1
|
Nan Y, Ni S, Liu M, Hu K. The emerging role of microglia in the development and therapy of multiple sclerosis. Int Immunopharmacol 2024; 143:113476. [PMID: 39476566 DOI: 10.1016/j.intimp.2024.113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Microglia are innate immune cells that maintain homeostasis of the central nervous system (CNS) and affect various neurodegenerative diseases, especially multiple sclerosis (MS). MS is an autoimmune disease of the CNS characterized by persistent inflammation, diffuse axonal damage, and microglia activation. Recent studies have shown that microglia are extremely related to the pathological state of MS and play an important role in the development of MS. This article reviews the multiple roles of microglia in the progression of MS, including the regulatory role of microglia in inflammation, remyelination, oxidative stress, the influence of phagocytosis and antigen-presenting capacity of microglia, and the recent progress by using microglia as a target for MS therapy. Microglia modulation may be a potential way for better MS therapy.
Collapse
Affiliation(s)
- Yunrong Nan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Li J, Hao G, Yan Y, Li M, Li G, Lu Z, Sun Z, Chen Y, Liu H, Zhao Y, Wu M, Bao X, Wang Y, Li Y. Hydrogen restores central tryptophan and metabolite levels and maintains mitochondrial homeostasis to protect rats from chronic mild unpredictable stress damage. Neurochem Int 2024; 182:105914. [PMID: 39653185 DOI: 10.1016/j.neuint.2024.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND AND PURPOSE The field of hydrogen medicine has garnered extensive attention since Professor Ohsawa established that low concentrations of hydrogen (2%-4%) exert antioxidant effects. The present study aimed to evaluate the therapeutic effect of molecular hydrogen in a CUMS rat model. METHODS A total of 40 SD rats were randomly divided into a control group, a model group, a hydrogen group, and a positive drug group. Four weeks post-modeling, hydrogen inhalation and other treatments were administered. Behavioral, biochemical, and immunohistochemical evaluations were performed after treatment. RESULTS Hydrogen inhalation alleviated depressive behavior and hippocampal neuronal damage in CUMS rats, as well as restored the levels of neurotransmitters, inflammatory factors, and oxidative stress. Moreover, it maintained mitochondrial homeostasis and up-regulated the expression of PGC-1α, PINK1, and Parkin. CONCLUSIONS The results collectively indicated that hydrogen significantly attenuated CUMS-induced depressive-like behavior and monoamine neurotransmitter deficiency, as well as protected the brain from oxidative stress and inflammatory damage and effectively preserved mitochondrial homeostasis.
Collapse
Affiliation(s)
- Jiaxin Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yupeng Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ming Li
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Gaifen Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhengmin Lu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhibo Sun
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanjing Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yukun Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Meng Wu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiangxin Bao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yubo Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Feng S, Liu L, Cheng Y, Zhou M, Zhu H, Zhao X, Chen Z, Kan S, Fu X, Hu W, Zhu R. Icariin promotes functional recovery in rats after spinal cord injury by inhibiting YAP and regulating PPM1B ubiquitination to inhibiting the activation of reactive astrocytes. Front Pharmacol 2024; 15:1434652. [PMID: 39439899 PMCID: PMC11493691 DOI: 10.3389/fphar.2024.1434652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Objective The limited ability to regenerate axons after spinal cord injury (SCI) is influenced by factors such as astrocyte activation, reactive proliferation, and glial scar formation. The TGF-β/Smad (transforming growth factor-β/mothers against decapentaplegic homolog) pathway, associated with astrocytic scarring, plays a crucial role in recovery post-injury. This study aims to investigate how icariin (ICA) interacts with reactive astrocytes in the treatment of spinal cord injury. Methods A rat SCI model was constructed, and the recovery of motor function was observed after treatment with ICA.HE staining, LFB staining, immunofluorescence staining, and Western blotting were employed to assess ICA's ability to inhibit astrocyte proliferation in rats following spinal cord injury by modulating YAP, as well as to evaluate the reparative effects of ICA on the injured spinal cord tissue. Primary astrocytes were isolated and cultured. Immunoprecipitation-Western Blot (IP-WB) ubiquitination and cytoplasm-nuclear separation were employed to assess PPM1B ubiquitination and nuclear translocation. Results The CatWalk XT gait analysis, BBB (Basso, Beattie, and Bresnahan) score, electrophysiological measurements, HE staining, and LFB staining collectively demonstrated that ICA promotes motor function and tissue recovery following spinal cord injury in rats. Immunofluorescence staining and Western Blot analyses revealed that ICA inhibits astrocyte proliferation in rats post-spinal cord injury by suppressing YAP activity. Furthermore, the activation of YAP by XMU-MP-1 was shown to compromise the efficacy of ICA in these rats after spinal cord injury. Additional immunofluorescence staining and Western Blot experiments confirmed that ICA inhibits TGFβ1-induced astrocyte activation through the regulation of YAP. The knockdown of PPM1B (protein phosphatase, Mg2+/Mn2+-dependent 1B) in astrocytes was found to inhibit TGFβ signaling. Additionally, YAP was shown to regulate PPM1B ubiquitination and nuclear translocation through immunoprecipitation-Western blot analysis, along with the segregation of cytoplasm and nucleus. Conclusion Icariin promotes functional recovery in rats after spinal cord injury by inhibiting YAP and regulating PPM1B ubiquitination to inhibiting the activation of reactive astrocytes.
Collapse
Affiliation(s)
- Sa Feng
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Linyan Liu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yuelin Cheng
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Mengmeng Zhou
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Haoqiang Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xinyan Zhao
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Ziyu Chen
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shunli Kan
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xuanhao Fu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
4
|
Cheng J, Sun J, Niu R, Wang X, Hu G, Li F, Gu K, Wu H, Pu Y, Shen F, Hu H, Shen Z. Chronic exposure to PM 10 induces anxiety-like behavior via exacerbating hippocampal oxidative stress. Free Radic Biol Med 2024; 216:12-22. [PMID: 38458393 DOI: 10.1016/j.freeradbiomed.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
As one of the most environmental concerns, inhaled particulate matter (PM10) causes numerous health problems. However, the associations between anxiety behavior and toxicity caused by PM10 have rarely been reported so far. To investigate the changes of behavior after PM10 exposure and to identify the potential mechanisms of toxicity, PM10 samples (with doses of 15 mg/kg and 30 mg/kg) were intratracheally instilled into rats to simulate inhalation of polluted air by the lungs. After instillation for eight weeks, anxiety-like behavior was evaluated, levels of oxidative stress and morphological changes of hippocampus were measured. The behavioral results indicated that PM10 exposure induced obvious anxiety-like behavior in the open field and elevated plus maze tests. Both PM10 concentrations tested could increase whole blood viscosity and trigger hippocampal neuronal damage and oxidative stress by increasing superoxide dismutase (SOD) activities and malondialdehyde levels, and decreasing the expressions of antioxidant-related proteins (e.g., nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and heme oxygenase 1). Furthermore, through collecting and analyzing questionnaires, the data showed that the participants experienced obvious anxiety-related emotions and negative somatic responses under heavily polluted environments, especially PM10 being the main pollutant. These results show that PM10 exposure induces anxiety-like behavior, which may be related to suppressing the Nrf2/Keap1-SOD1 pathway.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui Niu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Medical College, Xi'an Peihua University, Xi'an, 710125, China
| | - Xiaoqing Wang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Guilin Hu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fan Li
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kunrong Gu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Wu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuanchun Pu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanqi Shen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, 710049, China.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
5
|
Li J, Xie F, Ma X. Advances in nanomedicines: a promising therapeutic strategy for ischemic cerebral stroke treatment. Nanomedicine (Lond) 2024; 19:811-835. [PMID: 38445614 DOI: 10.2217/nnm-2023-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Ischemic stroke, prevalent among the elderly, necessitates attention to reperfusion injury post treatment. Limited drug access to the brain, owing to the blood-brain barrier, restricts clinical applications. Identifying efficient drug carriers capable of penetrating this barrier is crucial. Blood-brain barrier transporters play a vital role in nutrient transport to the brain. Recently, nanoparticles emerged as drug carriers, enhancing drug permeability via surface-modified ligands. This article introduces the blood-brain barrier structure, elucidates reperfusion injury pathogenesis, compiles ischemic stroke treatment drugs, explores nanomaterials for drug encapsulation and emphasizes their advantages over conventional drugs. Utilizing nanoparticles as drug-delivery systems offers targeting and efficiency benefits absent in traditional drugs. The prospects for nanomedicine in stroke treatment are promising.
Collapse
Affiliation(s)
- Jun Li
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| | - Fei Xie
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| | - Xuemei Ma
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| |
Collapse
|
6
|
Chu GG, Wang J, Ding ZB, Yin JZ, Song LJ, Wang Q, Huang JJ, Xiao BG, Ma CG. Hydroxyfasudil regulates immune balance and suppresses inflammatory responses in the treatment of experimental autoimmune encephalomyelitis. Int Immunopharmacol 2023; 124:110791. [PMID: 37619413 DOI: 10.1016/j.intimp.2023.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disease with complicated etiology. Multifocal demyelination and invasion of inflammatory cells are its primary pathological features. Fasudil has been confirmed to improve experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, Fasudil is accompanied by several shortcomings in the clinical practice. Hydroxyfasudil is a metabolite of Fasudil in the body with better pharmaceutical properties. Therefore, we attempted to study the influence of Hydroxyfasudil upon EAE mice. The results demonstrated that Hydroxyfasudil relieved the symptoms of EAE and the associated pathological damage, reduced the adhesion molecules and chemokines, decreased the invasion of peripheral immune cells. Simultaneously, Hydroxyfasudil modified the rebalance of peripheral T cells. Moreover, Hydroxyfasudil shifted the M1 phenotype to M2 polarization, inhibited inflammatory signaling cascades as well as inflammatory factors, and promoted anti-inflammatory factors in the CNS. In the end, mice in the Hydroxyfasudil group expressed more tight junction proteins, indirectly indicating that the blood-brain barrier (BBB) was protected. Our results indicate that Hydroxyfasudil may be a prospective treatment for MS.
Collapse
Affiliation(s)
- Guo-Guo Chu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Jing Wang
- Dept. of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhi-Bin Ding
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Dept. of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jin-Zhu Yin
- Dept. of Neurosurgery/The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Dept. of Neurosurgery/The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Qing Wang
- Dept. of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jian-Jun Huang
- Dept. of Neurosurgery/The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200433, China.
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|
7
|
Zheng H, Zhang C, Zhang J, Duan L. "Sentinel or accomplice": gut microbiota and microglia crosstalk in disorders of gut-brain interaction. Protein Cell 2023; 14:726-742. [PMID: 37074139 PMCID: PMC10599645 DOI: 10.1093/procel/pwad020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
Abnormal brain-gut interaction is considered the core pathological mechanism behind the disorders of gut-brain interaction (DGBI), in which the intestinal microbiota plays an important role. Microglia are the "sentinels" of the central nervous system (CNS), which participate in tissue damage caused by traumatic brain injury, resist central infection and participate in neurogenesis, and are involved in the occurrence of various neurological diseases. With in-depth research on DGBI, we could find an interaction between the intestinal microbiota and microglia and that they are jointly involved in the occurrence of DGBI, especially in individuals with comorbidities of mental disorders, such as irritable bowel syndrome (IBS). This bidirectional regulation of microbiota and microglia provides a new direction for the treatment of DGBI. In this review, we focus on the role and underlying mechanism of the interaction between gut microbiota and microglia in DGBI, especially IBS, and the corresponding clinical application prospects and highlight its potential to treat DGBI in individuals with psychiatric comorbidities.
Collapse
Affiliation(s)
- Haonan Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| |
Collapse
|