1
|
Wang Z, Stakenborg N, Boeckxstaens G. Postoperative ileus-Immune mechanisms and potential therapeutic interventions. Neurogastroenterol Motil 2024:e14951. [PMID: 39462772 DOI: 10.1111/nmo.14951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Postoperative ileus (POI) is a condition marked by a temporary suppression of gastrointestinal motility following abdominal surgery. The mechanism of POI encompasses various factors and is characterized by two phases: the early neurogenic phase involving both adrenergic and non-adrenergic neural pathways; the later immune-mediated phase is characterized by a sterile inflammatory response that lasts several days. Activation of muscularis macrophages triggers a sterile inflammatory process that results in dysfunction of the enteric nervous system (ENS) and a reversible inhibition of gastrointestinal motility. PURPOSE In this minireview, recent insights in the pathophysiological mechanisms underlying POI and potential new therapeutic strategies are described.
Collapse
Affiliation(s)
- Zheng Wang
- Center of Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Center of Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Center of Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Reiner S, Linda S, Ebrahim H, Patrick L, Sven W. The role of reactive enteric glia-macrophage interactions in acute and chronic inflammation. Neurogastroenterol Motil 2024:e14947. [PMID: 39428750 DOI: 10.1111/nmo.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Enteric glia are a heterogeneous population of peripheral glia within the enteric nervous system and play pivotal roles in gut homeostasis, tissue integrity, coordination of motility, and intestinal immune responses. Under physiological conditions, they communicate with enteric neurons to control intestinal motility. In contrast, enteric glia undergo reactive changes in response to inflammatory signals during enteric neuroinflammation and participate in immune control. In this state, these glia are called reactive enteric glia, which promote cytokine and chemokine secretion and perpetuate immune cell recruitment, thereby affecting disease progression. Interestingly, reactive glia exhibit a huge plasticity and adapt to or shape the immune environment towards a resolving phenotype during inflammation and neuropathies. Recent studies revealed a bidirectional communication between enteric glia and resident and infiltrating immune cells under healthy conditions and in the context of inflammation-based intestinal disorders and neuropathies. While recent reviews give a superb general overview of enteric glial reactivity, we herein discuss the latest evidence on enteric glial reactivity in two prominent inflammatory conditions: acute postoperative inflammation, resulting in postoperative ileus, and chronic inflammation in inflammatory bowel diseases. We define their plasticity during inflammation and the interplay between reactive enteric glia and intestinal macrophages. Finally, we sketch important questions that should be addressed to clarify further the impact of enteric glial reactivity on intestinal inflammation.
Collapse
Affiliation(s)
| | - Schneider Linda
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Hamza Ebrahim
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Leven Patrick
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Wehner Sven
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
3
|
Zhou Y, Yin ZH, Sun MS, Wang YY, Yang C, Li SH, Liang FR, Liu F. Global research trends in postoperative ileus from 2011 to 2023: A scientometric study. World J Gastrointest Surg 2024; 16:3020-3031. [PMID: 39351552 PMCID: PMC11438810 DOI: 10.4240/wjgs.v16.i9.3020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Postoperative ileus (POI) is a common complication after abdominal surgery with high morbidity, which hinders patient recovery, prolongs hospitalization, and increases healthcare costs. Therefore, POI has become a global public health challenge. POI triggering is multifactorial. Autonomic and hormonal mechanisms are generally involved in POI pathogenesis. Recent studies have shown that beta adrenergic signaling of enteric glia is a POI trigger. Currently, the status quo, trends, and frontiers of global research on POI remain unclear. AIM To explore the current status, trends, and frontiers of POI research from 2011 to the present based on bibliometric analysis. METHODS Publications published on POI research from 2011 to 2023 were retrieved on June 1, 2023, from the Web of Science Core Collection. CiteSpace 6.2.R2 and VOSviewer were used to conduct bibliometric visualization. RESULTS In total, 778 POI records published from 2011 to 2023 were retrieved. Over the past few decades, the annual cumulative number of related articles has linearly increased, with China and the United States of America contributing prominently. All publications were from 59 countries and territories. China and the University of Bonn were the top contributing country and institution, respectively. Neurogastroenterology & Motility was the most prolific journal. The Journal of Gastrointestinal Surgery had the highest number of citations. Wehner Sven was the most productive author. Burst keywords (e.g., colon, prolonged ileus, acupuncture, paralytic ileus, pathophysiology, rectal cancer, gastrointestinal function, risk) and a series of reference citation bursts provided evidence for the research frontiers in recent years. CONCLUSION This study demonstrates trends in the published literature on POI and provides new insights for researchers. It emphasizes the importance of multidisciplinary cooperation in the development of this field.
Collapse
Affiliation(s)
- Yan Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Zi-Han Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Ming-Sheng Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Yang-Yang Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Chen Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Shu-Hao Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Fan-Rong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Fang Liu
- Department of Integrated Chinese and Western Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
4
|
Schneider L, Schneider R, Hamza E, Wehner S. Extracellular matrix substrates differentially influence enteric glial cell homeostasis and immune reactivity. Front Immunol 2024; 15:1401751. [PMID: 39119341 PMCID: PMC11306135 DOI: 10.3389/fimmu.2024.1401751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Enteric glial cells are important players in the control of motility, intestinal barrier integrity and inflammation. During inflammation, they switch into a reactive phenotype enabling them to release inflammatory mediators, thereby shaping the inflammatory environment. While a plethora of well-established in vivo models exist, cell culture models necessary to decipher the mechanistic pathways of enteric glial reactivity are less well standardized. In particular, the composition of extracellular matrices (ECM) can massively affect the experimental outcome. Considering the growing number of studies involving primary enteric glial cells, a better understanding of their homeostatic and inflammatory in vitro culture conditions is needed. Methods We examined the impact of different ECMs on enteric glial culture purity, network morphology and immune responsiveness. Therefore, we used immunofluorescence and brightfield microscopy, as well as 3' bulk mRNA sequencing. Additionally, we compared cultured cells with in vivo enteric glial transcriptomes isolated from Sox10iCreERT2Rpl22HA/+ mice. Results We identified Matrigel and laminin as superior over other coatings, including poly-L-ornithine, different lysines, collagens, and fibronectin, gaining the highest enteric glial purity and most extended glial networks expressing connexin-43 hemichannels allowing intercellular communication. Transcriptional analysis revealed strong similarities between enteric glia on Matrigel and laminin with enrichment of gene sets supporting neuronal differentiation, while cells on poly-L-ornithine showed enrichment related to cell proliferation. Comparing cultured and in vivo enteric glial transcriptomes revealed a 50% overlap independent of the used coating substrates. Inflammatory activation of enteric glia by IL-1β treatment showed distinct coating-dependent gene expression signatures, with an enrichment of genes related to myeloid and epithelial cell differentiation on Matrigel and laminin coatings, while poly-L-ornithine induced more gene sets related to lymphocyte differentiation. Discussion Together, changes in morphology, differentiation and immune activation of primary enteric glial cells proved a strong effect of the ECM. We identified Matrigel and laminin as pre-eminent substrates for murine enteric glial cultures. These new insights will help to standardize and improve enteric glial culture quality and reproducibility between in vitro studies in the future, allowing a better comparison of their functional role in enteric neuroinflammation.
Collapse
Affiliation(s)
| | | | | | - Sven Wehner
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
McKay DM, Defaye M, Rajeev S, MacNaughton WK, Nasser Y, Sharkey KA. Neuroimmunophysiology of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2024; 326:G712-G725. [PMID: 38626403 PMCID: PMC11376980 DOI: 10.1152/ajpgi.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/18/2024]
Abstract
Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.
Collapse
Affiliation(s)
- Derek M McKay
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Suman S. Enteric Nervous System Alterations in Inflammatory Bowel Disease: Perspectives and Implications. GASTROINTESTINAL DISORDERS 2024; 6:368-379. [PMID: 38872954 PMCID: PMC11175598 DOI: 10.3390/gidisord6020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
The enteric nervous system (ENS), consisting of neurons and glial cells, is situated along the gastrointestinal (GI) tract's wall and plays a crucial role in coordinating digestive processes. Recent research suggests that the optimal functioning of the GI system relies on intricate connections between the ENS, the intestinal epithelium, the immune system, the intestinal microbiome, and the central nervous system (CNS). Inflammatory bowel disease (IBD) encompasses a group of chronic inflammatory disorders, such as Crohn's disease (CD) and ulcerative colitis (UC), characterized by recurring inflammation and damage to the GI tract. This review explores emerging research in the dynamic field of IBD and sheds light on the potential role of ENS alterations in both the etiology and management of IBD. Specifically, we delve into IBD-induced enteric glial cell (EGC) activation and its implications for persistent enteric gliosis, elucidating how this activation disrupts GI function through alterations in the gut-brain axis (GBA). Additionally, we examine IBD-associated ENS alterations, focusing on EGC senescence and the acquisition of the senescence-associated secretory phenotype (SASP). We highlight the pivotal role of these changes in persistent GI inflammation and the recurrence of IBD. Finally, we discuss potential therapeutic interventions involving senotherapeutic agents, providing insights into potential avenues for managing IBD by targeting ENS-related mechanisms. This approach might represent a potential alternative to managing IBD and advance treatment of this multifaceted disease.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
7
|
Scharr M, Hirt B, Neckel PH. Spatial gene expression profile of Wnt-signaling components in the murine enteric nervous system. Front Immunol 2024; 15:1302488. [PMID: 38322254 PMCID: PMC10846065 DOI: 10.3389/fimmu.2024.1302488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Wnt-signaling is a key regulator of stem cell homeostasis, extensively studied in the intestinal crypt and other metazoan tissues. Yet, there is hardly any data available on the presence of Wnt-signaling components in the adult enteric nervous system (ENS) in vivo. Methods Therefore, we employed RNAscope HiPlex-assay, a novel and more sensitive in situ hybridization technology. By amplifying target specific signals, this technique enables the detection of low abundance, tightly regulated RNA content as is the case for Wnt-signaling components. Additionally, we compared our data to previously published physiological single cell RNA and RiboTag-based RNA sequencing analyses of enteric gliosis using data-mining approaches. Results Our descriptive analysis shows that several components of the multidi-mensional regulatory network of the Wnt-signaling pathway are present in the murine ENS. The transport and secretion protein for Wnt-ligands Wntless as well as canonical (Wnt3a and Wnt2b) and non-canonical Wnt-ligands (Wnt5a, Wnt7a, Wnt8b and Wnt11) are detectable within submucosal and myenteric plexus. Further, corresponding Frizzled receptors (Fzd1, Fzd3, Fzd6, and Fzd7) and regulatory signaling mediators like R-Spondin/DKK ligands are present in the ENS of the small and large intestine. Further, data mining approaches revealed, that several Wnt-related molecules are expressed by enteric glial cell clusters and are dynamically regulated during the inflammatory manifestation of enteric gliosis. Discussion Our results suggest, that canonical and non-canonical Wnt-signaling has a much broader impact on the mature ENS and its cellular homeostasis in health and inflammation, than previously anticipated.
Collapse
Affiliation(s)
| | | | - Peter H. Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|