1
|
Ortiz R, Barajas A, Pons-Grífols A, Trinité B, Tarrés-Freixas F, Rovirosa C, Urrea V, Barreiro A, Gonzalez-Tendero A, Cardona M, Ferrer L, Clotet B, Carrillo J, Aguilar-Gurrieri C, Blanco J. Exploring FeLV-Gag-Based VLPs as a New Vaccine Platform-Analysis of Production and Immunogenicity. Int J Mol Sci 2023; 24:ijms24109025. [PMID: 37240371 DOI: 10.3390/ijms24109025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Feline leukemia virus (FeLV) is one of the most prevalent infectious diseases in domestic cats. Although different commercial vaccines are available, none of them provides full protection. Thus, efforts to design a more efficient vaccine are needed. Our group has successfully engineered HIV-1 Gag-based VLPs that induce a potent and functional immune response against the HIV-1 transmembrane protein gp41. Here, we propose to use this concept to generate FeLV-Gag-based VLPs as a novel vaccine strategy against this retrovirus. By analogy to our HIV-1 platform, a fragment of the FeLV transmembrane p15E protein was exposed on FeLV-Gag-based VLPs. After optimization of Gag sequences, the immunogenicity of the selected candidates was evaluated in C57BL/6 and BALB/c mice, showing strong cellular and humoral responses to Gag but failing to generate anti-p15E antibodies. Altogether, this study not only tests the versatility of the enveloped VLP-based vaccine platform but also sheds light on FeLV vaccine research.
Collapse
Affiliation(s)
- Raquel Ortiz
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana Barajas
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- Doctorate School, Medicine Department, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Anna Pons-Grífols
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Benjamin Trinité
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
| | | | - Carla Rovirosa
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
| | - Victor Urrea
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
| | | | | | | | | | - Bonaventura Clotet
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- Doctorate School, Medicine Department, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Infectious Diseases Department, Germans Trias I Pujol Hospital, 08916 Badalona, Spain
| | - Jorge Carrillo
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- CIBERINFEC, ISCIII, 28029 Madrid, Spain
| | | | - Julià Blanco
- AIDS Research Institute, IrsiCaixa, Campus Can Ruti, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Doctorate School, Medicine Department, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC, ISCIII, 28029 Madrid, Spain
- Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| |
Collapse
|
2
|
Forni D, Cagliani R, Pozzoli U, Sironi M. An APOBEC3 Mutational Signature in the Genomes of Human-Infecting Orthopoxviruses. mSphere 2023; 8:e0006223. [PMID: 36920219 PMCID: PMC10117092 DOI: 10.1128/msphere.00062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
The ongoing worldwide monkeypox outbreak is caused by viral lineages (globally referred to as hMPXV1) that are related to but distinct from clade IIb MPXV viruses transmitted within Nigeria. Analysis of the genetic differences has indicated that APOBEC-mediated editing might be responsible for the unexpectedly high number of mutations observed in hMPXV1 genomes. Here, using 1,624 publicly available hMPXV1 sequences, we analyzed the mutations that accrued between 2017 and the emergence of the current predominant variant (B.1), as well as those that that have been accumulating during the 2022 outbreak. We confirmed an overwhelming prevalence of C-to-T and G-to-A mutations, with a sequence context (5'-TC-3') consistent with the preferences of several human APOBEC3 enzymes. We also found that mutations preferentially occur in highly expressed viral genes, although no transcriptional asymmetry was observed. A comparison of the mutation spectrum and context was also performed against the human-specific variola virus (VARV) and the zoonotic cowpox virus (CPXV), as well as fowlpox virus (FWPV). The results indicated that in VARV genomes, C-to-T and G-to-A changes were more common than the opposite substitutions, although the effect was less marked than for hMPXV1. Conversely, no preference toward C-to-T and G-to-A changes was observed in CPXV and FWPV. Consistently, the sequence context of C-to-T changes confirmed a preference for a T in the -1 position for VARV, but not for CPXV or FWPV. Overall, our results strongly support the view that, irrespective of the transmission route, orthopoxviruses infecting humans are edited by the host APOBEC3 enzymes. IMPORTANCE Analysis of the viral lineages responsible for the 2022 monkeypox outbreak suggested that APOBEC enzymes are driving hMPXV1 evolution. Using 1,624 public sequences, we analyzed the mutations that accumulated between 2017 and the emergence of the predominant variant and those that characterize the last outbreak. We found that the mutation spectrum of hMPXV1 has been dominated by TC-to-TT and GA-to-AA changes, consistent with the editing activity of human APOBEC3 proteins. We also found that mutations preferentially affect highly expressed viral genes, possibly because transcription exposes single-stranded DNA (ssDNA), a target of APOBEC3 editing. Notably, analysis of the human-specific variola virus (VARV) and the zoonotic cowpox virus (CPXV) indicated that in VARV genomes, TC-to-TT and GA-to-AA changes are likewise extremely frequent. Conversely, no preference toward TC-to-TT and GA-to-AA changes is observed in CPXV. These results suggest that APOBEC3 proteins have an impact on the evolution of different human-infecting orthopoxviruses.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Rachele Cagliani
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Uberto Pozzoli
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| |
Collapse
|
3
|
Stephenson T, Speight N, Low WY, Woolford L, Tearle R, Hemmatzadeh F. Molecular Diagnosis of Koala Retrovirus (KoRV) in South Australian Koalas ( Phascolarctos cinereus). Animals (Basel) 2021; 11:ani11051477. [PMID: 34065572 PMCID: PMC8161083 DOI: 10.3390/ani11051477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Koala retrovirus (KoRV) is a significant threat to koalas across Australia. Koalas in northern koala populations (from New South Wales and Queensland) have KoRV inserted into their DNA and inherited to their offspring. Southern koala populations (from Victoria and South Australia) have KoRV infection spread through close contact of koalas. As such, there are koalas within South Australia that are not infected with KoRV. Accurate diagnosis of the infection of each koala is therefore fundamental for disease studies. Previous studies have shown differences in prevalence of different KoRV genes in the Mount Lofty Ranges Koala population; therefore, clarification is necessary. This study uses a large cohort (n = 216) and defines the diagnostic regions of the KoRV genome within the South Australian population. Using multiple molecular techniques, it demonstrates strong evidence for two clear groupings of koalas: KoRV positive and KoRV negative. Within this study, a population of 41% were shown to be KoRV positive and 57% were KoRV negative, with 2% inconclusive. This differentiation is of great importance when examining the clinical importance of KoRV infection within southern koalas. Abstract Koala retrovirus, a recent discovery in Australian koalas, is endogenised in 100% of northern koalas but has lower prevalence in southern populations, with lower proviral and viral loads, and an undetermined level of endogenisation. KoRV has been associated with lymphoid neoplasia, e.g., lymphoma. Recent studies have revealed high complexity in southern koala retroviral infections, with a need to clarify what constitutes positive and negative cases. This study aimed to define KoRV infection status in Mount Lofty Ranges koalas in South Australia using RNA-seq and proviral analysis (n = 216). The basis for positivity of KoRV was deemed the presence of central regions of the KoRV genome (gag 2, pol, env 1, and env 2) and based on this, 41% (89/216) koalas were positive, 57% (124/216) negative, and 2% inconclusive. These genes showed higher expression in lymph node tissue from KoRV positive koalas with lymphoma compared with other KoRV positive koalas, which showed lower, fragmented expression. Terminal regions (LTRs, partial gag, and partial env) were present in SA koalas regardless of KoRV status, with almost all (99.5%, 215/216) koalas positive for gag 1 by proviral PCR. Further investigation is needed to understand the differences in KoRV infection in southern koala populations.
Collapse
Affiliation(s)
- Tamsyn Stephenson
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Correspondence:
| | - Natasha Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| | - Wai Yee Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Veterinary Diagnostics Laboratory, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia
| | - Rick Tearle
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| |
Collapse
|
4
|
Quigley BL, Timms P. Helping koalas battle disease - Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev 2020; 44:583-605. [PMID: 32556174 PMCID: PMC8600735 DOI: 10.1093/femsre/fuaa024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022] Open
Abstract
The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|