1
|
Xu S, Han X, Wang X, Yu Y, Qu C, Liu X, Yang B. The role of oxidative stress in aortic dissection: a potential therapeutic target. Front Cardiovasc Med 2024; 11:1410477. [PMID: 39070552 PMCID: PMC11272543 DOI: 10.3389/fcvm.2024.1410477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The incidence of aortic dissection (AD) is steadily increasing, driven by the rising prevalence of chronic conditions such as hypertension and the global aging of the population. Oxidative stress emerges as a pivotal pathophysiological mechanism contributing to the progression of AD. Oxidative stress triggers apoptosis in vascular smooth muscle cells, reshapes the extracellular matrix (ECM), and governs ECM degradation and remodeling, subsequently impacting aortic compliance. Furthermore, oxidative stress not only facilitates the infiltration of macrophages and mononuclear lymphocytes but also disrupts the integral structure and functionality of endothelial cells, thereby inducing endothelial cell dysfunction and furthering the degeneration of the middle layer of the aortic wall. Investigating antioxidants holds promise as a therapeutic avenue for addressing AD.
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Goyal A, Jain H, Usman M, Zuhair V, Sulaiman SA, Javed B, Mubbashir A, Abozaid AM, Passey S, Yakkali S. A comprehensive exploration of novel biomarkers for the early diagnosis of aortic dissection. Hellenic J Cardiol 2024:S1109-9666(24)00130-1. [PMID: 38909846 DOI: 10.1016/j.hjc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
Aortic dissection (AD) is a catastrophic life-threatening cardiovascular emergency with a 1-2% per hour mortality rate post-diagnosis, characterized physiologically by the separation of aortic wall layers. AD initially presents as intense pain that can then radiate to the back, arms, neck, or jaw along with neurological deficits like difficulty in speaking, and unilateral weakness in some patients. This spectrum of clinical features associated with AD is often confused with acute myocardial infarction, hence leading to a delay in AD diagnosis. Cardiac and vascular biomarkers are structural proteins and microRNAs circulating in the bloodstream that correlate to tissue damage and their levels become detectable even before symptom onset. Timely diagnosis of AD using biomarkers, in combination with advanced imaging diagnostics, will significantly improve prognosis by allowing earlier vascular interventions. This comprehensive review aims to investigate emerging biomarkers in the diagnosis of AD, as well as provide future directives for creating advanced diagnostic tools and imaging techniques.
Collapse
Affiliation(s)
- Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India.
| | - Hritvik Jain
- All India Institute of Medical Sciences (AIIMS), Jodhpur, India.
| | | | | | | | - Binish Javed
- Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital, New Delhi, India.
| | | | | | - Siddhant Passey
- Department of Internal Medicine, University of Connecticut Health Center, Connecticut, USA.
| | - Shreyas Yakkali
- Department of Internal Medicine, NYC Health+Hospitals / Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Duan XH, Duan Q, Liu JP, Le ZB, Xiao JQ, Ye R, Fang CF, Liu FE. Hepatic portal venous gas complication associated with the thoracic endovascular aortic repair for aortic dissection: a case report and literature review. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2023; 13:372-375. [PMID: 38205068 PMCID: PMC10774620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Aortic dissection (AD) is a serious disease with a higher mortality. The thoracic endovascular aortic repair (TEVAR) is a first line regimen for aortic dissection. Hepatic portal venous gas (HPVG) is a rare disease, and its definite mechanism is unknown. This is a rare association between the aortic and HPVG. In the present report, we present a case of thoracic aortic dissection, which was the type of Standford B by the computer tomography (CT) angiography, which implicated acute abdominal pain and abdominal distention after TEVAR and immediate abdominal CT shown hepatic portal venous gas (HPVG). The patient, who was treated with conservative treatment of gastrointestinal decompressing, fluid resuscitation, electrolyte replacement, anti-infection, anti-inflammation and anticoagulation, was recovered and discharged without abnormalities. This patient has been followed up for 5 years and has not experienced any physical discomfort related to HPVG. This is the first report that the aortic dissection patient implication with HPVG after thoracic endovascular aortic repair.
Collapse
Affiliation(s)
- Xun-Hong Duan
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University Ganzhou 341000, Jiangxi, China
| | - Qing Duan
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University Ganzhou 341000, Jiangxi, China
| | - Jian-Ping Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University Ganzhou 341000, Jiangxi, China
| | - Zhi-Biao Le
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University Ganzhou 341000, Jiangxi, China
| | - Jun-Qi Xiao
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University Ganzhou 341000, Jiangxi, China
| | - Rong Ye
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University Ganzhou 341000, Jiangxi, China
| | - Cui-Fu Fang
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University Ganzhou 341000, Jiangxi, China
| | - Feng-En Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University Ganzhou 341000, Jiangxi, China
| |
Collapse
|
4
|
Atkinson G, Bianco R, Di Gregoli K, Johnson JL. The contribution of matrix metalloproteinases and their inhibitors to the development, progression, and rupture of abdominal aortic aneurysms. Front Cardiovasc Med 2023; 10:1248561. [PMID: 37799778 PMCID: PMC10549934 DOI: 10.3389/fcvm.2023.1248561] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) account for up to 8% of deaths in men aged 65 years and over and 2.2% of women. Patients with AAAs often have atherosclerosis, and intimal atherosclerosis is generally present in AAAs. Accordingly, AAAs are considered a form of atherosclerosis and are frequently referred to as atherosclerotic aneurysms. Pathological observations advocate inflammatory cell infiltration alongside adverse extracellular matrix degradation as key contributing factors to the formation of human atherosclerotic AAAs. Therefore, macrophage production of proteolytic enzymes is deemed responsible for the damaging loss of ECM proteins, especially elastin and fibrillar collagens, which characterise AAA progression and rupture. Matrix metalloproteinases (MMPs) and their regulation by tissue inhibitors metalloproteinases (TIMPs) can orchestrate not only ECM remodelling, but also moderate the proliferation, migration, and apoptosis of resident aortic cells, alongside the recruitment and subsequent behaviour of inflammatory cells. Accordingly, MMPs are thought to play a central regulatory role in the development, progression, and eventual rupture of abdominal aortic aneurysms (AAAs). Together, clinical and animal studies have shed light on the complex and often diverse effects MMPs and TIMPs impart during the development of AAAs. This dichotomy is underlined from evidence utilising broad-spectrum MMP inhibition in animal models and clinical trials which have failed to provide consistent protection from AAA progression, although more encouraging results have been observed through deployment of selective inhibitors. This review provides a summary of the supporting evidence connecting the contribution of individual MMPs to AAA development, progression, and eventual rupture. Topics discussed include structural, functional, and cell-specific diversity of MMP members; evidence from animal models of AAA and comparisons with findings in humans; the dual role of MMPs and the requirement to selectively target individual MMPs; and the advances in identifying aberrant MMP activity. As evidenced, our developing understanding of the multifaceted roles individual MMPs perform during the progression and rupture of AAAs, should motivate clinical trials assessing the therapeutic potential of selective MMP inhibitors, which could restrict AAA-related morbidity and mortality worldwide.
Collapse
Affiliation(s)
| | | | | | - Jason L. Johnson
- Laboratory of Cardiovascular Pathology, Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Xu C, Liu X, Yu L, Fang X, Yao L, Lau H, Vyas P, Pryke L, Xu B, Tang L, Jiang J, Chen X. CD147 monoclonal antibody attenuates abdominal aortic aneurysm formation in angiotensin II-Infused apoE -/- mice. Int Immunopharmacol 2023; 122:110526. [PMID: 37393837 DOI: 10.1016/j.intimp.2023.110526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a life threatening vascular disease. Our previous study reported the upregulation of CD147 expression in human aortic aneurysms. OBJECTIVE In this study, we injected apoE-/- mice intraperitoneally with CD147 monoclonal antibody or IgG control antibody to observe its effect on Angiotensin II (AngII) induced AAA formation. METHODS ApoE-/- mice were randomly divided into an AngⅡ+CD147 antibody group (n = 20) and an AngⅡ+IgG antibody group (n = 20). The Alzet osmotic minipump was implanted subcutaneously into the backs of mice to infuse AngII (1000 ng/kg/min) for 28 days and subsequently treated with CD147 monoclonal antibody or control IgG mAb (10 μg/mouse/day) beginning one day after surgery. Body weight, food intake, drinking volume and blood pressure were measured weekly throughout the study. After 4 weeks of injection, routine bloodwork measuring liver function, kidney function and lipid levels were recorded. Hematoxylin and eosin (H&E), Masson's trichrome, and Elastic van Gieson (EVG) staining were used to evaluate the pathological changes in blood vessels. In addition, Immunohistochemical assay was used to detect infiltration of inflammatory cells. Tandem mass tag (TMT)-based proteomic analysis was used to define differentially expressed proteins (DEPs) using a p-value < 0.05 and fold change > 1.2 or < 0.83 as the threshold. Subsequently, we conducted protein-protein interaction (PPI) network and GO enrichment analysis to determine the core biological function altered after CD147 antibody injection. RESULTS The CD147 monoclonal antibody suppresses Ang II-induced AAA formation in apoE-/- mice and reduced aortic expansion, elastic lamina degradation, and inflammatory cells accumulation. Bioinformatics analysis showed that Ptk6, Itch, Casp3, and Oas1a were the hub DEPs. These DEPs in the two group were mainly involved in collagen fibril organization, extracellular matrix organization, and muscle contraction. These data robustly demonstrated that CD147 monoclonal antibody suppresses Ang II-induced AAA formation through reduction of inflammatory response and regulation of the above defined hub proteins and biological processes. Thus, the CD147 monoclonal antibody might be a promising target in the treatment of abdominal aortic aneurysm.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, PR China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Xiaoxin Fang
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Lei Yao
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - HuiChong Lau
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA
| | - Punit Vyas
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Luke Pryke
- Internal medicine, Indiana University, Indianapolis, IN 46202
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, PR China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China
| | - Xiaofeng Chen
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, PR China; Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Deng YY, Chen YW, Wang MX, Zhu PF, Pan SY, Jiang DY, Chen ZL, Yang L. Acute aortic dissection caused by fruquintinib for metastatic colorectal cancer-a case report and literature review. Transl Cancer Res 2023; 12:177-185. [PMID: 36760383 PMCID: PMC9906055 DOI: 10.21037/tcr-22-1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/27/2022] [Indexed: 01/16/2023]
Abstract
Background Fruquintinib is a highly selective tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor (VEGFR). At present, it has been approved for third-line therapy for advanced metastatic colorectal cancer in China. Like other small-molecule tyrosine kinase inhibitors, adverse reactions such as hand-foot syndrome, hypertension and cardiotoxicity may be seen. However, acute aortic dissection caused by fruquintinib has not been reported so far. Case Description Here, we report a case of aortic dissection. The patient, a 61-year-old man with advanced metastatic colorectal cancer, without history of hypertension or other risk factors for aortic dissection, received fruquintinib as the third line of treatment. Six weeks after oral fruquintinib treatment, the patient developed acute aortic dissection, and the occurrence of the adverse effect was determined to be probably related to the use of fruquintinib. This article focuses on the potential pathogenesis of fruquintinib-induced active dissection. Conclusions We reported the first case of fruquintinib-associated aortic dissection, and discussed the possible mechanism of vascular endothelial growth factor (VEGF)-VEGFR signal pathway (VSP) inhibitors leading to aortic dissection. As a new drug, fruquintinib brings not only clinical benefits, but also brings some adverse reactions. Clinicians must be vigilant to the cardiovascular toxicity caused by small molecular tyrosine kinase inhibitors, especially the severe cardiovascular toxicity, and strengthen monitoring and management.
Collapse
Affiliation(s)
- Ya-Ya Deng
- The Qingdao University Medical College, Qingdao, China;,Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yun-Wang Chen
- The Qingdao University Medical College, Qingdao, China;,Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ming-Xing Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China;,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Peng-Fei Zhu
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China;,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Shuan-Yue Pan
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China;,Graduate School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ding-Yi Jiang
- The Qingdao University Medical College, Qingdao, China;,Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhe-Ling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Liu Yang
- The Qingdao University Medical College, Qingdao, China;,Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
7
|
Liang Q, Zhou Z, Li H, Tao Q, Wang Y, Lin A, Xu J, Zhang B, Wu Y, Min H, Wang L, Song S, Wang D, Gao Q. Identification of pathological-related and diagnostic potential circular RNAs in Stanford type A aortic dissection. Front Cardiovasc Med 2023; 9:1074835. [PMID: 36712253 PMCID: PMC9880160 DOI: 10.3389/fcvm.2022.1074835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Stanford type A aortic dissection (TAAD) is one of the lethal macrovascular diseases caused by the invasion of blood into the media layer of ascending aortic wall. Inflammation, smooth muscle dysfunction, and extracellular matrix (ECM) degradation were regarded as the major pathology in affected tissue. However, the expression pattern and its regulation especially through circular RNAs (circRNAs) as an overall characteristic of TAAD molecular pathology remain unclear. Methods We employed CIRCexplorer2 to identify circRNAs based on the RNA sequencing (RNA-seq) data of human ascending aortic tissues to systematically assess the role of circRNA in the massive alterations of gene expression in TAAD aortas. The key circRNAs were determined by LASSO model and functionally annotated by competing endogenous RNAs (ceRNA) network and co-analysis with mRNA profile. The expression level and diagnostic capability of the 4 key circRNAs in peripheral serum were confirmed by real-time polymerase chain reaction (RT-PCR). Results The 4 key circRNAs, namely circPTGR1 (chr9:114341075-114348445[-]), circNOX4 (chr11:89069012-89106660[-]), circAMN1 (chr12:31854796-31862359[-]) and circUSP3 (chr15:63845913-63855207[+]), demonstrated a high power to discriminate between TAAD and control tissues, suggesting that these molecules stand for a major difference between the tissues at gene regulation level. Functionally, the ceRNA network of circRNA-miRNA-mRNA predicted by the online databases, combining gene set enrichment analysis (GSEA) and cell component prediction, revealed that the identified circRNAs covered all the aspects of primary TAAD pathology, centralized with increasing inflammatory factors and cells, and ECM destruction and loss of vascular inherent cells along with the circRNAs. Importantly, we validated the high concentration and diagnostic capability of the 4 key circRNAs in the peripheral serum in TAAD patients. Discussion This study reinforces the vital status of circRNAs in TAAD and the possibility of serving as promising diagnostic biomarkers.
Collapse
Affiliation(s)
- Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zeyi Zhou
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hui Li
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yali Wang
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Anqi Lin
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Xu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bin Zhang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Central Laboratory, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Yongzheng Wu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Haiyan Min
- Central Laboratory, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,*Correspondence: Qian Gao ✉
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Dongjin Wang ✉
| |
Collapse
|
8
|
Cui X, Xuan T, Chen S, Guo X. Causal associations between CD40/CD40L and aortic diseases: A mendelian randomization study. Front Genet 2022; 13:998525. [PMID: 36437950 PMCID: PMC9681816 DOI: 10.3389/fgene.2022.998525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/28/2022] [Indexed: 09/08/2024] Open
Abstract
Background: CD40 and CD40L have been reported as associated with aortic dissection (AD) and aortic aneurysm (AA), but the causality of the associations has not been established yet. Methods: We conducted a two-sample Mendelian randomization (MR) study to assess the causal inference between CD40/CD40L and aortic diseases including AD and AA. The instrumental variables (IVs) for CD40 and CD40L were selected from a high-quality protein quantitative trait loci dataset released by a genomic study involving 30,931 individuals of European ancestry. The genome-wide association studies summary statistics for AD and AA were from the FinnGen Release 7, with 288638 controls for all outcomes of interests, 680 cases for AD and 6,092 cases for AA, also from European ancestry. For AA subtypes, there were 5,881 cases of thoracic AA (TAA) and 2,434 cases of abdominal AA (AAA) respectively. Inverse-variance weighted and Wald ratio were applied for calculating causal estimates. Horizontal pleiotropy and heterogeneity were assessed using MR-Egger regression analysis and Cochran Q test, respectively. Leave-one-out analyses were further performed. Results: Three single-nucleotide polymorphisms (SNPs) for CD40 and one SNP for CD40L were selected as IVs. We found genetic proxied CD40 levels inversely associated with the risk of AD (odds ratio [OR]: 0.777, 95% confidence interval [CI]: 0.618-0.978, p = 0.031) and AA (OR: 0.905, 95% CI: 0.837-0.978, p = 0.012), consistent across TAA (both p < 0.050). There were trends of increased risks of AD and AA in the presence of CD40L while not reaching statistical significance. No significant horizontal pleiotropy or heterogeneity was observed. Conclusion: Our MR study provides evidence supporting the causal association between CD40 and the reduced risks of both AD and AA.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianming Xuan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyuan Chen
- Graduate School, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Emerging Role of Non-Coding RNAs in Aortic Dissection. Biomolecules 2022; 12:biom12101336. [PMID: 36291545 PMCID: PMC9599213 DOI: 10.3390/biom12101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a fatal cardiovascular acute disease with high incidence and mortality, and it seriously threatens patients’ lives and health. The pathogenesis of AD mainly includes vascular inflammation, extracellular matrix degradation, and phenotypic conversion as well as apoptosis of vascular smooth muscle cells (VSMCs); however, its detailed mechanisms are still not fully elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are an emerging class of RNA molecules without protein-coding ability, and they play crucial roles in the progression of many diseases, including AD. A growing number of studies have shown that the dysregulation of ncRNAs contributes to the occurrence and development of AD by modulating the expression of specific target genes or the activity of related proteins. In addition, some ncRNAs exhibit great potential as promising biomarkers and therapeutic targets in AD treatment. In this review, we systematically summarize the recent findings on the underlying mechanism of ncRNA involved in AD regulation and highlight their clinical application as biomarkers and therapeutic targets in AD treatment. The information reviewed here will be of great benefit to the development of ncRNA-based therapeutic strategies for AD patients.
Collapse
|
10
|
Liu X, Chen X, Xu C, Lou J, Weng Y, Tang L. Platelet protects angiotensin II-driven abdominal aortic aneurysm formation through inhibition of inflammation. Exp Gerontol 2022; 159:111703. [PMID: 35038567 DOI: 10.1016/j.exger.2022.111703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Inflammation is the primary cause of abdominal aortic aneurysm (AAA) formation and development. It has been reported that platelets protect against septic shock by inhibiting inflammation. However, it is unclear whether platelets protect AAA progress via suppressing inflammation. METHODS A mouse model of AAA was established by a daily administration of angiotensin II (Ang II, 1000 ng/kg/min) for 28-day. The AAA mice received 1 × 109 platelets transfusion in normal saline every 3rd day for 1 month. Hematoxylin and eosin, Masson's trichrome, and elastic van Gieson staining techniques were used to analyze the morphology of the abdominal aorta. Immunohistochemistry was used to detect any infiltration of inflammatory cells, inflammatory factors, and matrix metalloproteins (MMPs) in the aortic tissue. Western blot and enzyme-linked immunosorbent assay (ELISA) were used to examine the inflammatory factor proteins levels in the aortic wall and peripheral blood, respectively. RESULTS Platelets infusion significantly suppressed the Ang II-driven elevation of aortic diameter, AAA formation (52.38% decrease, P < 0.05), aortic expansion, elastic lamina destruction, and inflammatory response. In addition, MMP-2 and MMP-9 production were also reduced by platelets transfusion. CONCLUSIONS For the first time, our study reported the beneficial effect of platelet transfusion in suppressing the Ang II-driven AAA progress in mice through the inhibition of inflammation.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Xiaofeng Chen
- Department of Cardiology, Taizhou Hospital, Linhai, Zhejiang 317000, PR China
| | - Chen Xu
- Department of Cardiology, Taizhou Hospital, Linhai, Zhejiang 317000, PR China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
11
|
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen 2022; 42:2. [PMID: 35012677 PMCID: PMC8744343 DOI: 10.1186/s41232-021-00187-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies analyzing heterochronic parabiosis mice models showed that molecules in the blood of young mice rejuvenate aged mice. Therefore, blood-based therapies have become one of the therapeutic approaches to be considered for age-related diseases. Blood includes numerous biologically active molecules such as proteins, metabolites, hormones, miRNAs, etc. and accumulating evidence indicates some of these change their concentration with chronological aging or age-related disorders. The level of some circulating molecules showed a negative or positive correlation with all-cause mortality, cardiovascular events, or metabolic disorders. Through analyses of clinical/translation/basic research, some molecules were focused on as therapeutic targets. One approach is the supplementation of circulating anti-aging molecules. Favorable results in preclinical studies let some molecules to be tested in humans. These showed beneficial or neutral results, and some were inconsistent. Studies with rodents and humans indicate circulating molecules can be recognized as biomarkers or therapeutic targets mediating their pro-aging or anti-aging effects. Characterization of these molecules with aging, testing their biological effects, and finding mimetics of young systemic milieu continue to be an interesting and important research topic to be explored.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
12
|
Takagi H, Hari Y, Nakashima K, Kuno T, Ando T. Matrix metalloproteinases and acute aortic dissection: Et Tu, Brute? Interact Cardiovasc Thorac Surg 2020; 30:465-476. [PMID: 31808522 DOI: 10.1093/icvts/ivz286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To summarize the present evidence for the association of matrix metalloproteinases (MMPs) with acute aortic dissection (AAD), we performed the first meta-analysis of all currently available case-control studies comparing circulating MMP levels between AAD patients and control subjects. METHODS To identify all studies investigating the levels of circulating MMPs in AAD patients, PubMed and Web of Science were searched up to July 2019. The levels of MMPs in AAD patients and control subjects were extracted from each study, and the standardized mean differences (SMDs) in MMP levels were generated. The study-specific estimates were combined in the random-effects model. RESULTS Twelve studies enrolling a total of 458 AAD patients and 711 control subjects were identified and included. Pooled analyses demonstrated no significant differences in MMP-1 (4 studies; P = 0.21), MMP-2 (5 studies; P = 0.62) and MMP-3 levels (2 studies; P = 0.94) between AAD patients and control subjects; and significantly higher MMP-8 (2 studies; SMD 2.11; P = 0.020), MMP-9 (9 studies; SMD 1.54; P < 0.001) and MMP-12 levels (2 studies; SMD 1.33; P < 0.001) in AAD patients than in control subjects. CONCLUSION High circulating MMP-9 levels are associated with AAD, and MMP-8 and MMP-12 levels may be related to AAD.
Collapse
Affiliation(s)
- Hisato Takagi
- Department of Cardiovascular Surgery, Shizuoka Medical Center, Shizuoka, Japan
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yosuke Hari
- Department of Cardiovascular Surgery, Shizuoka Medical Center, Shizuoka, Japan
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kouki Nakashima
- Department of Cardiovascular Surgery, Shizuoka Medical Center, Shizuoka, Japan
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Toshiki Kuno
- Department of Medicine, Mount Sinai Beth Israel Medical Center, New York, NY, USA
| | - Tomo Ando
- Division of Interventional Cardiology, Department of Cardiology, New York Presbyterian Hospital/Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Chen S, Chen H, Zhong Y, Ge Y, Li C, Qiao Z, Zhu J. Insulin-like growth factor-binding protein 3 inhibits angiotensin II-induced aortic smooth muscle cell phenotypic switch and matrix metalloproteinase expression. Exp Physiol 2020; 105:1827-1839. [PMID: 32936966 DOI: 10.1113/ep088927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
NEW FINDINGS What is the central question of this study? Insulin-like growth factor 1 and its major binding protein insulin-like growth factor binding protein 3 (IGFBP3) are involved in collagen deregulation in several cardiovascular diseases: what is the role of IGFBP3 in thoracic aortic dissection and does it regulate aortic smooth muscle cells' phenotypic switch? What is the main finding and its importance? IGFBP3 inhibits aortic smooth muscle cells' phenotypic switch from a contractile to a synthetic phenotype, decreases matrix metalloproteinase 9 activation and suppresses elastin degradation. These findings provide a better understanding of the pathogenesis of thoracic aortic dissection. ABSTRACT Thoracic aortic dissection (TAD) is characterized by aortic media degeneration and is a highly lethal disease. An aortic smooth muscle cell (AoSMC) phenotypic switch is considered a key pathophysiological change in TAD. Insulin-like growth factor binding protein 3 (IGFBP3) was found to be downregulated in aortic tissues of TAD patients. The present work aimed to study the function of IGFBP3 in AoSMCs' phenotypic switch and matrix metalloproteinase (MMP) expression. We established a mouse model of TAD by angiotensin (Ang) II infusion to β-aminopropionitrile-administrated mice, and found decreased IGFBP3 expression accompanied by aortic dilatation and elastin degradation in vivo. Further, mouse (m)AoSMCs were isolated from mouse thoracic aorta and treated with Ang II. Ang II induced downregulation of IGFBP3 in vitro. To further study the function of IGFBP3, primary mAoSMCs were infected with adenovirus expressing IGFBP3 followed by Ang II induction. Enforced upregulation of IGFBP3 decreased MMP9 expression and activation as well as increasing tissue inhibitor of metalloproteinase (TIMP) 1 expression in Ang II-induced mAoSMCs. No difference was observed in MMP2 and TIMP3 expression. IGFBP3 suppressed subsequent Ang II-induced elastin degradation in vitro. IGFBP3 inhibited Ang II-induced mAoSMCs' phenotypic switch as evidenced by increased smooth muscle actin α-2 (ACTA2) and myosin heavy chain 11 (MYH11) expression and decreased secreted phosphoprotein 1 (SPP1) and vimentin expression. Taken together, the present study demonstrates the role of IGFBP3 in preserving AoSMCs' contractile state and reducing MMP9 activation and thus promoting elastic fibre synthesis, which provides a better understanding of the pathogenesis of TAD.
Collapse
Affiliation(s)
- Suwei Chen
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Chen
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongliang Zhong
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yipeng Ge
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengnan Li
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhiyu Qiao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Arai AL, Migliorini M, Au DT, Hahn-Dantona E, Peeney D, Stetler-Stevenson WG, Muratoglu SC, Strickland DK. High-Affinity Binding of LDL Receptor-Related Protein 1 to Matrix Metalloprotease 1 Requires Protease:Inhibitor Complex Formation. Biochemistry 2020; 59:2922-2933. [PMID: 32702237 DOI: 10.1021/acs.biochem.0c00442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloprotease (MMP) activation contributes to the degradation of the extracellular matrix (ECM), resulting in a multitude of pathologies. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifaceted endocytic and signaling receptor that is responsible for internalization and lysosomal degradation of diverse proteases, protease inhibitors, and lipoproteins along with numerous other proteins. In this study, we identified MMP-1 as a novel LRP1 ligand. Binding studies employing surface plasmon resonance revealed that both proMMP-1 and active MMP-1 bind to purified LRP1 with equilibrium dissociation constants (KD) of 19 and 25 nM, respectively. We observed that human aortic smooth muscle cells readily internalize and degrade 125I-labeled proMMP-1 in an LRP1-mediated process. Our binding data also revealed that all tissue inhibitors of metalloproteases (TIMPs) bind to LRP1 with KD values ranging from 23 to 33 nM. Interestingly, the MMP-1/TIMP-1 complex bound to LRP1 with an affinity (KD = 0.6 nM) that was 30-fold higher than that of either component alone, revealing that LRP1 prefers the protease:inhibitor complex as a ligand. Of note, modification of lysine residues on either proMMP-1 or TIMP-1 ablated the ability of the MMP-1/TIMP-1 complex to bind to LRP1. LRP1's preferential binding to enzyme:inhibitor complexes was further supported by the higher binding affinity for proMMP-9/TIMP-1 complexes than for either of these two components alone. LRP1 has four clusters of ligand-binding repeats, and MMP-1, TIMP-1, and MMP-1/TIMP-1 complexes bound to cluster III most avidly. Our results reveal an important role for LRP1 in controlling ECM homeostasis by regulating MMP-1 and MMP-9 levels.
Collapse
Affiliation(s)
| | | | | | | | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
15
|
Characterization and Significance of Monocytes in Acute Stanford Type B Aortic Dissection. J Immunol Res 2020; 2020:9670360. [PMID: 32509885 PMCID: PMC7245667 DOI: 10.1155/2020/9670360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/05/2020] [Indexed: 01/16/2023] Open
Abstract
Acute aortic dissection (AAD) is one of the most common fatal diseases noted in vascular surgery. Human monocytes circulate in dynamic equilibrium and display a considerable heterogeneity. However, the role of monocytes in AAD remains elusive. In our recent study, we firstly obtained blood samples from 22 patients with Stanford type B AAD and 44 age-, sex-, and comorbidity-matched control subjects. And the monocyte proportions were evaluated by flow cytometry. Results showed that the percentage of total CD14+ monocytes in the blood samples of Stanford AAD patients was increased significantly compared with that of normal volunteers (P < 0.0005), and the absolute numbers of CD14brightCD16+ and CD14brightCD16− monocytes both increased significantly regardless of the percentage of PBMC or CD14+ cells, while CD14dimCD16+ monocytes displayed the opposite tendency. However, the percentage of CD14+ cells and its three subsets demonstrated no correlation with D-dimer (DD) and C-reactive protein (CRP). Then, blood mononuclear cell (PBMC) samples were collected by Ficoll density gradient centrifugation, followed with CD14+ magnetic bead sorting. After the purity of CD14+ cells was validated over 90%, AAD-related genes were concentrated in CD14+ monocytes. There were no significant differences observed with regard to the mRNA expression levels of MMP1 (P = 0.0946), MMP2 (P = 0.3941), MMP9 (P = 0.2919), IL-6 (P = 0.4223), and IL-10 (P = 0.3375) of the CD14+ monocytes in Stanford type B AAD patients compared with those of normal volunteers. The expression levels of IL-17 (P < 0.05) was higher in Stanford type B AAD patients, while the expression levels of TIMP1(P<0.05), TIMP2(P<0.01), TGF-β1 (P < 0.01), SMAD3 (P < 0.01), ACTA2 (P < 0.001), and ADAMTS-1 (P < 0.001) decreased. The data suggested that monocytes might play an important role in the development of Stanford type B AAD. Understanding of the production, differentiation, and function of monocyte subsets might dictate future therapeutic avenues for Stanford type B AAD treatment and can aid the identification of novel biomarkers or potential therapeutic targets for decreasing inflammation in AAD.
Collapse
|
16
|
Development of a novel aortic dissection mouse model and evaluation of drug efficacy using in-vivo assays and database analyses. J Hypertens 2020; 37:73-83. [PMID: 30303488 DOI: 10.1097/hjh.0000000000001898] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Aortic dissection is a life-threatening disease. At present, the only therapeutic strategies available are surgery and antihypertensive drugs. Moreover, the molecular mechanisms underlying the onset of aortic dissection are still unclear. We established a novel aortic dissection model in mice using pharmacologically induced endothelial dysfunction. We then used the Japanese Adverse Drug Event Report database to investigate the role of pitavastatin in preventing the onset of aortic dissection. METHODS AND RESULTS To induce endothelial dysfunction, Nω-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, was administered to C57BL/6 mice. Three weeks later, angiotensin II (Ang II) and β-aminopropionitrile (BAPN), a lysyl oxidase inhibitor, were administered with osmotic mini-pumps. False lumen formation was used as the pathological determinant of aortic dissection. The incidences of aortic dissection and death from aneurysmal rupture were significantly higher in the Nω-nitro-L-arginine methyl ester, Ang II, and BAPN (LAB) group than they were in the Ang II and BAPN (AB) group.Pitavastatin was administered orally to LAB mice. It significantly lowered the incidences of dissection and rupture. It also decreased inflammation and medial degradation, both of which were exacerbated in the LAB group. The Japanese Adverse Drug Event Report database analysis indicated that there were 113 cases of aortic dissection out of 95 090 patients (0.12%) not receiving statins but only six cases out of 16 668 patients receiving statins (0.04%) (odds ratio: 0.30; P = 0.0043). CONCLUSION Our results suggest that endothelial dysfunction is associated with the onset of aortic dissection and pitavastatin can help prevent this condition.
Collapse
|
17
|
Han L, Dai L, Zhao YF, Li HY, Liu O, Lan F, Jiang WJ, Zhang HJ. CD40L promotes development of acute aortic dissection via induction of inflammation and impairment of endothelial cell function. Aging (Albany NY) 2019. [PMID: 29514135 PMCID: PMC5892687 DOI: 10.18632/aging.101394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Acute aortic dissection is one of the most lethal cardiovascular disease. The major histopathological feature of AAD is medial degradation, especially breakdown of elastin and collagen. However, the underlying mechanism remains a mystery. Platelets expressed CD40 Ligand (CD40L) is recently recognised as a key effector of cardiovascular disease development through its pro-inflammatory effect. To clarify the role of CD40L in AAD, we examined level of CD40L in human blood serum samples and found that it is significantly higher in AAD patients compared with healthy subjects (26.8±5.52 ng/mL versus 13.4±4.00 ng/mL). To further investigate if CD40L is involve in the development of AAD, we applied β-aminopropionitrile (BAPN) induced mouse model of AAD. Consistent with the human data, circulating CD40L in AAD mice much higher than normal mice (148.40±75.96 pg/mL versus 44.09±19.65 pg/mL). Meanwhile, multiple pro-inflammatory chemokines significantly increased in AAD mice. Importantly, the CD40L-/- mice treated with BAPN did not develop these phenotypes. Lastly, we confirmed that endothelial cells migration was significantly inhibited by CD40L, suggesting impaired recovery from intimal injury. In summary, we found that CD40L promoted AAD development through its pro-inflammatory effects and inhibition of endothelial cell function.
Collapse
Affiliation(s)
- Lu Han
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Aortic Disease Center, Cardiovascular Surgery Center, Beijing, China.,Beijing Engineering Research Center for Vascular Prostheses, Beijing, China
| | - Lu Dai
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Aortic Disease Center, Cardiovascular Surgery Center, Beijing, China.,Beijing Engineering Research Center for Vascular Prostheses, Beijing, China
| | - Yuan-Fei Zhao
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Hai-Yang Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Aortic Disease Center, Cardiovascular Surgery Center, Beijing, China.,Beijing Engineering Research Center for Vascular Prostheses, Beijing, China
| | - Ou Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Aortic Disease Center, Cardiovascular Surgery Center, Beijing, China.,Beijing Engineering Research Center for Vascular Prostheses, Beijing, China
| | - Feng Lan
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Aortic Disease Center, Cardiovascular Surgery Center, Beijing, China.,Beijing Engineering Research Center for Vascular Prostheses, Beijing, China
| | - Wen-Jian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Aortic Disease Center, Cardiovascular Surgery Center, Beijing, China.,Beijing Engineering Research Center for Vascular Prostheses, Beijing, China
| | - Hong-Jia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Aortic Disease Center, Cardiovascular Surgery Center, Beijing, China.,Beijing Engineering Research Center for Vascular Prostheses, Beijing, China
| |
Collapse
|
18
|
Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel) 2019; 12:ph12030118. [PMID: 31390798 PMCID: PMC6789891 DOI: 10.3390/ph12030118] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal Aortic Aneurysm (AAA) affects 4–5% of men over 65, and Aortic Dissection (AD) is a life-threatening aortic pathology associated with high morbidity and mortality. Initiators of AAA and AD include smoking and arterial hypertension, whilst key pathophysiological features of AAA and AD include chronic inflammation, hypoxia, and large modifications to the extra cellular matrix (ECM). As it stands, only surgical methods are available for preventing aortic rupture in patients, which often presents difficulties for recovery. No pharmacological treatment is available, as such researchers are attempting to understand the cellular and molecular pathophysiology of AAA and AD. Upregulation of matrix metalloproteinase (MMPs), particularly MMP-2 and MMP-9, has been identified as a key event occurring during aneurysmal growth. As such, several animal models of AAA and AD have been used to investigate the therapeutic potential of suppressing MMP-2 and MMP-9 activity as well as modulating the activity of other MMPs, and TIMPs involved in the pathology. Whilst several studies have offered promising results, targeted delivery of MMP inhibition still needs to be developed in order to avoid surgery in high risk patients.
Collapse
|
19
|
Liao M, Zou S, Bao Y, Jin J, Yang J, Liu Y, Green M, Yang F, Qu L. Matrix metalloproteinases are regulated by MicroRNA 320 in macrophages and are associated with aortic dissection. Exp Cell Res 2018; 370:98-102. [DOI: 10.1016/j.yexcr.2018.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
|
20
|
Wang Y, Tan X, Gao H, Yuan H, Hu R, Jia L, Zhu J, Sun L, Zhang H, Huang L, Zhao D, Gao P, Du J. Magnitude of Soluble ST2 as a Novel Biomarker for Acute Aortic Dissection. Circulation 2018; 137:259-269. [DOI: 10.1161/circulationaha.117.030469] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
- Beijing Institute of Heart, Lung and Blood Vessel Disease, China (Y.W., X.T., D.Z., J.D.)
| | - Xin Tan
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
- Beijing Institute of Heart, Lung and Blood Vessel Disease, China (Y.W., X.T., D.Z., J.D.)
| | - Hai Gao
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
| | - Hui Yuan
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
| | - Rong Hu
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
| | - Lixin Jia
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
| | - Junming Zhu
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
| | - Lizhong Sun
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
| | - Hongjia Zhang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
| | - Lianjun Huang
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
| | - Dong Zhao
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
- Beijing Institute of Heart, Lung and Blood Vessel Disease, China (Y.W., X.T., D.Z., J.D.)
| | - Pei Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China (P.G.)
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, China (Y.W., X.T., H.G., H.Y., R.H., L.J., J.Z., L.S., H.Z., L.H., D.Z., J.D.)
- Beijing Institute of Heart, Lung and Blood Vessel Disease, China (Y.W., X.T., D.Z., J.D.)
| |
Collapse
|
21
|
Wang L, Zhang S, Xu Z, Zhang J, Li L, Zhao G. The diagnostic value of microRNA-4787-5p and microRNA-4306 in patients with acute aortic dissection. Am J Transl Res 2017; 9:5138-5149. [PMID: 29218111 PMCID: PMC5714797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Acute aortic dissection (AAD) is a life-threatening cardiovascular disease with the high morbidity and mortality. Imaging modalities are the gold standard for the diagnosis of AAD; however, they are not always available in emergency department. Biomarker-assisted diagnosis is important for the early treatment of AAD. The aim of the present study was to identify potential microRNA (miRNA) biomarkers for AAD. Differentially expressed plasma miRNAs between AAD patients and age-matched healthy volunteers were analyzed by miRNA microarray. Quantitative RT-PCR was further performed to verify the expression of selected miRNAs (miR-4787-5p and miR-4306) with an increased number of samples. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of miR-4787-5p and miR-4306 as biomarkers for distinguishing AAD. Using TargetScan and miRanda, miR-4787-5p and miR-4306 were selected to predict target gene related to cytokines detecting by dual luciferase assay and western blotting. Nine upregulated and twelve downregulated miRNAs were identified in the circulating plasma of AAD patients. qRT-PCR verified statistically consistent expression of two selected miRNAs with microarray analysis. ROC analyses demonstrated that miR-4787-5p and miR-4306 were specific and sensitive for the early diagnosis of AAD. Bioinformatic predictions and dual luciferase assay suggested that polycystin-1 (PKD1) and transforming growth factor-β1 (TGF-β1) were respectively direct target of miR-4787-5p and miR-4306. Furthermore, the protein expression of the downstream targets of PKD1 and TGF-β1 were significantly reduced following overexpression of miR-4787-5p and miR-4306. These results revealed that miR-4787-5p and miR-4306 could be developed as diagnostic potential biomarkers for AAD, and they could be involved in the pathogenesis of AAD.
Collapse
Affiliation(s)
- Lei Wang
- Department of Emergengcy, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Shijie Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Zhigao Xu
- Department of Emergengcy, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Jingjing Zhang
- Department of Emergengcy, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Li Li
- Department of Emergengcy, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
22
|
Matrix Metalloproteinases as a Pleiotropic Biomarker in Medicine and Biology. DISEASE MARKERS 2016; 2016:9275204. [PMID: 27956755 PMCID: PMC5120195 DOI: 10.1155/2016/9275204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022]
|