1
|
Biber J, Gandor C, Becirovic E, Michalakis S. Retina-directed gene therapy: Achievements and remaining challenges. Pharmacol Ther 2025; 271:108862. [PMID: 40268248 DOI: 10.1016/j.pharmthera.2025.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Gene therapy is an innovative medical approach that offers new treatment options for congenital and acquired diseases by transferring, correcting, inactivating or regulating genes to supplement, replace or modify a gene function. The approval of voretigene neparvovec (Luxturna), a gene therapy for RPE65-associated retinopathy, has marked a milestone for the field of retinal gene therapy, but has also helped to accelerate the development of gene therapies for genetic diseases affecting other organs. Voretigene neparvovec is a vector based on adeno-associated virus (AAV) that delivers a functional copy of RPE65 to supplement the missing function of this gene. The AAV-based gene delivery has proven to be versatile and safe for the transfer of genetic material to retinal cells. However, challenges remain in treating additional inherited as well as acquired retinopathies with this technology. Despite the high level of activity in this field, no other AAV gene therapy for retinal diseases has been approved since voretigene neparvovec. Ongoing research focuses on overcoming the current restraints through innovative strategies like AAV capsid engineering, dual-AAV vector systems, or CRISPR/Cas-mediated genome editing. Additionally, AAV gene therapy is being explored for the treatment of complex acquired diseases like age-related macular degeneration (AMD) and diabetic retinopathy (DR) by targeting molecules involved in the pathobiology of the degenerative processes. This review outlines the current state of retinal gene therapy, highlighting ongoing challenges and future directions.
Collapse
Affiliation(s)
- Josef Biber
- Department of Ophthalmology, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Catharina Gandor
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren 8952, Switzerland
| | - Elvir Becirovic
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren 8952, Switzerland
| | - Stylianos Michalakis
- Department of Ophthalmology, LMU University Hospital, LMU Munich, 80336 Munich, Germany.
| |
Collapse
|
2
|
Arrigo A, Cremona O, Aragona E, Casoni F, Consalez G, Dogru RM, Hauck SM, Antropoli A, Bianco L, Parodi MB, Bandello F, Grosche A. Müller cells trophism and pathology as the next therapeutic targets for retinal diseases. Prog Retin Eye Res 2025; 106:101357. [PMID: 40254246 DOI: 10.1016/j.preteyeres.2025.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Müller cells are a crucial retinal cell type involved in multiple regulatory processes and functions that are essential for retinal health and functionality. Acting as structural and functional support for retinal neurons and photoreceptors, Müller cells produce growth factors, regulate ion and fluid homeostasis, and facilitate neuronal signaling. They play a pivotal role in retinal morphogenesis and cell differentiation, significantly contributing to macular development. Due to their radial morphology and unique cytoskeletal organization, Müller cells act as optical fibers, efficiently channeling photons directly to the photoreceptors. In response to retinal damage, Müller cells undergo specific gene expression and functional changes that serve as a first line of defense for neurons, but can also lead to unwarranted cell dysfunction, contributing to cell death and neurodegeneration. In some species, Müller cells can reactivate their developmental program, promoting retinal regeneration and plasticity-a remarkable ability that holds promising therapeutic potential if harnessed in mammals. The crucial and multifaceted roles of Müller cells-that we propose to collectively call "Müller cells trophism"-highlight the necessity of maintaining their functionality. Dysfunction of Müller cells, termed "Müller cells pathology," has been associated with a plethora of retinal diseases, including age-related macular degeneration, diabetic retinopathy, vitreomacular disorders, macular telangiectasia, and inherited retinal dystrophies. In this review, we outline how even subtle disruptions in Müller cells trophism can drive the pathological cascade of Müller cells pathology, emphasizing the need for targeted therapies to preserve retinal health and prevent disease progression.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Ottavio Cremona
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Emanuela Aragona
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Casoni
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Consalez
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rüya Merve Dogru
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, 80939, Germany
| | - Alessio Antropoli
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco Bandello
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
3
|
Hector M, Behnke V, Dabrowska-Schlepp P, Busch A, Schaaf A, Langmann T, Wolf A. Moss-derived human complement factor H modulates retinal immune response and attenuates retinal degeneration. J Neuroinflammation 2025; 22:104. [PMID: 40217267 PMCID: PMC11992837 DOI: 10.1186/s12974-025-03418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND AMD is a multifactorial progressive disease of the central retina that leads to severe vision loss among the elderly. Genome-wide association studies in AMD patients and preclinical data have identified a dysregulated complement system and aberrant microglia responses in the pathogenesis of AMD. Specifically, a genetic variant in the complement factor H (CFH) gene, an important inhibitor of the alternative complement pathway, confers the strongest risk for AMD. Here, we investigated whether moss-derived recombinant human CFH proteins, termed CPV-101 and CPV-104, can modulate microglia reactivity and limit retinal degeneration in a murine light damage paradigm mimicking important features of AMD. METHODS Two glycosylated human recombinant CFH proteins CPV101, and CPV-104 were produced in moss suspension cultures. In addition, glycans of the CPV-104 variant are sialylated, an optimization that makes CPV-104 an analog of human CFH. BALB/cJ mice received intravitreal injections of 5 µg CPV-101 and CPV-104 or vehicle, starting 1 day prior to exposure to 10,000 lx white light for 30 min. The effects of CPV-101 and CPV-104 treatment on mononuclear phagocyte and Müller cell reactivity were analyzed by immunostainings of retinal sections and flat mounts. Gene expression of microglia markers was analyzed using quantitative real-time PCR (qRT-PCR). Optical coherence tomography (OCT); Blue Peak Autofluorescence (BAF); terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and morphometric analyses were used to quantify the extent of retinal degeneration and photoreceptor apoptosis. RESULTS Light-exposed mice treated with moss-derived recombinant human full-length CFH showed reduced complement activation and MAC deposition in the retina. Concomitantly, mononuclear phagocyte and Müller cell reactivity in light-exposed retinas were also ameliorated upon CFH substitution. Moreover, attenuated light-induced retinal degeneration was detected in mice that received moss-derived CFH. CONCLUSION Modulating the alternative complement pathway using moss-derived recombinant human full-length CFH variant CPV-101 and CPV-104 counter-regulate gliosis and attenuates light-induced retinal degeneration, highlighting a promising concept for the treatment of AMD patients.
Collapse
Affiliation(s)
- Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
| | - Verena Behnke
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
| | | | - Andreas Busch
- Eleva GmbH, Hans-Bunte-Straße 19, 79108, Freiburg, Germany
| | - Andreas Schaaf
- Eleva GmbH, Hans-Bunte-Straße 19, 79108, Freiburg, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
4
|
Grosche A, Grosche J, Verkhratsky A. Physiology and pathophysiology of the retinal neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:239-265. [PMID: 40148047 DOI: 10.1016/b978-0-443-19102-2.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia of the retina are represented by Müller glia, parenchymal astrocytes, microglia and oligodendrocytes mainly associated with the optic nerve. Müller glia are the most numerous glia, endowed with multiple homeostatic functions and indispensable for the retinal morphofunctional organization. Müller cells integrate retinal neurons into individual functional units (known as retinal columns) and act as a living light guide, transmitting photons to photoreceptors. In pathology, retinal neuroglia undergo complex changes, which include upregulation of neuroprotection, reactive gliosis, and functional asthenia. The balance between all these changes defines the progression and outcome of retinal disorders.
Collapse
Affiliation(s)
- Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, München, Germany.
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
5
|
Balzamino BO, Cacciamani A, Dinice L, Cecere M, Pesci FR, Ripandelli G, Micera A. Retinal Inflammation and Reactive Müller Cells: Neurotrophins' Release and Neuroprotective Strategies. BIOLOGY 2024; 13:1030. [PMID: 39765697 PMCID: PMC11673524 DOI: 10.3390/biology13121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Millions of people worldwide suffer from retinal disorders. Retinal diseases require prompt attention to restore function or reduce progressive impairments. Genetics, epigenetics, life-styling/quality and external environmental factors may contribute to developing retinal diseases. In the physiological retina, some glial cell types sustain neuron activities by guaranteeing ion homeostasis and allowing effective interaction in synaptic transmission. Upon insults, glial cells interact with neuronal and the other non-neuronal retinal cells, at least in part counteracting the biomolecular changes that may trigger retinal complications and vision loss. Several epigenetic and oxidative stress mechanisms are quickly activated to release factors that in concert with growth, fibrogenic and angiogenic factors can influence the overall microenvironment and cell-to-cell response. Reactive Müller cells participate by secreting neurotrophic/growth/angiogenic factors, cytokines/chemokines, cytotoxic/stress molecules and neurogenic inflammation peptides. Any attempt to maintain/restore the physiological condition can be interrupted by perpetuating insults, vascular dysfunction and neurodegeneration. Herein, we critically revise the current knowledge on the cell-to-cell and cell-to-mediator interplay between Müller cells, astrocytes and microglia, with respect to pro-con modulators and neuroprotective/detrimental activities, as observed by using experimental models or analyzing ocular fluids, altogether contributing a new point of view to the field of research on precision medicine.
Collapse
Affiliation(s)
- Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Andrea Cacciamani
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Lucia Dinice
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Michela Cecere
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Francesca Romana Pesci
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Guido Ripandelli
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| |
Collapse
|