1
|
Xu B, Lei X, Yang Y, Yu J, Chen J, Xu Z, Ye K, Zhang J. Peripheral proteinopathy in neurodegenerative diseases. Transl Neurodegener 2025; 14:2. [PMID: 39819742 PMCID: PMC11737199 DOI: 10.1186/s40035-024-00461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Proteinopathies in neurology typically refer to pathological changes in proteins associated with neurological diseases, such as the aggregation of amyloid β and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease and multiple system atrophy, and TAR DNA-binding protein 43 in amyotrophic lateral sclerosis and frontotemporal dementia. Interestingly, these proteins are also commonly found in peripheral tissues, raising important questions about their roles in neurological disorders. Multiple studies have shown that peripherally derived pathological proteins not only travel to the brain through various routes, aggravating brain pathology, but also contribute significantly to peripheral dysfunction, highlighting their crucial impact on neurological diseases. Investigating how these peripherally derived proteins influence the progression of neurological disorders could open new horizons for achieving early diagnosis and treatment. This review summarizes the distribution, transportation pathways, and pathogenic mechanisms of several neurodegenerative disease-related pathological proteins in the periphery, proposing that targeting these peripheral pathological proteins could be a promising strategy for preventing and managing neurological diseases.
Collapse
Affiliation(s)
- Bin Xu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Xia Lei
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Ying Yang
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Jiayi Yu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Jun Chen
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Zhi Xu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518055, China
| | - Jing Zhang
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China.
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
2
|
Jiang H, Qian Y, Zhang L, Jiang T, Tai Y. ReIU: an efficient preliminary framework for Alzheimer patients based on multi-model data. Front Public Health 2025; 12:1449798. [PMID: 39830185 PMCID: PMC11739287 DOI: 10.3389/fpubh.2024.1449798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
The rising incidence of Alzheimer's disease (AD) poses significant challenges to traditional diagnostic methods, which primarily rely on neuropsychological assessments and brain MRIs. The advent of deep learning in medical diagnosis opens new possibilities for early AD detection. In this study, we introduce retinal vessel segmentation methods based on U-Net ad iterative registration Learning (ReIU), which extract retinal vessel maps from OCT angiography (OCT-A) facilities. Our method achieved segmentation accuracies of 79.1% on the DRIVE dataset, 68.3% on the HRF dataset. Utilizing a multimodal dataset comprising both healthy and AD subjects, ReIU extracted vascular density from fundus images, facilitating primary AD screening with a classification accuracy of 79%. These results demonstrate ReIU's substantial accuracy and its potential as an economical, non-invasive screening tool for Alzheimer's disease. This study underscores the importance of integrating multi-modal data and deep learning techniques in advancing the early detection and management of Alzheimer's disease.
Collapse
Affiliation(s)
- Hao Jiang
- Engineering Research Center of Photoelectric Detection and Perception Technology, Yunnan Normal University, Kunming, China
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China
| | - Yishan Qian
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Liqiang Zhang
- Engineering Research Center of Photoelectric Detection and Perception Technology, Yunnan Normal University, Kunming, China
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China
| | - Tao Jiang
- Engineering Research Center of Photoelectric Detection and Perception Technology, Yunnan Normal University, Kunming, China
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China
| | - Yonghang Tai
- Engineering Research Center of Photoelectric Detection and Perception Technology, Yunnan Normal University, Kunming, China
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China
| |
Collapse
|
3
|
Park G, Jin Z, Lu H, Du J. Clearing Amyloid-Beta by Astrocytes: The Role of Rho GTPases Signaling Pathways as Potential Therapeutic Targets. Brain Sci 2024; 14:1239. [PMID: 39766438 PMCID: PMC11674268 DOI: 10.3390/brainsci14121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Astrocytes, vital support cells in the central nervous system (CNS), are crucial for maintaining neuronal health. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes play a key role in clearing toxic amyloid-β (Aβ) peptides. Aβ, a potent neuroinflammatory trigger, stimulates astrocytes to release excessive glutamate and inflammatory factors, exacerbating neuronal dysfunction and death. Recent studies underscore the role of Rho GTPases-particularly RhoA, Rac1, and Cdc42-in regulating Aβ clearance and neuroinflammation. These key regulators of cytoskeletal dynamics and intracellular signaling pathways function independently through distinct mechanisms but may converge to modulate inflammatory responses. Their influence on astrocyte structure and function extends to regulating endothelin-converting enzyme (ECE) activity, which modulates vasoactive peptides such as endothelin-1 (ET-1). Through these processes, Rho GTPases impact vascular permeability and neuroinflammation, contributing to AD pathogenesis by affecting both Aβ clearance and cerebrovascular interactions. Understanding the interplay between Rho GTPases and the cerebrovascular system provides fresh insights into AD pathogenesis. Targeting Rho GTPase signaling pathways in astrocytes could offer a promising therapeutic approach to mitigate neuroinflammation, enhance Aβ clearance, and slow disease progression, ultimately improving cognitive outcomes in AD patients.
Collapse
Affiliation(s)
- Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhen Jin
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine, The George Washington University, Washington, DC 20037, USA;
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
4
|
Cómitre-Mariano B, Vellila-Alonso G, Segura-Collar B, Mondéjar-Ruescas L, Sepulveda JM, Gargini R. Sentinels of neuroinflammation: the crucial role of myeloid cells in the pathogenesis of gliomas and neurodegenerative diseases. J Neuroinflammation 2024; 21:304. [PMID: 39578808 PMCID: PMC11583668 DOI: 10.1186/s12974-024-03298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The inflammatory processes that drive pathologies of the central nervous system (CNS) are complex and involve significant contributions from the immune system, particularly myeloid cells. Understanding the shared and distinct pathways of myeloid cell regulation in different CNS diseases may offer critical insights into therapeutic development. This review aims to elucidate the mechanisms underlying myeloid cell dysfunction and neuroinflammation in two groups of neurological pathologies with significant social impact and a limited efficacy of their treatments: the most common primary brain tumors -gliomas-, and the most prevalent neurodegenerative disorders -Alzheimer's and Parkinson's disease. Despite their distinct clinical manifestations, these diseases share key pathological features, including chronic inflammation and immune dysregulation. The role of myeloid cells in neuroinflammation has garnered special interest in recent years in both groups, as evidenced by the growing focus on therapeutic research centred on myeloid cells. By examining the cellular and molecular dynamics that govern these conditions, we hope to identify common and unique therapeutic targets that can inform the development of more effective treatments. Recent advances in single-cell technologies have revolutionized our understanding of myeloid cell heterogeneity, revealing diverse phenotypes and molecular profiles across different disease stages and microenvironments. Here, we present a comprehensive analysis of myeloid cell involvement in gliomas, Alzheimer's and Parkinson's disease, with a focus on phenotypic acquisition, molecular alterations, and therapeutic strategies targeting myeloid cells. This integrated approach not only addresses the limitations of current treatments but also suggests new avenues for therapeutic intervention, aimed at modulating the immune landscape to improve patient outcomes.
Collapse
Affiliation(s)
- Blanca Cómitre-Mariano
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Gabriel Vellila-Alonso
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
| | - Berta Segura-Collar
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Lucía Mondéjar-Ruescas
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Juan M Sepulveda
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
| | - Ricardo Gargini
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain.
| |
Collapse
|
5
|
Beura SK, Panigrahi AR, Yadav P, Kulkarni PP, Lakhanpal V, Singh B, Singh SK. Role of Thrombosis in Neurodegenerative Diseases: An Intricate Mechanism of Neurovascular Complications. Mol Neurobiol 2024:10.1007/s12035-024-04589-4. [PMID: 39482419 DOI: 10.1007/s12035-024-04589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Thrombosis, the formation of blood clots in arteries or veins, poses a significant health risk by disrupting the blood flow. It can potentially lead to major cardiovascular complications such as acute myocardial infarction or ischemic stroke (arterial thrombosis) and deep vein thrombosis or pulmonary embolism (venous thrombosis). Nevertheless, over the course of several decades, researchers have observed an association between different cardiovascular events and neurodegenerative diseases, which progressively harm and impair parts of the nervous system, particularly the brain. Furthermore, thrombotic complications have been identified in numerous clinical instances of neurodegenerative diseases, particularly Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Substantial research indicates that endothelial dysfunction, vascular inflammation, coagulation abnormalities, and platelet hyperactivation are commonly observed in these conditions, collectively contributing to an increased risk of thrombosis. Thrombosis can, in turn, contribute to the onset, pathogenesis, and severity of these neurological disorders. Hence, this concise review comprehensively explores the correlation between cardiovascular diseases and neurodegenerative diseases, elucidating the cellular and molecular mechanisms of thrombosis in these neurodegenerative diseases. Additionally, a detailed discussion is provided on the commonly employed antithrombotic medications in the context of these neuronal diseases.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Paresh P Kulkarni
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Bhupinder Singh
- Department of Cardiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
6
|
Wang T, Zheng R, Zhang S, Qin H, Jin H, Teng Y, Ma S, Zhang M. Association between platelet-to-high-density lipoprotein cholesterol ratio and cognitive function in older americans: insights from a cross-sectional study. Sci Rep 2024; 14:25769. [PMID: 39468327 PMCID: PMC11519474 DOI: 10.1038/s41598-024-77813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024] Open
Abstract
The main aim of this study was to explore the correlation between the platelet/high-density lipoprotein cholesterol ratio (PHR) and cognitive function in elderly individuals from the United States. This investigation leveraged data encompassing 2299 participants, all aged 60 years and above, from the National Health and Nutrition Examination Survey conducted from 2011 to 2014. Inclusion criteria were based on the availability of complete datasets for PHR and cognitive function assessments. The analytical approach incorporated multivariate logistic regression to discern the association between PHR and cognitive function. Additionally, the study employed restricted cubic splines (RCS) to explore potential non-linear relationships and subgroup analyses to identify variations in the observed associations across different demographic and clinical subgroups. In the fully adjusted model, an increment of 10 units in PHR was associated with a decline of 0.014 in cognitive scores (β=-0.014, 95% CI: -0.025, -0.002; P < 0.05). Compared to the lowest quartile, participants in the highest quartile exhibited a 38.4% increased prevalence of cognitive impairment per one-unit increase in PHR (OR = 1.384, 95% CI: 1.012, 1.893; P < 0.05). Subgroup analysis revealed consistent results regarding the relationship between PHR and cognitive impairment across all subgroups. A non-linear relationship between PHR and cognitive impairment was observed using RCS, indicating that an increase in PHR above 111.49 significantly elevated the incidence of cognitive impairment (P < 0.05). Our study demonstrates that a higher PHR is associated with a greater risk of cognitive decline in an older U.S. population, and although further validation is needed, this warrants consideration in clinical assessments and interventions.
Collapse
Affiliation(s)
- Tianyi Wang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ruwen Zheng
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Siqi Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hongyu Qin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Jin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yubo Teng
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuai Ma
- The Second Hospital Affiliated of Heilongjiang, University of Chinese Medicine, Harbin, 150001, China
| | - Miao Zhang
- The Second Hospital Affiliated of Heilongjiang, University of Chinese Medicine, Harbin, 150001, China.
- The Second Affiliated Hospital of Heilongjiang, University of Traditional Chinese Medicine, No.411 Gogol Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
7
|
Kolobova E, Petrushanko I, Mitkevich V, Makarov AA, Grigorova IL. β-Amyloids and Immune Responses Associated with Alzheimer's Disease. Cells 2024; 13:1624. [PMID: 39404388 PMCID: PMC11475064 DOI: 10.3390/cells13191624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression. In this review, we discuss what is currently known about the intricate interplay between β-amyloids and the immune response to Aβs with a more in-depth focus on the possible roles of B cells in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizaveta Kolobova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Irina L Grigorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| |
Collapse
|
8
|
Wu S, Chen N, Wang C. Frontiers and hotspots evolution in anti-inflammatory studies for Alzheimer's disease. Behav Brain Res 2024; 472:115178. [PMID: 39098396 DOI: 10.1016/j.bbr.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that seriously affects the quality of the elderly's lives worldwide. The main pathological features of AD are amyloid plaques formed by β-amyloid (Aβ) and neuronal fibrillary tangls (NFTs) formed by hyperphosphorylated Tau protein. The formation process of these pathological features is closely related to inflammatory response, so anti-inflammatory treatment has become a potential treatment for AD. In recent years, more and more research has shown that the anti-inflammatory therapy can relieve the symptoms of AD and improve cognitive function, which provides a valuable research direction for the treatment of AD strategy. Therefore, a comprehensive understanding of the hotspots and development trends of AD anti-inflammatory research is important for promoting the further development of this field and improving the quality of life of patients. METHODS This study used bibliometric methods, with AD and anti-inflammatory as key words, collected 7638 AD anti-inflammatory studies collected in Web of Science Core Collection (WoSCC) literature database since 2000, and conducted an in-depth analysis of the research hotspots and potential trends in this field. RESULTS The depth and breadth of AD anti-inflammatory research are in the stage of rapid development, and the hot focus is on exploring the role of inflammation in the pathogenesis of AD, especially the interaction of microglia in the neuroinflammatory mechanism. Secondly, the treatment effect and potential risks of anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs (NSAIDs) on AD are also the focus of research. Therefore, researchers have carried out a series of animal experiments and prospective clinical studies on anti-inflammatory drugs for the treatment of AD, forming a comprehensive research system from basic research to clinical research. As for the future development trend, we believe that the further exploration of inflammation in the pathogenesis of AD will still be one of the key directions, and the application of big data and artificial intelligence technology is expected to provide strong support for the association between inflammation and AD progression. Moreover, the development of novel anti-inflammatory drugs for the inflammatory mechanism of AD will be another major trend for future research. At the same time, personalized treatment strategies and alternative supplements of medicine will also become one of the hotspots of future research. Through the comprehensive use of anti-inflammatory drugs, nutritional supplements, lifestyle intervention and other means, more comprehensive and effective treatment plans for AD patients are expected. CONCLUSION This research analyzes the overall development trend of AD anti-inflammatory research field since 2000, and provides a comprehensive perspective for the progress of AD anti-inflammatory research. Overall, the field of AD anti-inflammatory research is facing a broad development prospect. In the future, with further research and technological advances, we have resason to expect more effective and safer treatment options for AD patients to help them improve their quality of life and delay disease progression.
Collapse
Affiliation(s)
- Shan Wu
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Nanjie Chen
- Beijing University of Aeronautics and Astronautics, Beijing, China
| | - Chuanchi Wang
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, China; Modern Traditional Chinese Medicine Haihe Laboratory, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
9
|
Farzan M, Abedi B, Bhia I, Madanipour A, Farzan M, Bhia M, Aghaei A, Kheirollahi I, Motallebi M, Amini-Khoei H, Ertas YN. Pharmacological Activities and Molecular Mechanisms of Sinapic Acid in Neurological Disorders. ACS Chem Neurosci 2024; 15:2966-2981. [PMID: 39082749 DOI: 10.1021/acschemneuro.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Sinapic acid (SA) is a phenylpropanoid derivative found in various natural sources that exhibits remarkable versatile properties, including antioxidant, anti-inflammatory, and metal-chelating capabilities, establishing itself as a promising candidate for the prevention and treatment of conditions affecting the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, and other neurological disorders. These effects also include neuroprotection in epilepsy models, as evidenced by a reduction in seizure-like behavior, cell death in specific hippocampal regions, and lowered neuroinflammatory markers. In AD, SA treatment enhances memory, reverses cognitive deficits, and attenuates astrocyte activation. SA also has positive effects on cognition by improving memory and lowering oxidative stress. This is shown by lower levels of oxidative stress markers, higher levels of antioxidant enzyme activity, and better memory retention. Additionally, in ischemic stroke and PD models, SA provides microglial protection and exerts anti-inflammatory effects. This review emphasizes SA's multifaceted neuroprotective properties and its potential role in the prevention and treatment of various brain disorders. Despite the need for further research to fully understand its mechanisms of action and clinical applicability, SA stands out as a valuable bioactive compound in the ongoing quest to combat neurodegenerative diseases and enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Atossa Madanipour
- Student Research Committee, Alborz University of Medical Sciences, Karaj 3146883811, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Mohammad Bhia
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Ava Aghaei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Iman Kheirollahi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| | - Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815783657, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, AZ1001 Baku, Azerbaijan
| |
Collapse
|
10
|
Wei YC, Kung YC, Lin C, Yeh CH, Chen PY, Huang WY, Shyu YC, Lin CP, Chen CK. Differential neuropsychiatric associations of plasma biomarkers in older adults with major depression and subjective cognitive decline. Transl Psychiatry 2024; 14:333. [PMID: 39152102 PMCID: PMC11329686 DOI: 10.1038/s41398-024-03049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/23/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Older adults with major depressive disorder (MDD) or early cognitive decline during the subjective cognitive decline (SCD) stage may exhibit neuropsychiatric symptoms such as anxiety, depression, and subtle cognitive impairment. The clinicopathological features and biological mechanisms of MDD differ from those of SCD among older adults; these conditions thus require different treatment strategies. This study enrolled 82 participants above 50 years old with normal cognitive levels from the communities to examine biomarker-behavior correlations between MDD (n = 23) and SCD (n = 23) relative to a normal control (NC) group (n = 36). Multidomain assessments were performed for all participants, including immunomagnetic reduction tests to detect plasma beta-amyloid (Aβ), total tau (Tau), phosphorylated tau-181 (p-Tau181), neurofilament light chain, and glial fibrillary acidic protein (GFAP). This study observed that depressive symptoms in MDD were associated with amyloid pathology (plasma Aβ40 vs. HADS-D: R = 0.45, p = 0.031; Aβ42/Aβ40 vs. HADS-D: R = -0.47, p = 0.024), which was not observed in the NC (group difference p < 0.05). Moreover, cognitive decline in MDD was distinguished by a mixed neurodegenerative process involving amyloid (plasma Aβ42 vs. facial memory test: R = 0.48, p = 0.025), tau (Tau/Aβ42 vs. digit symbol substitution test (DSST): R = -0.53, p = 0.01), and astrocytic injury (plasma GFAP vs. Montreal cognitive assessment score: R = -0.44, p = 0.038; plasma GFAP vs. DSST: R = -0.52, p = 0.014), findings that did not apply to the NC (group difference p < 0.05). Moreover, this study revealed different biomarker-behavior correlations between individuals with SCD and the NC. Compared with the NC, cognitive decline in the SCD group might be unrelated to amyloid pathology and instead might be early manifestations of tau pathology. This study underscores the difference in clinicopathological features between MDD and SCD among older adults, which differ from those of the NC. These findings enhance our understanding of the mechanisms underlying MDD and SCD in older individuals.
Collapse
Affiliation(s)
- Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yi-Chia Kung
- Department of Radiology, Tri-Service General Hospital, Taipei, 114, Taiwan
| | - Chemin Lin
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Pin-Yuan Chen
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Wen-Yi Huang
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Department of Education and Research, Taipei City Hospital, Taipei, 103, Taiwan.
| | - Chih-Ken Chen
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, 204, Taiwan.
| |
Collapse
|
11
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
12
|
Luan J, Guo N, Hu F, Gou X, Xu L. Aged AβPPswe/PS1ΔE9 mice as a useful animal model for studying the link between immunological senescence and diseases. Immunol Lett 2024; 266:106842. [PMID: 38355057 DOI: 10.1016/j.imlet.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
The APPswe/PS1ΔE9 mouse is a double transgenic murine model that harbors two transgenes for Alzheimer's Disease (AD)-related mutant proteins. We previously discovered that this double transgenic animal had a premature immunosenescence phenotype. However, it is unclear how this phenotype progresses to a later stage. This study aimed to elucidate the changes in systemic characteristics aside from those associated with AD between elderly APPswe/PS1ΔE9 mice and littermate control wild-type mice. Tumors in all organs were considerably more frequent in AD mice aged 24 months than in the control wild-type mice. In addition, the survival rate of aged AD mice was considerably lower than that of wild-type control mice. Further, we discovered that the phenotypic difference was mainly caused by severe immunological aging, as evidenced by a high proportion of exhausted T lymphocytes in AD mice compared to wild-type mice of the same age. Based on our findings, the harm produced by normal aging is not as severe as immunological senescence. Addressing immunological aging, as opposed to anti-aging alone, may be a more crucial target for a long life free of cancer.
Collapse
Affiliation(s)
- Jing Luan
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Institution of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Fengrui Hu
- Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.
| | - Lixian Xu
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
13
|
Martínez-Dubarbie F, Guerra-Ruiz A, López-García S, Lage C, Fernández-Matarrubia M, Infante J, Pozueta-Cantudo A, García-Martínez M, Corrales-Pardo A, Bravo M, López-Hoyos M, Irure-Ventura J, Valeriano-Lorenzo E, García-Unzueta MT, Sánchez-Juan P, Rodríguez-Rodríguez E. Diagnostic Accuracy of Plasma p-tau217 for Detecting Pathological Cerebrospinal Fluid Changes in Cognitively Unimpaired Subjects Using the Lumipulse Platform. J Prev Alzheimers Dis 2024; 11:1581-1591. [PMID: 39559871 PMCID: PMC11573816 DOI: 10.14283/jpad.2024.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Plasma biomarkers of Alzheimer's disease (AD), especially p-tau217, are promising tools to identify subjects with amyloid deposition in the brain, determined either by cerebrospinal fluid (CSF) or positron emission tomography. However, it is essential to measure them in an accurate and fully automated way in order to apply them in clinical practice. OBJECTIVES To evaluate the diagnostic performance of the fully-automated Lumipulse plasma p-tau217 assay in preclinical AD. DESIGN Cross-sectional analyses from a prospective cohort. SETTING A population-based study. PARTICIPANTS Volunteers over 55 years without cognitive impairment or contraindications for complementary tests. MEASUREMENTS Plasma p-tau217 was measured with the fully-automated Lumipulse assay, as well as CSF Aβ40, Aβ42, p-tau181, and t-tau levels. We correlated plasma p-tau217 with CSF Aβ40, Aβ42 and p-tau181, and assessed the differences in plasma p-tau217 according to CSF amyloid status (A-/+), AD status (AD+ being those subjects A+T+ and AD- the rest) and ATN group. We performed ROC curves and measured the areas under the curve (AUC) using CSF amyloid as result, and both p-tau217 and ApoE4 status as predictor. RESULTS We screened 209 cognitively unimpaired volunteers with a mean age 64 years (60-69) and 30.2% of ApoE4 carriers. Plasma p-tau217 correlated significantly with CSF Aβ42/Aβ40 (Rho=-0.51; p-value<0.001) and p-tau181 (r=0.59; p-value<0.001). Its levels were significantly higher in A+ subjects (0.26 pg/ml) compared with A- (0.12 pg/ml; p-value<0.001); and along ATN groups. It predicts CSF amyloid pathology with an AUC of 0.85. CONCLUSIONS Plasma p-tau217 measured using the Lumipulse platform shows promise as an accurate biomarker of preclinical AD pathology.
Collapse
Affiliation(s)
- F Martínez-Dubarbie
- Francisco Martínez-Dubarbie, MD, Avda. de Valdecilla 25, 39008, Santander (Cantabria, Spain), Tel. +34627158291, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|