1
|
Bu X, Guo H, Gao W, Zhang L, Hou J, Li B, Xia Z, Wang W. Neuroprotection of celastrol against postoperative cognitive dysfunction through dampening cGAS-STING signaling. Exp Neurol 2024; 382:114987. [PMID: 39369806 DOI: 10.1016/j.expneurol.2024.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Neuroinflammation is a central player in postoperative cognitive dysfunction (POCD), an intractable and highly confounding neurological complication with finite therapeutic options. Celastrol, a quinone methide triterpenoid, is a bioactive ingredient extracted from Tripterygium wilfordii with talented anti-inflammatory capacity. However, it is unclear whether celastrol can prevent anesthesia/surgery-evoked cognitive deficits in an inflammation-specific manner. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) was used to determine whether celastrol possesses neuroprotection dependent on the STING pathway in vivo and in vitro. Isoflurane and laparotomy triggered cGAS-STING activation, caspase-3/GSDME-dependent pyroptosis, and enhanced Iba-1 immunoreactivity. Celastrol improved cognitive performance and decreased the levels of cGAS, 2'3'-cGAMP, STING, NF-κB phosphorylation, Iba-1, TNF-α, IL-6, and IFN-β. Downregulation of cleaved caspase-3 and N-GSDME was observed in the hippocampus of POCD mice and HT22 cells after celastrol administration, accompanied by limited secretion of pyroptosis-pertinent pro-inflammatory cytokines IL-1β and IL-18. DMXAA neutralized the favorable influences of celastrol on cognitive function, as confirmed by the activation of the STING/caspase-3/GSDME axis. These findings implicate celastrol as a therapeutic agent for POCD through anti-inflammation and anti-pyroptosis.
Collapse
Affiliation(s)
- Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Hui Guo
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei Province 430070, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Bixi Li
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei Province 430070, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
2
|
Zhao Q, Zhu Y, Ren Y, Zhao L, Zhao J, Yin S, Ni H, Zhu R, Cheng L, Xie N. Targeting resident astrocytes attenuates neuropathic pain after spinal cord injury. eLife 2024; 13:RP95672. [PMID: 39545839 PMCID: PMC11567666 DOI: 10.7554/elife.95672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Astrocytes derive from different lineages and play a critical role in neuropathic pain after spinal cord injury (SCI). Whether selectively eliminating these main origins of astrocytes in lumbar enlargement could attenuate SCI-induced neuropathic pain remains unclear. Through transgenic mice injected with an adeno-associated virus vector and diphtheria toxin, astrocytes in lumbar enlargement were lineage traced, targeted, and selectively eliminated. Pain-related behaviors were measured with an electronic von Frey apparatus and a cold/hot plate after SCI. RNA sequencing, bioinformatics analysis, molecular experiment, and immunohistochemistry were used to explore the potential mechanisms after astrocyte elimination. Lineage tracing revealed that the resident astrocytes but not ependymal cells were the main origins of astrocytes-induced neuropathic pain. SCI-induced mice to obtain significant pain symptoms and astrocyte activation in lumbar enlargement. Selective resident astrocyte elimination in lumbar enlargement could attenuate neuropathic pain and activate microglia. Interestingly, the type I interferons (IFNs) signal was significantly activated after astrocytes elimination, and the most activated Gene Ontology terms and pathways were associated with the type I IFNs signal which was mainly activated in microglia and further verified in vitro and in vivo. Furthermore, different concentrations of interferon and Stimulator of interferon genes (STING) agonist could activate the type I IFNs signal in microglia. These results elucidate that selectively eliminating resident astrocytes attenuated neuropathic pain associated with type I IFNs signal activation in microglia. Targeting type I IFNs signals is proven to be an effective strategy for neuropathic pain treatment after SCI.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Yilong Ren
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Lijuan Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Jingwei Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Shuai Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Haofei Ni
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
- Clinical Center for Brain and Spinal Cord Research, Tongji UniversityShanghaiChina
| | - Ning Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
3
|
Xie F, Kitagawa Y, Ogata H, Yasuhara S, You Z, Jeevendra Martyn JA. Morphine induces inflammatory responses via both TLR4 and cGAS-STING signaling pathways. Cytokine 2024; 183:156737. [PMID: 39217915 PMCID: PMC11488688 DOI: 10.1016/j.cyto.2024.156737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Opioid activation of the microglia or macrophage Toll-like receptor 4 (TLR4) and associated inflammatory cytokine release are implicated in opioid-induced hyperalgesia and tolerance. The cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS-STING) signaling pathway, activated by double-stranded DNA including mitochondrial DNA (mtDNA), has emerged as another key mediator of inflammatory responses. This study tested the hypothesis that morphine induces immune inflammatory responses in microglia and macrophages involving TLR4 and cGAS-STING pathway. METHODS BV2 microglia and Raw 264.7 (Raw) macrophage cells were exposed to morphine with and without a STING inhibitor (C176) for 6 h or TLR 4 inhibitor (TAK242) for 24 h. Western blotting and RT-qPCR analyses assessed TLR4, cGAS, STING, nuclear factor-kappa B (NF-κB), and pro-inflammatory cytokine expression. Morphine-induced mitochondria dysfunction was quantified by reactive oxygen species (ROS) release using MitoSOX, mtDNA release by immunofluorescence, and RT-qPCR. Polarization of BV2 and Raw cells was assessed by inducible nitric oxide (iNOS) and CD86 expression. The role of mtDNA on morphine-related inflammation was investigated by mtDNA depletion of the cells with ethidium bromide (EtBr) or cell transfection of mtDNA extracted from morphine-treated cells. RESULTS Morphine significantly increased the expression of TLR4, cGAS, STING, p65 NF-κB, and cytokines (IL-6 and TNF-α) in BV2 and Raw cells. Morphine-induced mitochondrial dysfunction by increased ROS and mtDNA release; the increased iNOS and CD86 evidenced inflammatory M1-like phenotype polarization. TLR4 and STING inhibitors reduced morphine-induced cytokine release in both cell types. The transfection of mtDNA activated inflammatory signaling proteins, cytokine release, and polarization. Conversely, mtDNA depletion led to the reversal of these effects. CONCLUSION Morphine activates the cGAS-STING pathway in macrophage cell types. Inhibition of the STING pathway can be an additional method to overcome immune cell inflammation-related morphine tolerance and opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Fei Xie
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA
| | - Yoshinori Kitagawa
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA
| | - Hiroki Ogata
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA
| | - Shingo Yasuhara
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA
| | - Zerong You
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA
| | - J A Jeevendra Martyn
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA.
| |
Collapse
|
4
|
Wang J, Xie F, Jia X, Wang X, Kong L, Li Y, Liang X, Zhang M, He Y, Feng W, Luo T, Wang Y, Xu A. Fangchinoline induces antiviral response by suppressing STING degradation. J Pharm Anal 2024; 14:100972. [PMID: 39027910 PMCID: PMC11255895 DOI: 10.1016/j.jpha.2024.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 07/20/2024] Open
Abstract
The stimulator of interferon genes (STING), an integral adaptor protein in the DNA-sensing pathway, plays a pivotal role in the innate immune response against infections. Additionally, it presents a valuable therapeutic target for infectious diseases and cancer. We observed that fangchinoline (Fan), a bis-benzylisoquinoline alkaloid (BBA), effectively impedes the replication of vesicular stomatitis virus (VSV), encephalomyocarditis virus (EMCV), influenza A virus (H1N1), and herpes simplex virus-1 (HSV-1) in vitro. Fan treatment significantly reduced the viral load, attenuated tissue inflammation, and improved survival in a viral sepsis mouse model. Mechanistically, Fan activates the antiviral response in a STING-dependent manner, leading to increased expression of interferon (IFN) and interferon-stimulated genes (ISGs) for potent antiviral effects in vivo and in vitro. Notably, Fan interacts with STING, preventing its degradation and thereby extending the activation of IFN-based antiviral responses. Collectively, our findings highlight the potential of Fan, which elicits antiviral immunity by suppressing STING degradation, as a promising candidate for antiviral therapy.
Collapse
Affiliation(s)
- Jinyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang Xie
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingdong Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiying Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Liang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meiqi Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuting He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wandi Feng
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tong Luo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Anlong Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
5
|
Li T, Hu L, Qin C, Li Y, Song Z, Jiao Y, Wang C, Cui W, Zhang L. Annexin 1 Reduces Dermatitis-Induced Itch and Cholestatic Itch through Inhibiting Neuroinflammation and Iron Overload in the Spinal Dorsal Horn of Mice. Brain Sci 2024; 14:440. [PMID: 38790419 PMCID: PMC11118431 DOI: 10.3390/brainsci14050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The unclear pathogenesis of chronic itch originating from several systemic disorders poses challenges to clinical intervention. Recent studies recapitulate the spinal neurocircuits associated with neuroinflammation and synaptic plasticity responsible for pruriceptive sensations. The resolution of nociception and inflammation by Annexin 1 (ANXA1) has been identified. Given that pain and itch share many neural mechanisms, we employed two mice models of chronic itch to study the underlying targets and therapeutic potential of ANXA1, comprising allergic contact dermatitis-induced itch and cholestatic itch. Herein, we report that spinal expression of ANXA1 is down-regulated in mice with dermatitis-induced itch and cholestatic itch. Repetitive injections of ANXA1-derived peptide Ac2-26 (intrathecal, 10 μg) reduce itch-like scratching behaviors following dermatitis and cholestasis. Single exposure to Ac2-26 (intrathecal, 10 μg) alleviates the established itch phenotypes. Moreover, systemic delivery of Ac2-26 (intravenous, 100 μg) is effective against chronic dermatitis-induced itch and cholestatic itch. Strikingly, Ac2-26 therapy inhibits transferrin receptor 1 over-expression, iron accumulation, cytokine IL-17 release and the production of its receptor IL-17R, as well as astrocyte activation in the dorsal horn of spinal cord in mouse with dermatitis and cholestasis. Pharmacological intervention with iron chelator deferoxamine impairs chronic itch behaviors and spinal iron accumulation after dermatitis and cholestasis. Also, spinal IL-17/IL-17R neutralization attenuates chronic itch. Taken together, this current research indicates that ANXA1 protects against the beginning and maintenance of long-term dermatitis-induced itch and cholestatic itch, which may occur via the spinal suppression of IL-17-mediated neuroinflammation, astrocyte activation and iron overload.
Collapse
Affiliation(s)
- Tang Li
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lingyue Hu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuanjie Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenhua Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yang Jiao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Cui
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
6
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Pei X, Li B, Xu X, Zhang H. Spinal Caspase-6 Contributes to Intrathecal Morphine-induced Acute Itch and Contact Dermatitis-induced Chronic Itch Through Regulating the Phosphorylation of Protein Kinase Mζ in Mice. Neuroscience 2024; 539:21-34. [PMID: 38176610 DOI: 10.1016/j.neuroscience.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Patients receiving neuraxial treatment with morphine for pain relief often experience a distressing pruritus. Neuroinflammation-mediated plasticity of sensory synapses in the spinal cord is critical for the development of pain and itch. Caspase-6, as an intracellular cysteine protease, is capable of inducing central nociceptive sensitization through regulating synaptic transmission and plasticity. Given the tight interaction between protein kinase Mζ (PKMζ) and excitatory synaptic plasticity, this pre-clinical study investigates whether caspase-6 contributes to morphine-induced itch and chronic itch via PKMζ. Intrathecal morphine and contact dermatitis were used to cause pruritus in mice. Morphine antinociception, itch-induced scratching behaviors, spinal activity of caspase-6, and phosphorylation of PKMζ and ERK were examined. Caspase-6 inhibitor Z-VEID-FMK, exogenous caspase-6 and PKMζ inhibitor ZIP were utilized to reveal the mechanisms and prevention of itch. Herein, we report that morphine induces significant scratching behaviors, which is accompanied by an increase in spinal caspase-6 cleavage and PKMζ phosphorylation (but not expression). Intrathecal injection of Z-VEID-FMK drastically reduces morphine-induced scratch bouts and spinal phosphorylation of PKMζ, without abolishing morphine analgesia. Moreover, intrathecal strategies of ZIP dose-dependently reduce morphine-induced itch-like behaviors. Spinal phosphorylation of ERK following neuraxial morphine is down-regulated by ZIP therapy. Recombinant caspase-6 directly exhibits scratching behaviors and spinal phosphorylation of ERK, which is compensated by PKMζ inhibition. Also, spinal inhibition of caspase-6 and PKMζ reduces the generation and maintenance of dermatitis-induced chronic itch. Together, these findings demonstrate that spinal caspase-6 modulation of PKMζ phosphorylation is important in the development of morphine-induced itch and dermatitis-induced itch in mice.
Collapse
Affiliation(s)
- Xuxing Pei
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Bing Li
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaodong Xu
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|