos
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- School of Medicine, St. George’s University, St. George’s, Grenada
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Leon M. Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Balu D, Valencia-Olvera AC, Nguyen A, Patnam M, York J, Peri F, Neumann F, LaDu MJ, Tai LM. A small-molecule TLR4 antagonist reduced neuroinflammation in female E4FAD mice. Alzheimers Res Ther 2023; 15:181. [PMID: 37858252 PMCID: PMC10585767 DOI: 10.1186/s13195-023-01330-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND APOE genotype is the greatest genetic risk factor for sporadic Alzheimer's disease (AD). APOE4 increases AD risk up to 12-fold compared to APOE3, an effect that is greater in females. Evidence suggests that one-way APOE could modulate AD risk and progression through neuroinflammation. Indeed, APOE4 is associated with higher glial activation and cytokine levels in AD patients and mice. Therefore, identifying pathways that contribute to APOE4-associated neuroinflammation is an important approach for understanding and treating AD. Human and in vivo evidence suggests that TLR4, one of the key receptors involved in the innate immune system, could be involved in APOE-modulated neuroinflammation. Consistent with that idea, we previously demonstrated that the TLR4 antagonist IAXO-101 can reduce LPS- and Aβ-induced cytokine secretion in APOE4 glial cultures. Therefore, the goal of this study was to advance these findings and determine whether IAXO-101 can modulate neuroinflammation, Aβ pathology, and behavior in mice that express APOE4. METHODS We used mice that express five familial AD mutations and human APOE3 (E3FAD) or APOE4 (E4FAD). Female and male E4FAD mice and female E3FAD mice were treated with vehicle or IAXO-101 in two treatment paradigms: prevention from 4 to 6 months of age or reversal from 6 to 7 months of age. Learning and memory were assessed by modified Morris water maze. Aβ deposition, fibrillar amyloid deposition, astrogliosis, and microgliosis were assessed by immunohistochemistry. Soluble levels of Aβ and apoE, insoluble levels of apoE and Aβ, and IL-1β were measured by ELISA. RESULTS IAXO-101 treatment resulted in lower Iba-1 coverage, lower number of reactive microglia, and improved memory in female E4FAD mice in both prevention and reversal paradigms. IAXO-101-treated male E4FAD mice also had lower Iba-1 coverage and reactivity in the RVS paradigm, but there was no effect on behavior. There was also no effect of IAXO-101 treatment on neuroinflammation and behavior in female E3FAD mice. CONCLUSION Our data supports that TLR4 is a potential mechanistic therapeutic target for modulating neuroinflammation and cognition in APOE4 females.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ana C Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Austin Nguyen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mehul Patnam
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Sun YY, Wang Z, Huang HC. Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approaches. Cell Mol Neurobiol 2023; 43:3115-3136. [PMID: 37227619 PMCID: PMC10211310 DOI: 10.1007/s10571-023-01365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The Apolipoprotein E ε4 (ApoE ε4) allele, encoding ApoE4, is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). Emerging epidemiological evidence indicated that ApoE4 contributes to AD through influencing β-amyloid (Aβ) deposition and clearance. However, the molecular mechanisms of ApoE4 involved in AD pathogenesis remains unclear. Here, we introduced the structure and functions of ApoE isoforms, and then we reviewed the potential mechanisms of ApoE4 in the AD pathogenesis, including the effect of ApoE4 on Aβ pathology, and tau phosphorylation, oxidative stress; synaptic function, cholesterol transport, and mitochondrial dysfunction; sleep disturbances and cerebrovascular integrity in the AD brains. Furthermore, we discussed the available strategies for AD treatments that target to ApoE4. In general, this review overviews the potential roles of ApoE4 in the AD development and suggests some therapeutic approaches for AD. ApoE4 is genetic risk of AD. ApoE4 is involved in the AD pathogenesis. Aβ deposition, NFT, oxidative stress, abnormal cholesterol, mitochondrial dysfunction and neuroinflammation could be observed in the brains with ApoE4. Targeting the interaction of ApoE4 with the AD pathology is available strategy for AD treatments.
Collapse
Affiliation(s)
- Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023, China
| | - Zhun Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China.
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|