1
|
Shunatova N, Zhidkov M. A Dark Horse: Colonial System of Integration in Ctenostome Bryozoans (Gymnolaemata: Ctenostomata). J Morphol 2025; 286:e70018. [PMID: 39731297 DOI: 10.1002/jmor.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024]
Abstract
The colonial system of integration (CSI) provides intracolonial nutrient supply in many gymnolaemate bryozoans. In Ctenostomata, its presence is known for species with stolonal colonies, for example, vesicularioideans, but its structure is almost unexplored. The CSI is thought to be absent in alcyonidioideans and other ctenostomes. Here, we present the first detailed description of the CSI ultrastructure in both autozooids and kenozooids of two vesicularioideans, Buskia nitens and Amathia gracilis, and two alcyonidioideans, Alcyonidium hirsutum and Flustrellidra hispida. We revealed differences in the endocyst structure: in studied alcyonioidioideans, it comprises the epidermis, extracellular matrix and coelomic lining, while in the studied vesicularioideans, it includes only the epidermis. In vesicularioidean autozooids, the main CSI cord and the most distal part of the muscular funiculus originate together as a single structure near the caecum apex. However, at a short distance basally, they separate and run to different sites: the main CSI cord reaches the communication pore, and the muscular funiculus attaches to the cystid wall in the proximal part of the autozooids. The CSI in alcyonidioidean autozooids includes a central part, comprising several strands running from the caecum and pylorus to the cystid walls, and a peripheral part, which is located between the epidermis and peritoneum of the cystid walls and reaches the communication pores. The autozooidal CSI in the studied alcyonidioids never reaches kenozooidal communication pores. Nevertheless, the CSI is present in kenozooids of F. hispida; its structure corresponds to that of the peripheral part of the CSI in autozooids. These findings suggest that the CSI likely originated rather early in bryozoan evolution, and its putative initial function is nutrient transport to budding sites and zooids undergoing degeneration-regeneration cycle.
Collapse
Affiliation(s)
- Natalia Shunatova
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Maxim Zhidkov
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| |
Collapse
|
2
|
Decker SH, Aguilera F, Saadi AJ, Schwaha T. First soft body morphological data on the tracemaker of the endolithic bryozoan trace fossil Terebripora ramosa d'Orbigny, 1842. J Morphol 2024; 285:e21770. [PMID: 39185764 DOI: 10.1002/jmor.21770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Terebriporidae is one of the four extant endolithic ctenostome bryozoan families, with colonies immersed into carbonate substrates like molluscan shells. This monogeneric family comprises 17 species, with 11 extant and 6 fossil species. It is currently considered closely related to vesicularioid ctenostomes, a group characterized by colonies interconnected by polymorphic stolons and a distinct gizzard as part of their digestive systems. However, confusion persists regarding the correct species identities and affiliations of many terebriporid species, and even the description of the entire family is based solely on a few external features of their boring traces, rendering the family an ichnotaxon (trace fossil). Our molecular analysis does not support a vesicularioid affinity, but corroborate a close relationship to Immergentia, another genus of boring bryozoans. Consequently, this study aims to untangle the systematic confusion surrounding Terebriporidae by examining the tracemaker of the type species of the family, Terebripora ramosa from Chile, and investigating its morphology and histology using modern techniques. The current analysis could not confirm typical vesicularioid characters such as a gizzard or true polymorphic stolons. Instead, all characters point towards a closer relationship to Immergentiidae as suggested by a recent molecular phylogeny. In fact, these two taxa share several characters such as cystid appendages and duplicature bands, and appear closely related, with the only difference being a characteristic vane with tubulets present in the tracemaker of T. ramosa. The sister-group relationship of the tracemaker and the genus Immergentia infers that these borers share a common boring ancestor, but also emphasizes that additional species from the ichnogenus Terebripora need to be studied for more clarity.
Collapse
Affiliation(s)
- Sebastian H Decker
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Ahmed J Saadi
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Thomas Schwaha
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Johnson MJ, Saadi AJ, Kuklinski P, Smith AM, López-Gappa J, Schwaha T. Digging into boring bryozoans: new characters and new species of Immergentiidae. ORG DIVERS EVOL 2024; 24:217-256. [PMID: 39035704 PMCID: PMC11258195 DOI: 10.1007/s13127-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/18/2024] [Indexed: 07/23/2024]
Abstract
Immergentia is an endolithic genus of ctenostome bryozoans and the sole member of the Immergentiidae. Etchings of their typical spindled-shaped and sometimes enantiomorphic borehole aperture in calcium carbonate substrates are accomplished by chemical dissolution. The tentacle crown of the bryozoan is essentially the only body part that extends beyond the shell surface when protruded. Previously, species were mainly described using external colony and zooidal characteristics or whole mounts, with partial histological sections conducted on a single species in 1947. Modern approaches, however, are hitherto missing. We examined the soft body morphology of Immergentia from different locations with confocal laser scanning microscopy and the production of 3D reconstructions. In addition, zooidal characteristics such as tentacle number, size, tubulets, and interzooidal distances were used to distinguish and describe species. The combination of conventional and modern methods revealed the presence of a cardiac constrictor and intercalary kenozooids that can interpose between the cystid appendages, something not previously reported in immergentiids, thus necessitating an amendment of the family diagnosis. The polypide typically has eight to ten tentacles, and the anus is positioned in the low or mid-lophophoral area. In addition, sequence data, including the mitogenome and the nuclear ribosomal genes (18S and 28S) of four species from five locations, are presented for the first time. Based on molecular and morphological data, a novel intertidal immergentiid from France, Immergentia stephanieae sp. nov., and a subtidal species from New Zealand, I. pohowskii sp. nov., are described. This work supplements the rather sparse existing knowledge on Immergentiidae and proposes additional characteristics to complement existing descriptions in order to enhance future species identification. Supplementary Information The online version contains supplementary material available at 10.1007/s13127-024-00645-y.
Collapse
Affiliation(s)
- Mildred J. Johnson
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ahmed J. Saadi
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Piotr Kuklinski
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| | - Abigail M. Smith
- Department of Marine Science, University of Otago, P.O. Box 56, Dunedin, 9054 New Zealand
| | - Juan López-Gappa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Museo Argentino de Ciencias Naturales, C1405DJR Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Thomas Schwaha
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
4
|
Kuzmina TV, Temereva EN. Structure of the oral tentacles of early ontogeny stage in brachiopod Hemithiris psittacea (Rhynchonelliformea, Rhynchonellida). J Morphol 2024; 285:e21686. [PMID: 38491849 DOI: 10.1002/jmor.21686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
Brachiopods have the most complex lophophore in comparison with other lophophorates, i.e., phoronids and bryozoans. However, at early ontogenetic stages, brachiopods have a lophophore of simple morphology, which consists of the oral tentacles. Data on the ultrastructure of the oral tentacles is mostly missing. Nonetheless, it has recently been suggested that the structure of oral tentacles is ancestral for all lophophorates in general, and for brachiopods in particular. The fine structure of the oral tentacles in the brachiopod Hemithiris psittacea is studied using light microscopy, transmission and scanning electron microscopy, cytochemistry and confocal laser scanning microscopy. The oral tentacles have a round shape in transverse section, and four ciliary zones, i.e., one frontal, two lateral, and one abfrontal. Latero-frontal sensory cells occur among the frontal epithelium. Four basiepithelial nerves in the ciliary epithelium are colocalized with ciliary zones. Lophophores of simple morphology in phoronids and brachiopods are characterized by non-specified round forms of tentacles. In phoronids and bryozoans, tentacles have additional latero-frontal ciliary zones that function as a sieve during filtration. In most brachiopods, lateral cilia are involved in the capture of food particles, whereas latero-frontal cells are retained in the frontal zone as sensory elements. The oral tentacles of H. psittacea contain a coelomic canal and have distinct frontal and abfrontal longitudinal muscles, which are separated from each other by peritoneal cells. A similar structure of tentacle muscles occurs in all bryozoans, whereas in phoronids, the frontal and abfrontal tentacle muscles are not separated by peritoneal cells. We suggest that the lophophorates' ancestor had tentacles, which were similar to the tentacles of some phoronids with lophophore of simple morphology. We also assume that the structure of the oral tentacles is ancestral for all brachiopods and the specialization of brachiopod tentacles correlates with the appearance of the double row of tentacles.
Collapse
|
5
|
Schwaha T, Decker SH, Baranyi C, Saadi AJ. Rediscovering the unusual, solitary bryozoan Monobryozoon ambulans Remane, 1936: first molecular and new morphological data clarify its phylogenetic position. Front Zool 2024; 21:5. [PMID: 38443908 PMCID: PMC10913646 DOI: 10.1186/s12983-024-00527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND One of the most peculiar groups of the mostly colonial phylum Bryozoa is the taxon Monobryozoon, whose name already implies non-colonial members of the phylum. Its peculiarity and highly unusual lifestyle as a meiobenthic clade living on sand grains has fascinated many biologists. In particular its systematic relationship to other bryozoans remains a mystery. Despite numerous searches for M. ambulans in its type locality Helgoland, a locality with a long-lasting marine station and tradition of numerous courses and workshops, it has never been reencountered until today. Here we report the first observations of this almost mythical species, Monobryozoon ambulans. RESULTS For the first time since 1938, we present new modern, morphological analyses of this species as well as the first ever molecular data. Our detailed morphological analysis confirms most previous descriptions, but also ascertains the presence of special ambulatory polymorphic zooids. We consider these as bud anlagen that ultimately consecutively separate from the animal rendering it pseudo-colonial. The remaining morphological data show strong ties to alcyonidioidean ctenostome bryozoans. Our morphological data is in accordance with the phylogenomic analysis, which clusters it with species of Alcyonidium as a sister group to multiporate ctenostomes. Divergence time estimation and ancestral state reconstruction recover the solitary state of M. ambulans as a derived character that probably evolved in the Late Cretaceous. In this study, we also provide the entire mitogenome of M. ambulans, which-despite the momentary lack of comparable data-provides important data of a unique and rare species for comparative aspects in the future. CONCLUSIONS We were able to provide first sequence data and modern morphological data for the unique bryozoan, M. ambulans, which are both supporting an alcyonidioidean relationship within ctenostome bryozoans.
Collapse
Affiliation(s)
- Thomas Schwaha
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030, Vienna, Austria.
| | - Sebastian H Decker
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030, Vienna, Austria
| | - Christian Baranyi
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030, Vienna, Austria
| | - Ahmed J Saadi
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030, Vienna, Austria
| |
Collapse
|
6
|
Schwaha T, Gordon DP. Deep-sea ctenostome bryozoans: revision of the family Pachyzoidae, with description of a new genus and three new species from Zealandia. ZOOLOGICAL LETTERS 2024; 10:4. [PMID: 38321566 PMCID: PMC11334597 DOI: 10.1186/s40851-024-00226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Pachyzoidae is a little-known family of deep-sea ctenostome Bryozoa that until now was monospecific for Pachyzoon atlanticum. Originally described from the Atlantic Ocean, the genus was also found off southeastern New Caledonia in deep waters of the geological continent of Zealandia. Pachyzoon atlanticum forms globular to flat round colonies, living on soft, muddy to sandy bottoms with a few rhizoidal cystid appendages extending from the basal, substrate-oriented side. In this study, we investigate additional pachyzoids, collected between 1965 and 2015 from over 40 sites around New Zealand, by means of detailed morphological and histological investigations. In total, several hundred colonies were encountered in the NIWA Invertebrate Collection, comprising two new species of the genus Pachyzoon, P. grischenkoi sp. nov. and P. pulvinaris sp. nov., and the new genus and species Jeanloupia zealandica gen. et sp. nov.. The genus Jeanloupia is characterized by small disc-shaped colonies with highly elongated peristomes and a quadrangular aperture, distinct from the round apertures of the genus Pachyzoon. Pachyzoid species differ in colony structure and shape, apertural papillae and polypide features such as tentacle number or digestive-tract details. Cystid appendages are non-kenozooidal, but may originate from laterally flanking kenozooids. Based on published images, alleged P. atlanticum from New Caledonia is re-interpreted as P. pulvinaris n. sp.. Morphological characters support alcyonidioidean relationships, as previously suggested. First observations on pachyzoid reproduction show macrolecithal oocytes and brooding of embryos, which seems to be the general pattern for this family. The occurrence of three new Zealandian species in a comparatively small geographical area far from the Atlantic indicates a high possibility of more species to discovered.
Collapse
Affiliation(s)
- Thomas Schwaha
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030, Vienna, Austria.
| | - Dennis P Gordon
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| |
Collapse
|
7
|
Shunatova N. To be a transit link: Similarity in the structure of colonial system of integration and communication pores in autozooids and avicularia of Terminoflustra membranaceotruncata (Bryozoa: Cheilostomata). J Morphol 2024; 285:e21679. [PMID: 38329427 DOI: 10.1002/jmor.21679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Bryozoan colonies consist of zooids, which can differ in structure and function. Most heteromorphic zooids are unable to feed and autozooids supply them with nutrients. The structure of the tissues providing nutrient transfer is poorly investigated. Here, I present a detailed description of the colonial system of integration (CSI) and communication pores in autozooids and avicularia of the cheilosome bryozoan Terminoflustra membranaceotruncata. The CSI is the nutrient transport and distribution system in the colony. In both autozooids and avicularia it consists of a single cell type, that is, elongated cells, and has a variable branching pattern, except for the presence of a peripheral cord. The general similarity in the CSI structure in avicularia and autozooids is probably due to the interzooidal type of the avicularium. Interzooidal avicularia are likely to consume only a part of the nutrients delivered to them by the CSI, and they transit the rest of the nutrients further. The variability and irregularity of branching pattern of the CSI may be explained by the presence of single communication pores and their varying number. The structure of communication pores is similar regardless of their location (in the transverse or lateral wall) and the type of zooid in contact. Rosette complexes include a cincture cell, a few special cells, and a few limiting cells. Along each zooidal wall, there are communication pores with both unidirectional and bidirectional polarity of special cells. However, the total number of nucleus-containing lobes of special cells is approximately the same on each side of any zooidal wall. Supposing the polarity of special cells reflects the direction of nutrient transport, the pattern of special cells polarity is probably related to the need for bidirectional transport through each zooidal wall. The possibility for such transport is important in large perennial colonies with wide zones of autozooids undergoing polypide degeneration.
Collapse
Affiliation(s)
- Natalia Shunatova
- Department of Invertebrate Zoology, Saint-Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
8
|
Schwaha T, Hirose M, Wood TS. Morphology of ctenostome bryozoans: 7. Hislopia, Echinella and Timwoodiellina. J Morphol 2024; 285:e21678. [PMID: 38361263 DOI: 10.1002/jmor.21678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024]
Abstract
Ctenostome bryozoans are a small group of gymnolaemates comprising less than 400 recent species. They are paraphyletic and ctenostome-grade ancestors gave rise to Cheilostomata, the most dominant and speciose taxon of Bryozoa in the present day. Investigations into ctenostomes are important for reconstructing character evolution among Gymnolaemata. As a continuation of studies on a morphological series of ctenostome bryozoans, we herein investigate six species of hislopiids, a small clade of three genera occurring in freshwater habitats. The general morphology of all species is similar in having primarily uniserial chains of encrusting zooids, which are mostly oval to ellipsoid and have a flattened frontobasal axis. Hislopia prolixa and Echinella placoides often have more slender zooids with a higher frontobasal axis. Apertures of hislopiids are quadrangular, lined by a thickened cuticle. Apertural spines are present in various lengths in E. placoides, Hislopia lacustris and Hislopia corderoi. The remaining cuticle is rather thin except at lateral areas, close to the pore-plates which are prominent in hislopiids because of abundant special and limiting cells. All species except H. corderoi and Timwoodiellina natans have a prominent collar obstructing the vestibulum, whereas the latter two species instead have an 'external collar' as cuticular, outer folds projecting over the aperture. Hislopiid lophophores carry eight, or more commonly 12-18 tentacles. The digestive tract is distinguished by an often highly elongated esophagus and/or cardia, with the latter always having a prominent bulbous part in the form of a proventriculus-or gizzard in E. placoides. The caecum is extensive in all species. In Hislopia the intestine is characteristically two-chambered with a proximal and distal part before entering an anal tube of various length. The latter is present in all species except T. natans and terminates in mid-lophophoral area. Oocytes in E. placoides are large and macrolecithal indicating brooding and the production of lecithotrophic larvae. Hislopia species produce small, oligolecithal ones, which suggests zygote spawning and planktotrophy. In general, the morphology is similar among the different hislopiids with characters of the gut aiding in delineating the genera Echinella and Timwoodiellina.
Collapse
Affiliation(s)
- Thomas Schwaha
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Masato Hirose
- School of Marine Biosciences, Kitasato University, Sagamihara-Minami, Kanagawa, Japan
| | - Timothy S Wood
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
9
|
Shunatova N, Denisova S, Shchenkov S, Filippov A. Colonial system of integration and communication pores in a polymorphic bryozoan Dendrobeania fruticosa (Bryozoa: Cheilostomata). J Morphol 2023; 284:e21601. [PMID: 37313765 DOI: 10.1002/jmor.21601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023]
Abstract
Bryozoan colonies are composed of zooids, which can differ in structure and function. Autozooids supply heteromorphic zooids with nutrients, which are usually unable to feed. To date, the ultrastructure of the tissues providing nutrient transfer is almost unexplored. Here, we present a detailed description of the colonial system of integration (CSI) and the different types of pore plates in Dendrobeania fruticosa. All cells of the CSI are joined by tight junctions that isolate its lumen. The lumen of the CSI is not a single structure, but a dense network of small interstices filled with a heterogeneous matrix. In autozooids, the CSI is composed of two types of cells: elongated and stellate. Elongated cells form the central part of the CSI, including two main longitudinal cords and several main branches to the gut and pore plates. Stellate cells compose the peripheral part of the CSI, which is a delicate mesh starting from the central part and reaching various structures of autozooids. Autozooids have two tiny muscular funiculi, which start from the caecum apex and run to the basal wall. Each funiculus includes a central cord of extracellular matrix and two longitudinal muscle cells; together they are enveloped with a layer of cells. The rosette complexes of all types of pore plates in D. fruticosa display a similar cellular composition: a cincture cell and a few special cells; limiting cells are absent. Special cells have bidirectional polarity in interautozooidal and avicularian pore plates. This is probably due to the need for bidirectional transport of nutrients during degeneration-regeneration cycles. Cincture cells and epidermal cells of pore plates contain microtubules and inclusions resembling dense-cored vesicles, which are typical of neurons. Probably, cincture cells are involved in the signal transduction from one zooid to another and can be a part of the colony-wide nervous system.
Collapse
Affiliation(s)
- Natalia Shunatova
- Department of Invertebrate Zoology, Saint-Petersburg State University, Universitetskaya nab., St. Peterburg, Russian Federation
| | - Sofia Denisova
- Department of Invertebrate Zoology, Saint-Petersburg State University, Universitetskaya nab., St. Peterburg, Russian Federation
| | - Sergei Shchenkov
- Department of Invertebrate Zoology, Saint-Petersburg State University, Universitetskaya nab., St. Peterburg, Russian Federation
| | - Artem Filippov
- Department of Invertebrate Zoology, Saint-Petersburg State University, Universitetskaya nab., St. Peterburg, Russian Federation
| |
Collapse
|
10
|
Decker SH, Hirose M, Lemer S, Kuklinski P, Spencer HG, Smith AM, Schwaha T. Boring bryozoans: an investigation into the endolithic bryozoan family Penetrantiidae. ORG DIVERS EVOL 2023; 23:743-785. [PMID: 38046835 PMCID: PMC10689564 DOI: 10.1007/s13127-023-00612-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 12/05/2023]
Abstract
An endolithic lifestyle in mineralized substrates has evolved multiple times in various phyla including Bryozoa. The family Penetrantiidae includes one genus with ten extant and two fossil species. They predominantly colonize the shells of molluscs and establish colonies by chemical dissolution of calcium carbonate. Based on several morphological characters, they were described to be either cheilostome or ctenostome bryozoans. For more than 40 years, neither the characters of species identity and systematics nor the problem of their phylogeny was approached. Consequently, the aim of this study is to reevaluate species identities and the systematic position of the genus Penetrantia by analyzing at least six different species from eight regions with the aid of modern methods such as confocal laser scanning microscopy and 3D-reconstruction techniques. This study demonstrates that the musculature associated with the operculum and brood chamber shows significant differences from the cheilostome counterparts and seems to have evolved independently. Together with the presence of other ctenostome-like features such as true polymorphic stolons and uncalcified body wall, this finding supports a ctenostome affinity. Operculum morphology reveals many new species-specific characters, which, together with information about gonozooid morphology, tentacle number, and zooid size ranges, will enhance species identification. It also revealed a probable new species in Japan as well as potential cryptic species in France and New Zealand. In addition, this study increases the known distribution range of the family and its substrate diversity. Altogether, the new information collated here provides the basis for future work on a neglected taxon. Supplementary Information The online version contains supplementary material available at 10.1007/s13127-023-00612-z.
Collapse
Affiliation(s)
- Sebastian H. Decker
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030 Vienna, Austria
| | - Masato Hirose
- School of Marine Biosciences, Kitasato University, Kitasato 1-15-1, Sagamihara-Minami, Kanagawa, 252-0373 Japan
| | - Sarah Lemer
- Marine Laboratory, UOG Station, Mangilao, Guam 96923 USA
| | - Piotr Kuklinski
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | | | - Abigail M. Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Thomas Schwaha
- Department of Evolutionary Biology, University of Vienna, Schlachthausgasse 43, 1030 Vienna, Austria
| |
Collapse
|
11
|
Schwaha T, Waeschenbach A, De Blauwe H, Gordon DP. Morphology of ctenostome bryozoans: 6. Amphibiobeania epiphylla. J Morphol 2022; 283:1505-1516. [PMID: 36205214 PMCID: PMC9828531 DOI: 10.1002/jmor.21519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 01/19/2023]
Abstract
Ctenostome bryozoans are unmineralized and mostly marine. Their lack of calcified skeletal features requires other characters to be considered for systematic and phylogenetic considerations. As a continuation of an ongoing series of studies, we herein investigate the morphology of Amphibiobeania epiphylla, a unique bryozoan inhabiting mangrove leaves that are highly exposed to tidal cycles and regular dry events according to the tidal cycle. Besides this interesting mode of life, the species was originally interpreted to be a weakly mineralized cheilostome bryozoan, whereas molecular data place it among ctenostome bryozoans. To elucidate the systematic and phylogenetic position of the genus and also find morphological adaptations to an extreme habitat, we investigated the morphology of A. epiphylla in detail. Zooids show a lophophore with eight tentacles and a simple gut with a prominent caecum, lophophoral anus and most notably a distinct gizzard in the cardiac region. Gizzard teeth are multiple, simple homogeneous cuticular structures. The cuticle of the zooid is rather uniform and shows no respective thickenings into opercular flaps or folds. Likewise, apertural muscles are represented by a single pair of muscles. There are no specific closing muscles in the apertural area like the operculum occlusors of cheilostomes. Most prominent within zooids is a spongiose tissue filling most of the body cavity. Although not properly understood, this tissue may aid in keeping animals moist and hydrated during prolonged dry times. In summary, all morphological characters support a ctenostome rather than a cheilostome affinity, possibly with Vesicularioidea or Victorelloidea. In addition, we provide new molecular data that clearly supports such a closer relationship.
Collapse
Affiliation(s)
- Thomas Schwaha
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | - Andrea Waeschenbach
- Department of Life Sciences, Invertebrate DivisionNatural History MuseumLondonUK
| | - Hans De Blauwe
- Department of Invertebrates, Scientific CollaboratorRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Dennis P. Gordon
- National Institute of Water and Atmospheric Research (NIWA)WellingtonNew Zealand
| |
Collapse
|
12
|
Schwaha T, Winston JE, Gordon DP. Morphology of ctenostome bryozoans: 5. Sundanella, with description of a new species from the Western Atlantic and the Multiporata concept. J Morphol 2022; 283:1139-1162. [PMID: 35788975 PMCID: PMC9545146 DOI: 10.1002/jmor.21494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
Abstract
Ctenostome bryozoans are a small group of gymnolaemates that comprise only a few hundred described species. Soft-tissue morphology remains the most important source for analysing morphological characters and inferring relationships within this clade. The current study focuses on the genus Sundanella, for which morphological data is scarce to almost absent. We studied two species of the genus, including one new to science, using histology and three-dimensional reconstruction techniques and confocal laser scanning microscopy. Sundanella generally has a thick, sometimes arborescent cuticle and multiporous interzooidal pore plates. The lophophore is bilateral with an oral rejection tract and generally has 30 or 31 tentacles in both species. The digestive tract shows a large cardia in S. floridensis sp. nov. and an extremely elongated intestine in Sundanella sibogae. Both terminate via a vestibular anus. Only parietodiaphragmatic muscles are present and four to six duplicature bands. Both species show a large broad frontal duplicature band further splitting into four individual bands. The collar is vestibular. Sundanella sibogae shows highly vacuolated cells at the diaphragm, whereas S. floridensis sp. nov. has unique glandular pouches at the diaphragmal area of the tentacle sheath. Such apertural glands have never been encountered in other ctenostomes. Both species of Sundanella are brooders that brood embryos either in the vestibular or cystid wall. Taken together, the current analysis shows numerous characteristics that refute an assignment of Sundanella to victorellid ctenostomes, which only show superficial resemblance, but differ substantially in most of their soft-body morphological traits. Instead, a close relationship with other multiporate ctenostomes is evident and the families Pherusellidae, Flustrellidrae and Sundanellidae should be summarized as clade 'Multiporata' in the future.
Collapse
Affiliation(s)
- Thomas Schwaha
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | | | - Dennis P. Gordon
- National Institute of Water and Atmospheric Research (NIWA)WellingtonNew Zealand
| |
Collapse
|
13
|
Reduction, rearrangement, fusion, and hypertrophy: evolution of the muscular system in polymorphic zooids of cheilostome Bryozoa. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Kuzmina T, Temereva E. Tentacle muscles in brachiopods: Ultrastructure and relation to peculiarities of life style. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:192-208. [PMID: 34813683 DOI: 10.1002/jez.b.23110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Although the morphology of the brachiopod tentacle organ, the lophophore, is diverse, the organization of tentacles has traditionally been thought to be similar among brachiopods. We report here, however, that the structure of the tentacle muscles differs among brachiopod species representing three subphyla: Lingula anatina (Linguliformea: Linguloidea), Pelagodiscus atlanticus (Linguliformea: Discinoidea), Novocrania anomala (Craniiformea), and Coptothyris grayi (Rhynchonelliformea). Although the tentacle muscles in all four species are formed by myoepithelial cells with thick myofilaments of different diameters, three types of tentacle organization were detected. The tentacles of the first type occur in P. atlanticus, C. grayi, and in all rhynchonelliforms studied before. These tentacles have a well-developed frontal muscle and a small abfrontal muscle, which may reflect the ancestral organization of tentacles of all brachiopods. This type of tentacle has presumably been modified in other brachiopods due to changes in life style. Tentacles of the second type occur in the burrowing species L. anatina and are characterized by the presence of equally developed smooth frontal and abfrontal muscles. Tentacles of the third type occur in N. anomala and are characterized by the presence of only well-developed frontal muscles; the abfrontal muscles are reduced due to the specific position of tentacles during filtration and to the presence of numerous peritoneal neurites on the abfrontal side of the tentacles. Tentacles of the first type are also present in phoronids and bryozoans, and may be ancestral for all lophophorates.
Collapse
Affiliation(s)
- Tatyana Kuzmina
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Elena Temereva
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
15
|
Tamberg Y, Batson PB, Napper R. Polypide anatomy of hornerid bryozoans (Stenolaemata: Cyclostomatida). J Morphol 2021; 282:1708-1725. [PMID: 34570383 DOI: 10.1002/jmor.21415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022]
Abstract
Bryozoans are small colonial coelomates whose colonies are made of individual modules (zooids). Like most coelomate animals, bryozoans have a characteristic body wall composition, including an epidermis, an extracellular matrix (ECM) and a coelothelium, all pressed together. The order Cyclostomatida, however, presents the most striking deviation, in which the ECM and the corresponding coelothelium underlying major parts of the skeletal wall epidermis are detached to form an independent membranous sac. It forms a separate, much smaller compartment, suspended in the zooid body cavity and working as an important element of the cyclostome lophophore protrusion mechanism. The polypide anatomy and ultrastructure of this group is best known from studies of one family, the Crisiidae (Articulata). Here, we examined four species from the phylogenetically and ecologically contrasting family Horneridae (Cancellata) from New Zealand, and provide the first detailed ultrastructural description of the hornerid polypide, including tentacles, mouth region, digestive system and the funiculus. We were able to trace continuity and transitions of cell and ECM layers throughout the whole polypide. In addition, we identified that the funiculus is a lumen-free ECM cord with two associated muscles, disconnected from interzooidal pores. Except for funicular core composition, the polypide anatomy of hornerids agrees well with the general cyclostomate body plan.
Collapse
Affiliation(s)
- Yuta Tamberg
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Peter B Batson
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Ruth Napper
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Schwaha T, Grischenko AV, Melnik VP. Morphology of ctenostome bryozoans: 4. Pierrella plicata. J Morphol 2021; 282:746-753. [PMID: 33675255 PMCID: PMC8048812 DOI: 10.1002/jmor.21344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/26/2022]
Abstract
The genus Pierrella was originally created for a single fossil ctenostome bryozoan species from the Late Cretaceous, which is characterized by runner-like colonies, with zooids possessing a distinctive radial, folded aperture. Not long ago, a few specimens of a recent deep-sea congener, Pierrella plicata, were discovered and described from the Russian exploration area of the Clarion-Clipperton Fracture Zone, eastern Central Pacific Ocean. Owing to the lack of data on the internal morphology of this species, we investigated the soft-body morphology of P. plicata using serial sectioning and 3D-reconstruction in order to compare it to other more recently investigated ctenostome bryozoans and to infer the systematic position of the genus. The most striking peculiarity of the examined species is the radial aperture formed by multiple cuticular, pleated folds of the cystid wall. The cuticle is thickened into triangular-shaped folds in this area. An orifical sphincter underlies the folded aperture. Apertural muscles are present as a single pair of parieto-diaphragmatic muscles and four duplicature bands. The remaining polypide anatomy is mainly characterized by its miniature design: the lophophore has eight short tentacles and the digestive tract is one of the shortest and most compact ever observed in any bryozoan. A small intertentacular organ was detected at the lophophoral base. Taken together the genus Pierrella shows unique characters, such as the radial apertural folds that are closed by a series of orificial sphincter muscles, and its particularly small polypide. The general colony morphology resembles arachnidioidean ctenostomes whereas its internal morphology resembles alcyonidioidean species.
Collapse
Affiliation(s)
- Thomas Schwaha
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | - Andrei V. Grischenko
- Department of Invertebrate Zoology and Aquatic Ecology, Biological FacultyPerm State National Research UniversityPermRussia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East BranchRussian Academy of SciencesVladivostokRussia
| | - Viacheslav P. Melnik
- Joint Stock Company YuzhmorgeologiyaMinistry of Nature Resources and Environment of the Russian FederationGelendzhikRussia
| |
Collapse
|
17
|
Shunatova N, Denisova S, Shchenkov S. Ultrastructure of rhizoids in the marine bryozoan Dendrobeania fruticosa (Gymnolaemata: Cheilostomata). J Morphol 2021; 282:847-862. [PMID: 33759196 DOI: 10.1002/jmor.21351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Indexed: 11/07/2022]
Abstract
Bryozoans form colonies of iterated modules, termed zooids, and display varying degrees of polymorphism. Polymorphic colonies comprise autozooids (or feeding zooids) and heteromorphic zooids, among which the most common types are avicularia and kenozooids. Kenozooids differ in shape, size, and presumed function. Among this diversity, there are rhizoids, which serve to attach colonies to the substrate or to lift them above it. To date, only general data on anatomy of kenozooids at light microscopy level are available. Here, we present the first description of the ultrastructure of the holdfast-like rhizoids of the cheilostome bryozoan Dendrobeania fruticosa. The rhizoid wall is composed of a single-layered epidermis, which produces the ectocyst. The voluminous cavity is acoelomate: it has no special cellular lining, nor any signs of an extracellular matrix toward the epidermis. It is traversed by delicate branching funicular strands that originate from the pore plate. The only cells in contact with the epidermis are the cells of the funicular system and the storage cells. The pore plate between the rhizoid and autozooid includes a variable number of communication pores. Each pore is plugged with a rosette complex, which includes a cincture cell and four special cells extending through the pore. The limiting cells are absent, and the special cells are in direct contact with the funicular strands. Cell contacts between special cells are absent; moreover, there are spaces between their proximal lobes filled with a heterogeneous matrix similar to that in the lumen of the funicular strands. Such matrix is also found outside of the extracellular matrix surrounding the special cells. These findings allow us to suggest that nutrient transport most likely occurs between, rather than through, the special cells. However, further studies are needed to understand how the rosette complex functions.
Collapse
Affiliation(s)
- Natalia Shunatova
- Department of Invertebrate Zoology, Saint-Petersburg State University, St. Petersburg, Russian Federation
| | - Sofia Denisova
- Department of Invertebrate Zoology, Saint-Petersburg State University, St. Petersburg, Russian Federation
| | - Sergei Shchenkov
- Department of Invertebrate Zoology, Saint-Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
18
|
Decker SH, Gordon DP, Spencer Jones ME, Schwaha T. A revision of the ctenostome bryozoan family Pherusellidae, with description of two new species. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sebastian H. Decker
- Department of Evolutionary Biology Integrative Zoology University of Vienna Vienna Austria
| | - Dennis P. Gordon
- National Institute of Water & Atmospheric Research Ltd (NIWA) Kilbirnie, Wellington New Zealand
| | | | - Thomas Schwaha
- Department of Evolutionary Biology Integrative Zoology University of Vienna Vienna Austria
| |
Collapse
|
19
|
Schwaha T. Morphology of ctenostome bryozoans: 3. Elzerina, Flustrellidra, Bockiella. J Morphol 2021; 282:633-651. [PMID: 33576505 PMCID: PMC8048840 DOI: 10.1002/jmor.21334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/08/2022]
Abstract
Ctenostome bryozoans are a small group of bryozoans whose soft‐tissue morphology has received only little attention. The present study represents the third in a series of articles dealing with the morphology of this clade of bryozoans. The morphology of three genera of Alcyonidioidea, that is, Bockiella (Alcyonidiidae), Elzerina and Flustrellidra (both Flustrellidridae), are analyzed using histology and 3D‐reconstruction techniques. The general zooidal morphology is similar and externally differs by the shape of the aperture. Zooids of Elzerina binderi are elongated in the fronto‐basal axis, whereas the other two are more flattened in this axis. All species show multiple pore‐complexes in their zooidal walls ranging from ~66 in E. binderi, to ~30 in F. hispida and to less than 10 in Bockiella. The aperture is bilabiate in flustrellidrids and roundish in Bockiella. Apertural muscles are present as parieto‐diaphragmatic muscles. The flustrellidrids have a large frontal duplicature band that further splits into four separate bands. The collar is diaphragmatic in Bockiella, but vestibular in the flustrellidrids. Lophophores are similar among the investigated species with a rejection tract in the flustrellidrids. The digestive tract shows differences in the extent and proportions of the caecum, which is large in the flustrellidrids and small in Bockiella; the anus is vestibular in all species. A funicular muscle of variable location is present in each species. Elzerina binderi has additional thin strands emanating from the digestive tract to the body wall. The parietal muscles show a unique situation in E. binderi with five bundles being present, two laterals and one distal. Several features aid in defining characters for the entire superfamily and the families Flustrellidridae and Alcyonidiidae. Besides the shape of the aperture, the frontal duplicature band, the vestibular collar and the large caecum are important. The set of characters also confirms recent notions that Bockiella belongs to the Alcyonidiidae.
Collapse
Affiliation(s)
- Thomas Schwaha
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Schwaha T, Grischenko AV, Melnik VP. Morphology of ctenostome bryozoans: 2. Haywardozoon pacificum, with implications of the phylogenetic position of the genus. J Morphol 2020; 281:1607-1616. [PMID: 32955145 PMCID: PMC7756298 DOI: 10.1002/jmor.21272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022]
Abstract
The genus Haywardozoon represent a little known genus of ctenostome bryozoans that has only been found in the deep-sea. It forms small, mostly uniserial colonies lacking polymorphs. Zooids have a conspicuous apertural closure mechanism consisting of a cuticular lower lip that closes the aperture. The systematic placement of the genus remains uncertain, detailed morphological studies that include soft-body morphological traits are missing. Consequently, this is the first study analyzing H. pacificum by means of histological serial sections and 3d-reconstruction. Zooids are ovoid and in some cases solitary, that is, showing no interconnected zooids. Most prominent is the large vestibular wall that can be more than half of the total length of the zooid. Its vestibular wall is particularly lined by a complex, multilayered and branched cuticle. A single pair of lateral parieto-diaphragmatic muscles is present. The polypide is small and comprises about 17 tentacles. The digestive tract is short, has an elongated cardia, a vestigial caecum and a vestibular anus. An ovipositor/intertentacular organ and several oligolecithal oocytes were detected. Several aspects of zooidal morphology, including the structure of the bilateral aperture, parieto-diaphragmatic muscles, general structure of the gut and the thick cuticle, clearly indicate an association to the ctenostome superfamily Alcyonidioidea. Therefore, we reject the previous placement into Hislopioidea and suggest a possible association to pherusellid ctenostomes. New reproductive characters show that H. pacificum is a broadcaster contrary to some other deep-sea forms that are brooding. RESEARCH HIGHLIGHT: Morphology of ctenostome bryozoans remain little investigated. This contribution is the second of a series of detailed morphological analyses of this understudied clade of bryozoans. The morphological investigation of Haywardozoon pacificum revealed numerous characters that show a closer relationship to Flustrellididrae rather than Hislopiidae as previously assumed.
Collapse
Affiliation(s)
- Thomas Schwaha
- University of ViennaDepartment of Evolutionary BiologyViennaAustria
| | - Andrei V. Grischenko
- Department of Invertebrate Zoology and Aquatic Ecology, Biological FacultyPerm State National Research UniversityPermRussia
- A.V. Zhirmunsky National Scientific Center of Marine BiologyFar East Branch, Russian Academy of SciencesVladivostokRussia
| | - Viacheslav P. Melnik
- Joint Stock Company YuzhmorgeologiyaMinistry of Nature Resources and Environment of the Russian FederationGelendzhikRussia
| |
Collapse
|
21
|
Schwaha TF, Hirose M. Morphology of Stephanella hina (Bryozoa, Phylactolaemata): common phylactolaemate and unexpected, unique characters. ZOOLOGICAL LETTERS 2020; 6:11. [PMID: 33292824 PMCID: PMC7654017 DOI: 10.1186/s40851-020-00165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Stephanella hina is a little studied freshwater bryozoan belonging to Phylactolaemata. It is currently the only representative of the family Stephanellidae, which in most reconstructions is early branching, sometimes even sister group to the remaining phylactolaemate families. The morphological and histological details of this species are entirely unknown. Consequently, the main aim of this study was to conduct a detailed morphological analysis of S. hina using histological serial sections, 3D reconstruction, immunocytochemical staining and confocal laser scanning microscopy techniques. The general morphology is reminiscent of other phylactolaemates; however, there are several, probably apomorphic, details characteristic of S. hina. The most evident difference lies in the lophophoral base, where the ganglionic horns/extensions do not follow the traverse of the lophophoral arms but bend medially inwards towards the mouth opening. Likewise, the paired forked canal does not fuse medially in the lophophoral concavity as found in all other phylactolaemates. Additional smaller differences are also found in the neuro-muscular system: the rooting of the tentacle muscle is less complex than in other phylactolaemates, the funiculus lacks longitudinal muscles, the caecum has smooth muscle fibres, latero-abfrontal tentacle nerves are not detected and the medio-frontal nerves mostly emerge directly from the circum-oral nerve ring. In the apertural area, several neurite bundles extend into the vestibular wall and probably innervate neurosecretory cells surrounding the orifice. These morphological characteristics support the distinct placement of this species in a separate family. Whether these characteristics are apomorphic or possibly shared with other phylactolaemates will require the study of the early branching Lophopodidae, which remains one of the least studied taxa to date.
Collapse
Affiliation(s)
- Thomas F Schwaha
- Department of Evolutionary Biology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| | - Masato Hirose
- Kitasato University, School of Marine Biosciences, Kitasato 1-15-1, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| |
Collapse
|
22
|
Schwaha T, De Blauwe H. Morphology of ctenostome bryozoans: 1. Arachnidium fibrosum. J Morphol 2020; 281:1598-1606. [PMID: 33009880 PMCID: PMC7756562 DOI: 10.1002/jmor.21275] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/05/2022]
Abstract
The morphology of ctenostome bryozoans remains little investigated with only few species having been subject to more detailed studies. From all the seven main different superfamilies, only few representatives have been studied. The superfamily Arachnidioidea has particularly been neglected concerning detailed morphological and histological details. So far, not a single analysis specifically studied a representative of the family Arachnidiidae. Arachnidium‐like forms have, however, often been regarded as potential cheilostome ancestors, the most successful group of bryozoans to date. The lack of any morphological data on this family called for a detailed investigation of one of its representatives. Hence, we analysed the general morphology and histology of Arachnidium fibrosum. Most striking morphological features previously unrecognized are a cardiac constrictor, previously almost unknown in the family, a single pair of apertural muscles consisting of proximal parieto‐diaphragmatic and distal parieto‐vestibular muscles, six pairs of duplicature bands, a lophophoral anus and retractor muscles attaching to the foregut. Although comparative data are limited, there seem to be two distinct different clades of arachnidiid ctenostomes that are characterized by their aperture and details of gut morphology. Further analysis of additional arachnidioidean species are required to confirm this.
Collapse
Affiliation(s)
- Thomas Schwaha
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Hans De Blauwe
- Department of Invertebrates, Scientific Collaborator, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
23
|
Schwaha T. O anus, where art thou? An investigation of ctenostome bryozoans. J Morphol 2020; 281:914-922. [PMID: 32542691 PMCID: PMC7496372 DOI: 10.1002/jmor.21146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 11/29/2022]
Abstract
Ctenostome bryozoans are a small group of approximately 350 currently described species that remain inadequately investigated anatomically. Recently, the importance of soft body morphology of zooids including the digestive tract has become more evident for addressing various biological aspects such as systematic, functional, or phylogenetic analyses. Particularly, the position of the anus shows considerable variation in ctenostomes and in its extreme form can either be at the lophophoral base or at the vestibular wall. However, it has never been analysed in a broader systematic, phylogenetic, or functional context. Hence, the purpose of this study is to assess the distribution of anus position among ctenostomes, analyse whether zooidal or colonial morphology affects anus position, and draw first conclusions on its functional effects. The survey shows that a vestibular anus is ubiquitously present in alcyonidioideans and several, probably closely related, walkerioideans. In other groups such as boring forms, it appears more patchily distributed, or in some currently unassignable genera, such as Monobryozoon, supports a closer relationship to alcyonidioideans. Other zooidal or colonial characters such as tentacle number or zooidal density in the colony do not show a distinct correlation to the position of the anus. It appears that the shift of the anus into a vestibular area occurred once or twice among ctenostomes; the reasons and functional effects remain unknown. Future important aspects of defecation research in bryozoans are discussed.
Collapse
Affiliation(s)
- Thomas Schwaha
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Morphology and life cycle of an epiphytic pherusellid ctenostome bryozoan from the Mediterranean Sea. ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00443-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractThe epiphytic community on the endemic seagrass Posidonia oceanica from the Mediterranean Sea is well studied, but still harbors some little investigated epiphytic bryozoans. Numerous, yet always small colonies of Pherusella sp. were recently encountered in the Northern Adriatic Sea. The aim of this study was to generate data on the life history, colonial development, and reproduction of the Mediterranean population of this Pherusella species in order to gain a better understanding of the biology of this understudied species. The morphology of adult zooids was also studied due to the lack of recent data on the family with state-of-the-art techniques. Long-term observation shows that this species is highly adapted to an epiphytic life cycle with short generation time throughout the year. First laboratory cultures appear promising in establishing a reliable model system for developmental and ecological studies. Larvae are easily obtainable, and metamorphosis and colonial growth patterns are documented here for the first time. The morphology of adults shows distinct similarities with other pheruselllids and, along with the neuromuscular system, is similar to other alcyonidioideans supporting the close relationship of these taxa. This study constitutes one of the first long-time observations of the life cycle and colonial growth of a pherusellid bryozoan, including morphological data about the neuromuscular system of an otherwise incompletely known group of bryozoans. Pherusella sp. appears to be a promising candidate for future studies since it is easy to collect and maintain under laboratory conditions as well as to obtain different developmental stages.
Collapse
|
25
|
Schwaha TF, Ostrovsky AN, Wanninger A. Key novelties in the evolution of the aquatic colonial phylum Bryozoa: evidence from soft body morphology. Biol Rev Camb Philos Soc 2020; 95:696-729. [PMID: 32032476 PMCID: PMC7317743 DOI: 10.1111/brv.12583] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/29/2022]
Abstract
Molecular techniques are currently the leading tools for reconstructing phylogenetic relationships, but our understanding of ancestral, plesiomorphic and apomorphic characters requires the study of the morphology of extant forms for testing these phylogenies and for reconstructing character evolution. This review highlights the potential of soft body morphology for inferring the evolution and phylogeny of the lophotrochozoan phylum Bryozoa. This colonial taxon comprises aquatic coelomate filter-feeders that dominate many benthic communities, both marine and freshwater. Despite having a similar bauplan, bryozoans are morphologically highly diverse and are represented by three major taxa: Phylactolaemata, Stenolaemata and Gymnolaemata. Recent molecular studies resulted in a comprehensive phylogenetic tree with the Phylactolaemata sister to the remaining two taxa, and Stenolaemata (Cyclostomata) sister to Gymnolaemata. We plotted data of soft tissue morphology onto this phylogeny in order to gain further insights into the origin of morphological novelties and character evolution in the phylum. All three larger clades have morphological apomorphies assignable to the latest molecular phylogeny. Stenolaemata (Cyclostomata) and Gymnolaemata were united as monophyletic Myolaemata because of the apomorphic myoepithelial and triradiate pharynx. One of the main evolutionary changes in bryozoans is a change from a body wall with two well-developed muscular layers and numerous retractor muscles in Phylactolaemata to a body wall with few specialized muscles and few retractors in the remaining bryozoans. Such a shift probably pre-dated a body wall calcification that evolved independently at least twice in Bryozoa and resulted in the evolution of various hydrostatic mechanisms for polypide protrusion. In Cyclostomata, body wall calcification was accompanied by a unique detachment of the peritoneum from the epidermis to form the hydrostatic membraneous sac. The digestive tract of the Myolaemata differs from the phylactolaemate condition by a distinct ciliated pylorus not present in phylactolaemates. All bryozoans have a mesodermal funiculus, which is duplicated in Gymnolaemata. A colonial system of integration (CSI) of additional, sometimes branching, funicular cords connecting neighbouring zooids via pores with pore-cell complexes evolved at least twice in Gymnolaemata. The nervous system in all bryozoans is subepithelial and concentrated at the lophophoral base and the tentacles. Tentacular nerves emerge intertentacularly in Phylactolaemata whereas they partially emanate directly from the cerebral ganglion or the circum-oral nerve ring in myolaemates. Overall, morphological evidence shows that ancestral forms were small, colonial coelomates with a muscular body wall and a U-shaped gut with ciliary tentacle crown, and were capable of asexual budding. Coloniality resulted in many novelties including the origin of zooidal polymorphism, an apomorphic landmark trait of the Myolaemata.
Collapse
Affiliation(s)
- Thomas F. Schwaha
- Department of Evolutionary Biology, Integrative Zoology, Faculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Andrew N. Ostrovsky
- Department of Palaeontology, Faculty of Earth Sciences, Geography and AstronomyUniversity of ViennaVienna1090Austria
- Department of Invertebrate Zoology, Faculty of BiologySaint Petersburg State UniversitySaint Petersburg199034Russia
| | - Andreas Wanninger
- Department of Evolutionary Biology, Integrative Zoology, Faculty of Life SciencesUniversity of ViennaVienna1090Austria
| |
Collapse
|
26
|
Pröts P, Wanninger A, Schwaha T. Life in a tube: morphology of the ctenostome bryozoan Hypophorella expansa. ZOOLOGICAL LETTERS 2019; 5:28. [PMID: 31410295 PMCID: PMC6686267 DOI: 10.1186/s40851-019-0142-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Bryozoa is a large phylum of colonial aquatic suspension feeders. The boring ctenostome Hypophorella expansa is unique and inhabits parchment-like polychaete tubes. Morphological studies date back to the nineteenth century, but distinct adaptations to this specific habitat have not been properly analysed, which prompted us to reexamine the morphology of this recently encountered species. The colony of H. expansa is composed of elongated stolonal kenozooids with a distal capsule-like expansion. A median transversal muscle is present in the latter, and one autozooid is laterally attached to the capsule. Unique stolonal wrinkles are embedded in the thin parts of the stolons. Single autozooids are attached in an alternating right-left succession on subsequent stolons. Polypide morphology including digestive tract, muscular system and most parts of the nervous system are similar to other ctenostomes. The most obvious apomorphic features of Hypophorella are space balloons and the gnawing apparatus. The former are two fronto-lateral spherical structures on autozooids, which provide space inside the tube. The latter perforates layers of the polychaete tube wall and consists of two rows of cuticular teeth that, together with the entire vestibular wall, are introvertable during the protrusion-retraction process. The apertural muscles are in association with this gnawing apparatus heavily modified and show bilateral symmetry. Adaptations to the unique lifestyle of this species are thus evident in stolonal wrinkles, autozooidal space balloons and the gnawing apparatus. The growth pattern of the colony of H. expansa may aid in rapid colonization of the polychaete tube layers.
Collapse
Affiliation(s)
- Philipp Pröts
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Andreas Wanninger
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Schwaha
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
27
|
Worsaae K, Frykman T, Nielsen C. The neuromuscular system of the cyclostome bryozoan
Crisia eburnea
(Linnaeus, 1758). ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Katrine Worsaae
- Marine Biological Section, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Tobias Frykman
- Marine Biological Section, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Claus Nielsen
- BioSystematics, The Natural History Museum of Denmark, University of Copenhagen Copenhagen Denmark
| |
Collapse
|