1
|
Liang W, Liang B, Yan K, Zhang G, Zhuo J, Cai Y. Low-Intensity Pulsed Ultrasound: A Physical Stimulus with Immunomodulatory and Anti-inflammatory Potential. Ann Biomed Eng 2024; 52:1955-1981. [PMID: 38683473 DOI: 10.1007/s10439-024-03523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Ultrasound has expanded into the therapeutic field as a medical imaging and diagnostic technique. Low-intensity pulsed ultrasound (LIPUS) is a kind of therapeutic ultrasound that plays a vital role in promoting fracture healing, wound repair, immunomodulation, and reducing inflammation. Its anti-inflammatory effects are manifested by decreased pro-inflammatory cytokines and chemokines, accelerated regression of immune cell invasion, and accelerated damage repair. Although the anti-inflammatory mechanism of LIPUS is not very clear, many in vitro and in vivo studies have shown that LIPUS may play its anti-inflammatory role by activating signaling pathways such as integrin/Focal adhesion kinase (FAK)/Phosphatidylinositol 3-kinase (PI3K)/Serine threonine kinase (Akt), Vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS), or inhibiting signaling pathways such as Toll-like receptors (TLRs)/Nuclear factor kappa-B (NF-κB) and p38-Mitogen-activated protein kinase (MAPK). As a non-invasive physical therapy, the anti-inflammatory and immunomodulatory effects of LIPUS deserve further exploration.
Collapse
Affiliation(s)
- Wenxin Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Beibei Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Kaicheng Yan
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Guanxuanzi Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Jiaju Zhuo
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
2
|
Fu S, Guo Z, Xu X, Li Y, Choi S, Zhao P, Shen W, Gao F, Wang C, Chen S, Li Y, Tian J, Sun P. Protective effect of low-intensity pulsed ultrasound on immune checkpoint inhibitor-related myocarditis via fine-tuning CD4 + T-cell differentiation. Cancer Immunol Immunother 2024; 73:15. [PMID: 38236243 PMCID: PMC10796578 DOI: 10.1007/s00262-023-03590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) have transformed traditional cancer treatments. Specifically, ICI-related myocarditis is an immune-related adverse event (irAE) with high mortality. ICIs activate CD4+ T-lymphocyte reprogramming, causing an imbalance between Th17 and Treg cell differentiation, ultimately leading to myocardial inflammatory damage. Low-intensity pulsed ultrasound (LIPUS) can limit inflammatory responses, with positive therapeutic effects across various cardiovascular inflammatory diseases; however, its role in the pathogenesis of ICI-related myocarditis and CD4+ T-cell dysfunction remains unclear. Accordingly, this study investigated whether LIPUS can alleviate ICI-related myocarditis inflammatory damage and, if so, aimed to elucidate the beneficial effects of LIPUS and its underlying molecular mechanisms. METHODS An in vivo model of ICI-related myocarditis was obtained by intraperitonially injecting male A/J mice with an InVivoPlus anti-mouse PD-1 inhibitor. LIPUS treatment was performed via an ultrasound-guided application to the heart via the chest wall. The echocardiographic parameters were observed and cardiac function was assessed using an in vivo imaging system. The expression of core components of the HIPPO pathway was analyzed via western blotting. RESULTS LIPUS treatment reduced cardiac immune responses and inflammatory cardiac injury. Further, LIPUS treatment alleviated the inflammatory response in mice with ICI-related myocarditis. Mechanistically, in the HIPPO pathway, the activation of Mst1-TAZ axis improved autoimmune inflammation by altering the interaction between the transcription factors FOXP3 and RORγt and regulating the differentiation of Treg and Th17 cells. CONCLUSION LIPUS therapy was shown to reduce ICI-related myocarditis inflammatory damage and improve cardiac function, representing an exciting finding for irAEs treatment.
Collapse
Affiliation(s)
- Shuai Fu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Zihong Guo
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Yifei Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Stephen Choi
- SXULTRASONIC Ltd. Kerry Rehabilitation Medicine Research Institute, Shenzhen, Guangdong Province, China
| | - Peng Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Wenqian Shen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fei Gao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shuang Chen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - You Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China.
| |
Collapse
|