1
|
Britan-Rosich Y, Ma J, Kotler E, Hassan F, Botvinnik A, Smith Y, Moshel O, Nasereddin A, Sharma G, Pikarsky E, Ross S, Kotler M. APOBEC3G protects the genome of human cultured cells and mice from radiation-induced damage. FEBS J 2023; 290:1822-1839. [PMID: 36325681 PMCID: PMC10079569 DOI: 10.1111/febs.16673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Cytosine deaminases AID/APOBEC proteins act as potent nucleic acid editors, playing important roles in innate and adaptive immunity. However, the mutagenic effects of some of these proteins compromise genomic integrity and may promote tumorigenesis. Here, we demonstrate that human APOBEC3G (A3G), in addition to its role in innate immunity, promotes repair of double-strand breaks (DSBs) in vitro and in vivo. Transgenic mice expressing A3G successfully survived lethal irradiation, whereas wild-type controls quickly succumbed to radiation syndrome. Mass spectrometric analyses identified the differential upregulation of a plethora of proteins involved in DSB repair pathways in A3G-expressing cells early following irradiation to facilitate repair. Importantly, we find that A3G not only accelerates DSB repair but also promotes deamination-dependent error-free rejoining. These findings have two implications: (a) strategies aimed at inhibiting A3G may improve the efficacy of genotoxic therapies used to cure malignant tumours; and (b) enhancing A3G activity may reduce acute radiation syndrome in individuals exposed to ionizing radiation.
Collapse
Affiliation(s)
- Yelena Britan-Rosich
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jing Ma
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, USA
| | - Eran Kotler
- Department of Genetics, Stanford University School of Medicine, Ca, USA
| | - Faizan Hassan
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Alexander Botvinnik
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Ofra Moshel
- Core Research Facility, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abed Nasereddin
- Core Research Facility of the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gunjan Sharma
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Susan Ross
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, USA
| | - Moshe Kotler
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
2
|
Repair of APOBEC3G-Mutated Retroviral DNA In Vivo Is Facilitated by the Host Enzyme Uracil DNA Glycosylase 2. J Virol 2021; 95:e0124421. [PMID: 34468176 DOI: 10.1128/jvi.01244-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B mRNA editing enzyme catalytic subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative-strand DNA during reverse transcription, leading to G-to-A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an Ung and mouse Apobec3 knockout background (UNG-/-APO-/-), and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared with A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA. IMPORTANCE While APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo. Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase (Ung) gene and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection-first, in unintegrated nuclear viral reverse-transcribed DNA, resulting in its degradation; and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.
Collapse
|
3
|
Mouse APOBEC3 Restriction of Retroviruses. Viruses 2020; 12:v12111217. [PMID: 33121095 PMCID: PMC7692085 DOI: 10.3390/v12111217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic peptide 3 (APOBEC3) proteins are critical host proteins that counteract and prevent the replication of retroviruses. Unlike the genome of humans and other species, the mouse genome encodes a single Apobec3 gene, which has undergone positive selection, as reflected by the allelic variants found in different inbred mouse strains. This positive selection was likely due to infection by various mouse retroviruses, which have persisted in their hosts for millions of years. While mouse retroviruses are inhibited by APOBEC3, they nonetheless still remain infectious, likely due to the actions of different viral proteins that counteract this host factor. The study of viruses in their natural hosts provides important insight into their co-evolution.
Collapse
|
4
|
Murine Leukemia Virus P50 Protein Counteracts APOBEC3 by Blocking Its Packaging. J Virol 2020; 94:JVI.00032-20. [PMID: 32641479 DOI: 10.1128/jvi.00032-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/01/2020] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) family members are cytidine deaminases that play important roles in intrinsic responses to retrovirus infection. Complex retroviruses like human immunodeficiency virus type 1 (HIV-1) encode the viral infectivity factor (Vif) protein to counteract APOBEC3 proteins. Vif induces degradation of APOBEC3G and other APOBEC3 proteins and thereby prevents their packaging into virions. It is not known if murine leukemia virus (MLV) encodes a Vif-like protein. Here, we show that the MLV P50 protein, produced from an alternatively spliced gag RNA, interacts with the C terminus of mouse APOBEC3 and prevents its packaging without causing its degradation. By infecting APOBEC3 knockout (KO) and wild-type (WT) mice with Friend or Moloney MLV P50-deficient viruses, we found that APOBEC3 restricts the mutant viruses more than WT viruses in vivo Replication of P50-mutant viruses in an APOBEC3-expressing stable cell line was also much slower than that of WT viruses, and overexpressing P50 in this cell line enhanced mutant virus replication. Thus, MLV encodes a protein, P50, that overcomes APOBEC3 restriction by preventing its packaging into virions.IMPORTANCE MLV has existed in mice for at least a million years, in spite of the existence of host restriction factors that block infection. Although MLV is considered a simple retrovirus compared to lentiviruses, it does encode proteins generated from alternatively spliced RNAs. Here, we show that P50, generated from an alternatively spliced RNA encoded in gag, counteracts APOBEC3 by blocking its packaging. MLV also encodes a protein, glycoGag, that increases capsid stability and limits APOBEC3 access to the reverse transcription complex (RTC). Thus, MLV has evolved multiple means of preventing APOBEC3 from blocking infection, explaining its survival as an infectious pathogen in mice.
Collapse
|
5
|
Inhibition of Vif-Mediated Degradation of APOBEC3G through Competitive Binding of Core-Binding Factor Beta. J Virol 2020; 94:JVI.01708-19. [PMID: 31941780 DOI: 10.1128/jvi.01708-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022] Open
Abstract
Vif counteracts the host restriction factor APOBEC3G (A3G) and other APOBEC3s by preventing the incorporation of A3G into progeny virions. We previously identified Vif mutants with a dominant-negative (D/N) phenotype that interfered with the function of wild-type Vif, inhibited the degradation of A3G, and reduced the infectivity of viral particles by increased packaging of A3G. However, the mechanism of interference remained unclear, in particular since all D/N Vif mutants were unable to bind Cul5 and some mutants additionally failed to bind A3G, ruling out competitive binding to A3G or the E3 ubiquitin ligase complex as the sole mechanism. The goal of the current study was to revisit the mechanism of D/N interference by Vif mutants and analyze the possible involvement of core binding factor beta (CBFβ) in this process. We found a clear correlation of D/N properties of Vif mutants with their ability to engage CBFβ. Only mutants that retained the ability to bind CBFβ exhibited the D/N phenotype. Competition studies revealed that D/N Vif mutants directly interfered with the association of CBFβ and wild-type Vif. Furthermore, overexpression of CBFβ counteracted the interference of D/N Vif mutants with A3G degradation by wild-type Vif. Finally, overexpression of Runx1 mimicked the effect of D/N Vif mutants and inhibited the degradation of A3G by wild-type Vif. Taken together, we identified CBFβ as the key player involved in D/N interference by Vif.IMPORTANCE Of all the accessory proteins encoded by HIV-1 and other primate lentiviruses, Vif has arguably the strongest potential as a target for antiviral therapy. This conclusion is based on the observation that replication of HIV-1 in vivo is critically dependent on Vif. Thus, inhibiting the function of Vif via small-molecule inhibitors or other approaches has significant therapeutic potential. We previously identified dominant-negative (D/N) Vif variants whose expression interferes with the function of virus-encoded wild-type Vif. We now show that D/N interference involves competitive binding of D/N Vif variants to the transcriptional cofactor core binding factor beta (CBFβ), which is expressed in cells in limiting quantities. Overexpression of CBFβ neutralized the D/N phenotype of Vif. In contrast, overexpression of Runx1, a cellular binding partner of CBFβ, phenocopied the D/N Vif phenotype by sequestering endogenous CBFβ. Thus, our results provide proof of principle that D/N Vif variants could have therapeutic potential.
Collapse
|
6
|
Salter JD, Polevoda B, Bennett RP, Smith HC. Regulation of Antiviral Innate Immunity Through APOBEC Ribonucleoprotein Complexes. Subcell Biochem 2019; 93:193-219. [PMID: 31939152 DOI: 10.1007/978-3-030-28151-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The DNA mutagenic enzyme known as APOBEC3G (A3G) plays a critical role in innate immunity to Human Immunodeficiency Virus-1 (HIV-1 ). A3G is a zinc-dependent enzyme that mutates select deoxycytidines (dC) to deoxyuridine (dU) through deamination within nascent single stranded DNA (ssDNA) during HIV reverse transcription. This activity requires that the enzyme be delivered to viral replication complexes by redistributing from the cytoplasm of infected cells to budding virions through what appears to be an RNA-dependent process. Once inside infected cells, A3G must bind to nascent ssDNA reverse transcripts for dC to dU base modification gene editing. In this chapter we will discuss data indicating that ssDNA deaminase activity of A3G is regulated by RNA binding to A3G and ribonucleoprotein complex formation along with evidence suggesting that RNA-selective interactions with A3G are temporally and mechanistically important in this process.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA
| | - Bogdan Polevoda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Ryan P Bennett
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA
| | - Harold C Smith
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA. .,Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|